
Real-Time Intrusion Detection System Using Multi-

agent System

Wathiq Laftah Al-Yaseen, Zulaiha Ali Othman, and Mohd Zakree Ahmad Nazri

Abstract—The growth of network attacks has lengthened

the intrusion detection system’s (IDS) processing time to detect

these attacks. The demand for reducing the processing time has

increased when dealing with real time IDS. Several methods

were proposed, such as improving the algorithm, or improving

the IDS’s architectural design; which includes distributed and

parallel. However, this paper sought to present a Multi-agent

System solution (MAS-IDS) to enhance the performance of IDS

in order to reduce the analysis of the network’s traffic data

processing time when detecting attacks. Numerous works of

MAS improved the accuracy of IDS, however, only a few had

focused on enhancing the processing time of IDS. The number

of analysis agents that can be created in a system depends upon

the size of traffic data and the availability of logical processors

(cores) in the system, without affecting the performance of the

hosts with less targeted time. The conducted experiments

employed the dataset KDDCUP'99. The results illustrated that

MAS-IDS had reduced up to 81% of the processing time in the

analysis procedure when compared to traditional IDS with

maintaining the same accuracy approximately.

Index Terms—Distributed System, Intrusion Detection

System, Multi-agent System, Network Security, Parallel

Processing

I. INTRODUCTION

HE increase of malicious intrusions on computer

networks and information systems has raised the ratio of

risk and violation of computer security policies of

Confidentiality, Integrity and Availability [1, 2]. Intrusion

detection system (IDS) is one of the systems that strives to

detect attacks by analysing events as unauthorised use,

misuse and abuse of networks and computers [3]. Most

researches had focused on the accuracy of detection attacks,

however, the time required to detect these attacks is

currently in high demand due to the increase of network

traffic. Some network-based IDSs drop network packets

without processing due to the fact that these systems do not

have time to process these packets [4]. Consequently, IDS

must be able to detect attacks with less processing time in

order to become real-time IDS. Numerous works were

introduced concerning real-time IDS, such as those of Wang

et al. [5], which depended on the Principal Component

Analysis in the design of their systems. Zali et al. [6] used

the causal approach to propose their real-time IDS;

Sangkatsanee et al. [7] employed different machine learning

techniques with 12 essential features of KDD99 and proved

that the decision tree was the best; Boukerche et al. [8]

Manuscript received November 12, 2015; revised January 11, 2016.

Wathiq Laftah Al-Yaseen, Zulaiha Ali Othman and Mohd Zakree

Ahmad Nazri are with the Data Mining and Optimization Research Group

(DMO), Centre for Artificial Intelligence Technology (CAIT), School of

Computer Science, Faculty of Information Science and Technology,

Universiti Kebangsaan Malaysia (UKM), 43600 Bandar Baru Bangi,

Malaysia. email: wathiqpro@gmail.com, zao@ukm.edu.my,

zakree@ukm.edu.my.

applied artificial immune and mobile agents to construct

their model; and Amini et al. [9] utilised unsupervised

neural nets to detect known and new attacks in the network

traffic.

The IDS was defined as an anomaly detection system or

misuse detection system. The misuse detection system

identifies known attacks through the use of attack signatures

that were previously saved in the database of the system [9].

The major problem of the misuse system is that every attack

should have a signature entry in the database in order to

compare with the arrived packets; thus, this process

consumes a long time for it to be achieved. The anomaly

detection system identifies the deviation of normal

behaviour in the network and users, therefore, this type of

system must capture data from the network during a period

of time and analyse it. In addition, the IDS can operate in 2

modes: off-line detection and on-line detection [10]. IDS

off-line is the decomposition of periodical information in

network and system logs to identify suspicious activities and

intrusions. IDS on-line captures the arrived traffic data from

the network to process and identify malicious activities [7].

This paper focused on the on-line IDS which analyses the

captured data packets within a very short period of time in

order to not provide any chance of attacks that may damage

the system and deadline [11].

Distributed IDS is more efficient in solving the problems

of centralised IDS because it utilises various sources of

information with greater accuracy in order to reach the goal

of detection attacks [10]. Additionally, distributed systems

have the ability to process the data within less time than

what is normally required by centralised systems due to their

ability to run tasks in parallel. One of these systems is the

Multi-agent System (MAS) which is a type of Artificial

Intelligence System (AIS) that has autonomous and

cooperating agents distributed throughout its system

environment. They carry a number of characteristics such as

situated-ness, autonomy and flexibility [12].

In this paper, it was proposed using MAS to improve the

time of IDS by addressing the attacks with a short

processing time, and establishing MAS as a real-time

system. This paper aimed to construct an anomaly detection

system based on agents to analyse the network data traffic in

parallel so as to reduce the processing time. A few works

regarding MAS which handled attacks and were also

interested in the processing time were [8, 13, 14]. The

method in this research presented a system to accelerate and

facilitate the process of analysing data traffic by using

agents working in parallel, and distributed throughout

various host systems. Moreover, to achieve the goal of

parallel processing in the data analysis, the system had

coordinator agents which divided the captured network data

into subsets and then sent the data subsets to analysis agents.

This, in turn, led to the determining of the number of hosts

T

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_10

(Advance online publication: 29 February 2016)

__

mailto:wathiqpro@gmail.com
mailto:zakree%7d@ukm.edu.my

and agents required to accomplish an IDS, with less time

consuming and without affecting the performance of the

system. The JADE platform was employed in the

implementation of the proposed system, as well as, in the

use of the data mining clustering technique to classify data

in clusters of either normal or attack. To examine the system

performance, the KDD’99 dataset was used. The experiment

results illustrated that the time spent in the process of testing

data by MAS-IDS was better than traditional IDS.

The remainder of this paper was organised as follows:

Section 2 discussed related works in the processing time of

IDSs with the different methods used; Section 3 described

the main concepts of Multi-agent System based intrusion

detection systems; Section 4 explained the architecture of

MAS-IDS and the role of each agent, along with the

algorithms applied in the proposed work; Section 5

demonstrated the dataset used and the experimental results;

and Section 6 displayed the conclusions and portrayed

future works.

II. RELATED WORK

Nowadays, with high-speed infrastructure network and

large volumes of data traffic, traditional IDS are not capable

of effectively encountering these challenges; to monitor and

analyse the entire traffic network with minimum time

consumption. To promote the performance of network IDSs

and reduce the processing time of analysing traffic, a few

studies had presented network IDSs that focus on parallel

techniques as an alternative. These studies used several

nodes (hosts) to process the traffic of network parallelism,

so that each node in the system was responsible for dealing

with 1 part of the traffic network. These studies were

classified into 2 categories, in accordance to the definition

from Culler and Singh [15], as data parallelism [16, 17] and

function parallelism [18, 19].

Data parallelism divided the payload of each packet into n

portions, so that each node has 1/n of the original packet

(load balancing). Divided Data Parallel (DDP) is an

approach for signature matching IDS proposed by Kopek et

al. (2007) which divided the data packet as fragments across

an array of processors. This approach worked with the data

parallel principle of having each processor with the same

rules as the signatures. However, it used match-bit to reduce

the problem of an overlap between fragments; whereby,

when the overlap occurred, the fragment was duplicated

between processors. Vasiliadis et al. (2011) presented

MIDeA using hardware system resources such as multi-

queue NICs, multiple CPUs and multiple GPUs to process

and analyse the network traffic. This method employed the

Receive-Side Scaling (RSS) technology to split network

traffic received from the NIC card to N slices; N was the

number of cores available within the system. Therefore, the

slices were processed by SNORT and assigned with each

core, then sent to the memory of GPUs to further address

and show the results. Kruegel et al. [20] proposed a

partitioning approach to dividing the traffic network into

subsets of manageable size. This approach used a slicing

mechanism in the dividing process; thus, each slice

contained all the evidence necessary to detect a specific

attack by the node without the need to interact with other

nodes in the system. In addition, Intel Corporation (2006)

presented a paper, “Supra-linear Packet Processing

Performance with Intel Multi-core Processors”; regarding

the benefit of multiple processing cores to achieve good

performance results of IDS. This paper utilised the

programming concepts of pipelining and flow-pinning with

the SNORT application to divide the dataflow of SNORT

into a number of packets and assign them to multi-cores of

execution units in the system. The results illustrated that the

use of multi-cores were better than the use of a single core

in terms of cache hit rate in high network traffic.
Function parallelism was used, in particular, with

signature detection systems to distribute the rules across

nodes. Thus, each packet was duplicated to each node for

searching and matching, with a few rules dedicated to this

node. Shiri' et al.’s (2011) presented method relied on NLFP

(node level function parallelism) which was introduced by

Wheeler (2003) in the design signature detection

architecture. This method dispersed all the rules across the

nodes and then used a packet duplicator, or traffic splitter, to

send each traffic packet to the appropriate node; depending

on the source and destination ports. The results had shown

that the performance of this method, in terms of processing

time, when applied to several SNORTs distributed on the

nodes of the system was better than the processing time

implemented on the same packets with centralised SNORT.

Sallay et al. (2009) presented a method of splitting the

incoming traffic and forwarding to the sensors of IDS. This

depended on the switching table (protocols) which the FTP

packet had sent to the sensor that was responsible for FTP

protocols and so on. At the same time, each sensor was only

running the rules that were set by SNORT and dedicated to

that sensor, such as the FTP rules set. The control centre

component aggregated and analysed the various alarms from

the sensors to detect attacks.

From previous works, it was noted that function

parallelism was used to shorten the delay in the processing

of the packets; however, it did not reduce the delay of

signature matching in each node due to the use of multi-

pattern search algorithms. Therefore, distributing the rules

across nodes only lessened the processing delay. In contrast,

data parallelism reduced the inspection time in each node

due to the use of bounded amounts of data; thus, decreasing

the overall processing time of the packets. All the

approaches presented with data parallelism were aimed at

constructing a misuse detection system, without any

mention of approaching aims to build an anomaly detection

system; in which such approaches depend upon matching

the attack signatures with incoming network traffic. In

addition, all previous researches interested with IDSs that

employed parallelism in their work to reduce the time

required for processing had applied various methods to

construct the parallel system; but so far, no research has

utilised the Multi-agent System as a distribution system to

create parallelism for reducing the time required for

processing data packets in IDS.

A state of the art, the Multi-agent System is used to tackle

and solve the problems suffered by IDSs. One of these

problems is the centralised processing of IDS which leads to

a single point of failure. Numerous studies where presented

to tackle this problem, such as [10, 21, 22]. An advantage of

using agents with IDS is the sharing of information

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_10

(Advance online publication: 29 February 2016)

__

pertaining to attacks upon agents deployed in the system

environment; this was further demonstrated in numerous

works such as [10, 23]. Another benefit provided by Multi-

agent Systems for IDSs is the security of IDS through the

exchange of messages between entities by using agents such

as [24].

III. MULTI-AGENT SYSTEM BASED INTRUSION DETECTION

SYSTEM

Traditionally, an IDS works by analysing the data

collected from various sources such as network traffic,

system logs and user logs to identify whether the data

contains any malicious or suspicious activities [1]. These

data are gathered through the spread of a number of tools in

the system environment, such as sniffers. These tools are

either in the form of software or hardware. Fig. 1 presented

the process of inputting data to IDS. The sniffer

automatically reads data from the network every n minutes,

typically 5 minutes, and saves it to files; renaming each

output file with the time stamp [25]. The popular sniffers

that capture data packets from the network traffic flow are

TCPDUMP and Wireshark. Moreover, other tasks of

sniffers include converting the raw data captured from the

network flow to a readable form and then saving it to

generate a dataset [26, 27]. The benchmark KDD’99 dataset

was one of the popular datasets gathered by capturing all the

traffic of factitious military networks using the TCP dump

format during a period of seven weeks. The formulation of

traffic data and how it was processed to detect attacks was

shown below.

The dataset 𝐷𝑖
𝑇𝑖(𝐼, 𝐴) was defined as the dataset generated

from the network flow at time 𝑇𝑖 for every n minutes (Fig.

1); where, assumedly, that 𝐼 = {𝑥1, 𝑥2, … , 𝑥𝑗 , … , 𝑥𝑟} is a set

of r number of records and each record 𝑥𝑗 has a set of

attributes 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑙}, and l is the number of

attributes (e.g. for KDDCUP’99 dataset, l = 41). Thus, the

transaction data consisted of a collection of datasets as in the

following:

 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝐷𝑎𝑡𝑎 = {𝐷1
𝑇1 , 𝐷2

𝑇2 , 𝐷3
𝑇3 , … } (1)

where

 𝑇𝑖 + 1 = 𝑇𝑖 + 𝑛 𝑚𝑖𝑛𝑢𝑡𝑒𝑠

 |𝐷𝑖| 𝑚𝑎𝑦 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 |𝐷𝑗|, 𝑖, 𝑗 = 1,2,3, … 𝑎𝑛𝑑 𝑖 ≠ 𝑗
 n is the interval time to capture dataset 𝐷𝑖 from the

network flow.

Fig. 1. The process of capturing and analysing the data network for IDS

Raw

data

Network

Sniffer

1, tcp, smtp, REJ, 15…
0, tcp, private, SF, 1…
0, icmp, http, REJ, 130…

0, udp, http, SF, 20….
0, tcp, private, SF, 1…
0, udp, http, REJ, 150…

0, tcp, http, SF, 20...
0, udp, private, SF, 12…
11, tcp, ftp, REJ, 50…

T
i
 T

i+1
 T

i+2
 T

i+3

n min n min n min

Queue Transaction

Dataset 𝐷𝑖

D
i
 D

i+1
 D

i+2

Queue

Empty?

Data mining

Mti n

AccuT = AccuT + (Mti-n)

AccuT >threshold

AccuT = AccuT - (n-Mti)

AccuT<0

AccuT=0

Failure System

W
ait

Yes
Yes

Yes

Yes No

No

No

No

Data collection

Intrusion detection system

… …

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_10

(Advance online publication: 29 February 2016)

__

The datasets from formula (1) were entered into the next

phase for analysis and for determining whether these data

contained malicious or suspicious activities by employing

one of the data mining techniques. Each one of these

datasets may be too large, especially in the present day, in

which increasing size and speed of data flow in the network

may lead to the construction of large datasets; therefore, the

data analysis process by IDS will be expensive and difficult.

This is especially true if the analysis process is

centralisation, which would require a long time in the

completion of the task and may result in system failure [28].

Each dataset 𝐷𝑖 may need 𝑀𝑡𝑖 minutes from the data mining

technique to complete its process of analysis. When the

required time 𝑀𝑡𝑖 to analyse a dataset 𝐷𝑖
𝑇𝑖 is greater than the

required time n to capture the next dataset 𝐷𝑖+1

𝑇𝑖+1 , then the

process will lead to the accumulation of aggregates of data

that will require more time (𝐴𝑐𝑐𝑢𝑇 minutes) to analyse. This

may then exceed the required time (Threshold) of attacks to

damage the system.

However, if the required time 𝑀𝑡𝑖 to analyse the dataset is

less than n, then the analysis process by data mining would

be positive towards improving the analysis time; whereby,

the accumulated time from analysing previous datasets will

be reduced and perhaps equal to zero.

𝐴𝑐𝑐𝑢𝑇𝑖 + 1 = {
𝐴𝑐𝑐𝑢𝑇𝑖 + (𝑀𝑡𝑖 − 𝑛) 𝑖𝑓 𝑀𝑡𝑖 ≥ 𝑛

𝐴𝑐𝑐𝑢𝑇𝑖 − (𝑛 − 𝑀𝑡𝑖) 𝑖𝑓 𝑀𝑡𝑖 < 𝑛
 (2)

subject to

 𝐴𝑐𝑐𝑢𝑇𝑖 + 1 = 0, 𝑖𝑓 𝐴𝑐𝑐𝑢𝑇𝑖 + 1 < 0

 AccuT: is the accumulation time of the analysis

process by data mining.

 𝑀𝑡𝑖: is the required time from data mining to

analyse 𝐷𝑖.

In order to address the above problem, a method was

proposed to reduce the processing time of the data mining

technique 𝑀𝑡𝑖 by dividing the dataset 𝐷𝑖(𝐼, 𝐴) into m

number of data subsets formula (3) and addressing each data

subset 𝑆𝑗(𝐼, 𝐴) separately; then, the re-unification of the

results that were obtained from the analysis of each data

subset would be to construct the final results of 𝐷𝑖 . The

value of m will rely on some factors available in the system;

for example, in this study, the value of m depended on the

available resources of the system, such as logical processors

(cores).

 ∀𝐷𝑖 = {𝑆1, 𝑆2, … , 𝑆𝑗 , … , 𝑆𝑚}, (3)

 𝑚 < 𝑁𝑜𝑛_𝐵𝑢𝑠𝑦 𝐿𝑜𝑔𝑖𝑐𝑎𝑙 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠 𝑜𝑓 𝑆𝑦𝑠𝑡𝑒𝑚

The size of each data subset 𝑆𝑗(𝐼, 𝐴) is:

 |𝑆𝑗| = {

|𝐷𝑖|

𝑚
 , 𝑗 = 1,2, … , 𝑚 − 1

|𝐷𝑖|

𝑚
 + |𝐷𝑖| 𝑚𝑜𝑑 𝑚, 𝑗 = 𝑚

 (4)

The set of records for each 𝑆𝑗 were assigned from 𝐷𝑖 as:

𝑆𝑗 = {𝐼|𝑆𝑗|∗(𝑗−1)+1, 𝐼|𝑆𝑗|∗(𝑗−1)+2, … , 𝐼|𝑆𝑗|∗(𝑗−1)+|𝑆𝑗|}, (5)

 𝑗 = 1,2, … , 𝑚 − 1

𝑆𝑚 =

{𝐼|𝑆𝑚−1|∗(𝑚−1)+1, 𝐼|𝑆𝑚−1|∗(𝑚−1)+2, … , 𝐼|𝑆𝑚−1|∗(𝑚−1)+|𝑆𝑚|} (6)

The data subsets formulas (5) and (6) emerged from the

dividing process that was analysed in parallel through the

use of the distributed system. In this paper, a Multi-agent

System environment was employed as the distributing

system to create a set of agents so as to analyse the data

subsets. For each subset, an agent was created to be

responsible for the analysis process of this subset. This

process is called allocate function, and the procedure was as

follows: 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒 (𝑆𝑗 , 𝐴𝑔𝑒𝑛𝑡𝑗) was responsible for creating

𝐴𝑔𝑒𝑛𝑡𝑗 to analyse the data subset 𝑆𝑗 and return the result

𝑅𝑗 to the cooperative agent. It was concluded that the

number of agents required to analyse the data subsets was

equal to the number of data subsets (|𝐴𝑔𝑒𝑛𝑡𝑠| = |𝑆|).

 ∀𝑆𝑗 , ∃𝐴𝑔𝑒𝑛𝑡𝑗: 𝑅𝑗 ← 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒 (𝑆𝑗 , 𝐴𝑔𝑒𝑛𝑡𝑗), (7)

 𝑗 = 1,2, … , 𝑚 (7)

where 𝑅𝑗 represents the result of analysis 𝑆𝑗 by 𝐴𝑔𝑒𝑛𝑡𝑗

However, the MAS-IDS system environment has a set of

hosts (computers) which are responsible for creating agents.

 𝑀𝐴𝑆 − 𝐼𝐷𝑆 𝑆𝑦𝑠𝑡𝑒𝑚 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 =

{𝐻𝑜𝑠𝑡1, 𝐻𝑜𝑠𝑡2, … , 𝐻𝑜𝑠𝑡𝑝} (8)

Each host has a number of logical processors (LPs), or

(Cores), which play an important role in the proposed

system; whereby, each logical processor has the ability to

implement a single agent without affecting the rest of the

host activities.

𝐻𝑜𝑠𝑡𝑖 = {𝐿𝑃1, 𝐿𝑃2 , … , 𝐿𝑃𝑞𝑖
}, 𝑖 = 1,2, … , 𝑝, 𝑞𝑖 ≥ 1 (9)

Therefore, the administrator of the system must have all

the information regarding the number of hosts allocated

within the system environment and the number of logical

processors available within each host; as well as, the total

number of logical processors available in the whole system.

 𝑇𝑜𝑡𝑎𝑙 𝐿𝑃𝑠 = ∑ 𝑞𝑖
𝑝
𝑖=1 (10)

where 𝑞𝑖 is the number of logical processors available

in 𝐻𝑜𝑠𝑡𝑖.

In addition, the administrator of the system must have

information regarding the number of LPs that are currently

busy with other activities in each host. After the collection

of all these information on the system environment, the

system can implement each agent, 𝐴𝑔𝑒𝑛𝑡𝑗, to analyse 1 data

subset 𝑆𝑗 with 1 logical processor of the host environment.

Therefore, a new function was defined to implement the

agent with the logical processor; the name of this function

was 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 (𝐴𝑔𝑒𝑛𝑡𝑗, 𝐿𝑃𝑢).

∀𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒(𝑆𝑗 , 𝐴𝑔𝑒𝑛𝑡𝑗), ∃ 𝐿𝑃𝑢 ∈

 𝐻𝑜𝑠𝑡𝑖 : 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡(𝐴𝑔𝑒𝑛𝑡𝑗, 𝐿𝑃𝑢), (11)

1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑢 ≤ 𝑞𝑖

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_10

(Advance online publication: 29 February 2016)

__

For example, the details of the system composed of hosts

are shown in Table 1. However, the dataset was divided to a

set of data subsets (m = 10) ready to be analysed by the

system. Therefore, 10 agents need to be created to analyse

these data subsets. Thus, 10 logical processors are required

to implement these agents.

TABLE I

DETAILS OF HOSTS

Host Total of

LPs

No of LPs

(busy)

No of LPs

(non-busy)

Host1 6 2 4

Host2 4 0 4

Host3 8 3 5

Host4 4 3 1

Host5 8 2 6

Total 30 10 20

From this example, the proposed system required a plan

for choosing the appropriate hosts to create agents. This plan

was based on the availability of logical processors that were

non-busy in the hosts. As a result, the system may employ 1

of these 2 ideas to create agents in the hosts. The first idea

involved creating agents by equally distributing them on the

hosts as much as possible. So the agents, for

example {𝐴𝑔𝑒𝑛𝑡1, 𝐴𝑔𝑒𝑛𝑡2, … , 𝐴𝑔𝑒𝑛𝑡10}, will be distributed

on hosts {𝐻𝑜𝑠𝑡1, 𝐻𝑜𝑠𝑡2, 𝐻𝑜𝑠𝑡3, 𝐻𝑜𝑠𝑡4, 𝐻𝑜𝑠𝑡5}

as {3, 2,2,1,2}, respectively. It was noted from this

distribution that the creation of 1 agent was only for 𝐻𝑜𝑠𝑡4

because 𝐻𝑜𝑠𝑡4 was busy with the implementation of other

activities which used (3/4) of its logical processors;

therefore, the proposed system created only 1 agent

for 𝐻𝑜𝑠𝑡4. On the other hand, this distribution had other

disadvantages in terms of costs in the consumption of

system resources and communication processes. It was

noted that 𝐻𝑜𝑠𝑡1and 𝐻𝑜𝑠𝑡4 were consuming CPU and

memory through the implementation of agents, as well as,

for the rest of the activities in which they used (5/6) and

(4/4) of their logical processors, respectively. In addition,

the system made numerous communications to create agents

in the host system. The second idea was to create agents

with hosts that had the largest number of non-busy logical

processors. 𝐻𝑜𝑠𝑡5 and 𝐻𝑜𝑠𝑡3 were chosen, so the agents

{𝐴𝑔𝑒𝑛𝑡1, 𝐴𝑔𝑒𝑛𝑡2, … , 𝐴𝑔𝑒𝑛𝑡10} were distributed on

{𝐻𝑜𝑠𝑡5, 𝐻𝑜𝑠𝑡3} as {6, 4} or {5, 5}. The disadvantage of

communication did not exist with this idea, but the

disadvantage of system resources was still present through

the use of all the logical processors of 𝐻𝑜𝑠𝑡5 or 𝐻𝑜𝑠𝑡3. To

avoid the disadvantages of the above 2 ideas, a plan was

proposed for creating agents in hosts by taking advantage of

the mentioned concepts. At first, the hosts were arranged in

descending order according to the number of non-busy

logical processors; then, the created agents were distributed

on the hosts where (if necessary) in each host, the system

created a number of agents that was half the number of non-

busy logical processors of that host.

 𝐴𝑔𝑒𝑛𝑡𝑠(𝐻𝑜𝑠𝑡𝑖) = ⌈
𝑞𝑖 − 𝐵𝑢𝑠𝑦 𝐿𝑃(𝐻𝑜𝑠𝑡𝑖)

2
⌉ , 𝑖 = 1,2, … , 𝑝 (12)

subject to

 𝑚 = ∑ 𝐴𝑔𝑒𝑛𝑡𝑠(𝐻𝑜𝑠𝑡𝑖)𝑝
𝑖=1

where

 𝐴𝑔𝑒𝑛𝑡𝑠(𝐻𝑜𝑠𝑡𝑖): The number of agents that can be

created with 𝐻𝑜𝑠𝑡𝑖 .
 𝐵𝑢𝑠𝑦 𝐿𝑃(𝐻𝑜𝑠𝑡𝑖): The number of logical processors

have busy now with other activities in 𝐻𝑜𝑠𝑡𝑖.

Depending on this idea, the creation of agents for the

example above {𝐴𝑔𝑒𝑛𝑡1, 𝐴𝑔𝑒𝑛𝑡2, … , 𝐴𝑔𝑒𝑛𝑡10} will be
distributed on hosts {𝐻𝑜𝑠𝑡5, 𝐻𝑜𝑠𝑡3, 𝐻𝑜𝑠𝑡1, 𝐻𝑜𝑠𝑡2} as {3, 3,

2, 2}, respectively. Thus, this idea had reduced the

consumption of system resources, as well as, the

communication processes between agents.

To analyse the data subsets in each agent, data mining

clustering as K-means algorithm was used to achieve this

task. Basically, K-means algorithm depends on the method

to choose the initial centres in order to obtain good results.

Here, it was sufficient to use the random method of selecting

the initial centres of clusters.

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑒𝑛𝑡𝑒𝑟𝑠 = {𝐶1, 𝐶2, … , 𝐶𝑘} (13)

𝐶𝑖 = 𝑅𝑎𝑛𝑑𝑜𝑚 𝑥, 1 ≤ 𝑥 ≤ |𝑆𝑗| 𝑎𝑛𝑑 𝑥 ∉ {𝐶1, 𝐶2, … , 𝐶𝑖−1},

𝑖 = 1,2, … , 𝑘

where k is the desired number of clusters with K-means.

Next, the method of Portnoy [29] was applied to label the

clusters, either as normal clusters or attack clusters. The

normal clusters were the maximum cluster size and the

others were attack clusters.

𝑁𝑜𝑟𝑚𝑎𝑙(𝑅𝑗) =

𝑀𝑎𝑥𝑠𝑖𝑧𝑒{𝐶𝑙𝑢𝑠𝑡𝑒𝑟1, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟2, … , 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑘} (14)

 𝐴𝑡𝑡𝑎𝑐𝑘𝑠(𝑅𝑗) = ⋃ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖 − 𝑁𝑜𝑟𝑚𝑎𝑙 (𝑅𝑗)𝑘
𝑖=1 (15)

After each agent had completed the analyse of the data

subset that was sent to it, each agent returned the results to

the cooperative agent that had combined the results from all

the analysis agents so as to compute the overall performance

of the analysis from the original dataset 𝐷𝑖 .

 𝑁𝑜𝑟𝑚𝑎𝑙(𝐷𝑖) = ∑ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑅𝑗) (16)𝑚
𝑗=1

 𝐴𝑡𝑡𝑎𝑐𝑘𝑠(𝐷𝑖) = ∑ 𝐴𝑡𝑡𝑎𝑐𝑘𝑠(𝑅𝑗) (17)𝑚
𝑗=1

IV. THE ARCHITECTURE OF MAS-IDS

In this section, the architecture of MAS-IDS was

presented. The architecture has a set of agents that executed

their roles independently, without any intervention from

other agents or humans. These agents cooperated with each

other to accomplish the goals of the system. In addition, the

system may add and remove agents from its environment

without affecting other components; thus, the scalability of

the system was improved. The architecture has 3 types of

agents (coordinator agents, communication agents and

analysis agents) and the design of the architecture of MAS-

IDS, shown in Fig. 2 was derived from previous works such

as [14].

A. Coordinator Agents

These agents were responsible for capturing and dividing

data packets from the network traffic, and then passing them

to analysis agents in other hosts by transferring them

through the use of communication agents. Each coordinator

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_10

(Advance online publication: 29 February 2016)

__

agent gathered the traffic data network as the first step and

then divided the data into a number of data subsets. The

number depended on the size of the received data and on the

number of analysis agents that were created by other hosts.

After completing the analysis task, the coordinator agents

began gathering the results of the analysis agents to present

the final result of the intrusion detection process. The

number of agents depended on the number of cores (logical

processors) available within the system hosts; therefore, the

size of each subset was computed from the formula (4). For

example, if the size of the data required for analysis was

1000 records and the number of hosts available on the

system were 2, in which the first host can create 6 agents

and the second host can create 4 agents, then the number of

subsets of data will be 10 with the size of each subset as 100

records.

Fig. 2. Architecture of MAS-IDS

Therefore, each host has the ability to create a limited

number of agents since the implementation of these agents

was in parallelism, so each agent will be running on 1

logical processor of the host; for example, if the host has a

CPU consisting of 4 logical processors then the number of

agents that can run on this host would only be 4 agents.

When an attempt to create more agents than the number of

logical processors was made, the processing time was close

to the processing time of agents equal to the number of

logical processors. Thus, each coordinator agent must have

information regarding the CPU and memory of each host in

the system environment.

The first role carried out by coordinator agents was the

pre-processing of data by converting the symbolic features

of data to numerical features, known as Role 1. Role 2 for

coordinator agents was to split the data into data subsets

after pre-processing and then send them to analysis agents

through the use of Role 3. The steps of coordinator agents’

roles were shown in the following:

Role 1. Pre-processing

Input: Raw data

Output: Data with all features are numerical

For each symbolic featurei in data

 No_Vlaue_Featurei ← Compute the number of values

possessed by featurei;

End for;

For each recordi in data packet

 If featurej in recordi is symbolic

 Featurej ← assign integer value between 1 and

No_Value_Featurej;

 End if;

End for;

Role 2. Split dataset

Input: Testing Dataset

Output: Number of data subsets

Subset_Size ← Size of dataset/No_of_Host;

For i ← 1 to No_of_Host

 Data_Subseti ← Dataset.subList((i-1) * Subset_Size, (i

* Subset_Size) – 1);

End for;

Role 3. Send data and receive results from hosts

Input: Number of data subset

Output: Response time, Performance

For i ← 1 to No_of_Host

 Create new communication agent on the hosti;

 Send Data_Subseti by communication agent to hosti;

 Add behaviour CyclicBehaviour;

 Wait until receive results from hosti;

End for;

Compute the final results that collection from all hosts;

B. Communication Agents

The role of these agents was to transfer the data from host

to host, where they transferred data from coordinator agents

to analysis agents, and then transferred the results from

analysis agents to coordinator agents. Communication

agents were created by coordinator agents in the same host

as coordinator agents and then moved to another host where

the analysis agents were created. This step was very

important in this work, which depended on the capabilities

provided by MAS or, specifically, the capabilities of JADE

in the sending of data; therefore, the work of these agents

was demonstrated in detail. Coordinator agents required the

controller address of the analysis agents that were to be

created in the other host so as to send the data to the analysis

agents. The agent controller was a memory address, which

cannot be sent to coordinator agents through the usual

method of sending messages between agents; furthermore,

the agent controller was always changing with each run.

Accordingly, another method was utilised to transfer data

through the creation of a new agent in the same host as the

analysis agents. The new agent was created by the

coordinator agents, and then the data was passed from

coordinator agents to the new agent since the coordinator

agents now have the controller of the new agent. Lastly,

each analysis agent in the control host was receiving data

from the new agent by moving data from the main container

to the same container as the new agent in order to collect the

data and then return it to the main container for processing.

The role of communication agents was further demonstrated

as follows:

Send data and receive results by communication agents

Input: Data subset

Output: Return results from analysis agents to coordinator

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_10

(Advance online publication: 29 February 2016)

__

agents

newSubset_Size ← Size of Data Subset/No_of_Agents;

For i ← 1 to No_of_Agents

 newData_Subseti ← Data_SubSet.subList((i-

1)*newSubset_Size,

(i*newSubset_Size)–1)

End for;

For i ← 1 to No_of_Agents

 Create new analysis agenti;

 Send newData_Subseti to analysis agenti;

 Add behaviour CyclicBehaviour;

 Wait until receive results from Analysis Agenti;

 Kill Agenti;

End for;

Compute the final results from all analysis agents;

C. Analysis Agents

These types of agents used data mining, or machine

learning techniques, to analyse data and detect attacks.

Analysis agents were created in other hosts of coordinator

agents to analyse the data that had been sent to it; and once

it had completed analysing the data, the analysis agents will

then be deleted from the system. Each host in the system

environment can create a limited number of analysis agents

because every host has a limited number of cores, and each

core can implement only 1 agent at a time in order to

analyse the data packets in parallel. After the completion of

the analysis process, the analysis agents will return the

results to the coordinator agents so that they may integrate

the results received from all analysis agents in order to

obtain the final result. Simple K-means algorithm was

employed with the analysis agents to achieve the role of

analysing data, as shown in the following:

Simple K-means algorithm

Input: Dataset, the number of clusters k

Output: Clusters

For each Clusteri

 Centeri ← Choose Record Randomly (Size of

Dataset);

End for;

Do

 For each Recordi

 For each Clusterj

 If Min distance (Recordi, Centerj)

 Clusterj ← Recordi;

 End if;

 End for;

 For each Clusteri

 Centeri ← Avg (Clusteri);

 End for;

 End for;

Until (Centeri-1 = Centeri);

V. EXPERIMENTAL SETUP

In this section, the experimental results and performance

evaluation of the MAS-IDS approach were presented. The

benchmark of the KDDCUP'99 dataset was used in the

experiments. It had 494021 connection records for training,

and 311029 connection records for testing. Each connection

record consisted of 41 features. Table 2 presented the

datasets that were randomly collected from the testing

dataset (Corrected KDD) to evaluate the performance of

MAS-IDS.

TABLE II

THE CHARACTERISTICS OF TESTING DATASETS

Dataset Normal DoS Probe R2L U2R Total

DS1 5000 3000 700 900 400 10000

DS2 10000 7000 1000 1500 500 20000

DS3 15000 10000 1500 2500 1000 30000

DS4 20000 14000 1500 3000 1500 40000

In addition, the measures were used to evaluate the

performance of MAS-IDS: accuracy, detection rate, false

alarm rate and time. The time measure represented the time

required to analyse and process the dataset, beginning from

reading the dataset to acquiring the final results. The

accuracy, detection rate and false alarm rate were computed

by the formulas (18-20), respectively.

 𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (18)

 𝐷𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (19)

 𝐹𝐴𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 (20)

where

 TP: actual attack has predicted as an attack.

 TN: actual normal has predicted as a normal.

 FP: actual normal has predicted as an attack.

 FN: actual attack has predicted as a normal.

Two computers were utilised to compute the results: the

first had the specification Core i5 2.60 GHz for its CPU with

4 logical processors and 12 GB of RAM, and the second had

the specification Core i7 3.40 GHz for its CPU with 8

logical processors and 4 GB of RAM. Each computer has

Windows 8.1 single Language. Moreover, the MAS-IDS

was run using the JADE platform.

In the experiments, the creation of 10 agents (by dividing

the dataset to 10 data subsets) was attempted in order to

know whether the effect of create a number of agents was

greater than the number of available logical processors;

where the second computer had 8 logical processors as the

maximum in this experiment. The results regarding the

performance and processing time were compared between

the pure K-means with the proposed method of MAS-IDS,

represented by dividing the dataset into several data subsets

and processing them in parallel by using analysis agents that

applied the K-means algorithm in their work. In this

experiment, only the first computer was used with (k=20)

for K-means; whereby, the repetition of applied K-means on

different datasets proved to be the most accurate when the

number of clusters was equal to 20. The average accuracy,

detection rate, false alarm rate and time between pure K-

means and MAS-IDS for the first computer were shown in

Table 3.

The results of the accuracy, detection rate, false alarm

rate and time for pure K-means in Table 3 represented the

performance of the simple K-means results and the time to

collect these results; each average accuracy, detection rate

and false alarm rate of MAS-IDS in Table 3 was computed

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_10

(Advance online publication: 29 February 2016)

__

TABLE III

COMPARISON OF AVERAGE ACCURACY AND TIME (S) BETWEEN PURE K-MEANS AND MAS-IDS FOR THE FIRST COMPUTER

Dataset Measure Pure K-means
MAS-IDS (no of agents)

2 3 4 5 6 7 8 9 10

DS1

Acc 47.05 44.1 60.11 50.88 59.7 54.78 50.31 51.8 57.77 51.19

DR 53.36 70.1 82.92 76.4 83.76 78.7 75 75.7 82.76 77.16

FAR 59.26 62.9 52.07 56.64 51.36 54.14 57.38 57.1 52.22 54.78

Time 784.615 267.39 134.669 129.317 110.367 83.83 84.826 84.49 83.357 91.5

DS2

Acc 53.34 56.15 62.88 63.77 53.58 60.44 55.63 58.34 53.45 53.71

DR 56.61 56.35 75.49 77.72 72.3 76.13 74.75 67.82 77.59 72.33

FAR 49.94 54.06 47.73 45.19 49.64 46.26 48.5 51.15 45.72 49.11

Time 1294.56 595.131 306.196 406.752 274.317 328.52 266.69 231.286 228.248 239.59

DS3

Acc 54.31 58.18 58.58 48.33 59.36 62.70 49.04 56.94 57.68 57.28

DR 55.6 69.42 74.95 61.37 72.61 84.19 66.27 73.49 77.31 78.27

FAR 59.97 59.07 55.79 64.72 57.89 50.78 62.18 56.61 53.95 52.71

Time 2724.21 982.822 804.214 585.776 426.972 432.152 460.947 394.252 400.679 399.868

DS4

Acc 54.85 54.67 55.2 56.93 50.15 56.88 58.15 61.33 55.10 57.41

DR 58.57 58.58 58.29 64.71 62.69 73.48 69.51 78.25 69.22 67.53

FAR 48.86 52.25 52.9 50.85 51.39 44.73 47.22 41.6 47.52 48.71

Time 2183.24 1231.77 903.286 929.827 659.238 699.66 701.321 606.601 613.649 575.362

through the average of the accuracy, detection rate and false

alarm rate of the subsets for each case of the dataset

respectively, depending on the number of agents. However,

the time of the MAS-IDS represented the period that MAS-

IDS took to divide and distribute the data and collect the

results of all agents, as well as, the time to combine the final

results. Fig. 3 and Fig. 4 presented the comparison of the

performance and time between pure K-means and MAS-IDS

for the first computer, respectively.

Fig. 3. Compared performance between pure K-means and MAS-IDS for

first computer

Fig. 4. Compared processing time between pure K-means and MAS-IDS

for the first computer

It was noted through Fig. 4 that the time required to

analyse the datasets by using the proposed method of MAS-

IDS was much less than pure K-means, where the t-test

(with p-value < 0.05) shows that the processing time

significantly reduced (0.014182747). The time of the MAS-

IDS decreased whenever the number of agents increased due

to the use of more logical processors in the analysis task.

However, it was seen through Fig. 4 that the time of the

experiment began to show stability after the use of more

than 4 agents since this computer had 4 logical processors;

therefore, it was concluded that the maximum number of

agents that can be created with this computer was only 4 or

5 agents. This was further explained, in more detail, in the

second experiment. On the other hand, it was seen from Fig.

3 that the performance of analysing the datasets between

MAS-IDS and traditional IDS was not much different,

especially accuracy and false alarm rate, which can be

handled through the use of the best data mining techniques

to analyse the datasets.
The second experiment compared the performance and

time for the second computer which its specification

mentioned above, to see the effect of increasing the number

of logical processors on the performance of MAS-IDS.

Table 4 displayed the results of the average accuracy,

detection rate, false alarm rate and time of the second

computer for both pure K-means and MAS-IDS.

The average accuracy, the detection rate and false alarm

rate of the MAS-IDS were computed by the average

accuracy, the detection rate and false alarm rate of the

subsets depending on the number of agents; for example, the

accuracy result of DS1 when using 2 agents in Table 4 was

computed as the average of subset 1 and subset 2 accuracies,

and so on. The time in Table 4 represented the period when

the time had started running the code of pure K-means and

MAS-IDS until obtaining the final results.

From Fig. 5 and Fig. 6, it was seen that the results

obtained from the first experiment were also obtained from

the second experiment; whereby, the time of the experiment

began to show stability after using more than 8 agents since

the computer had 8 logical processors. Therefore, the

maximum number of agents that can be created with this

computer was 8 agents only. The performance (accuracy,

the detection rate and false alarm rate) was almost similar to

each other, while the time of the MAS-IDS was much better

than traditional IDS, where the t-test value is (0.020431).

Of two previous experiments, it was concluded that the

reduction of the processing time achieved by the proposed

system MAS-IDS was up to 81% compared to traditional

0

10

20

30

40

50

60

70

80

Acc DR FAR

P
er

fo
rm

an
ce

Pure K-means MAS-IDS

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1 2 3 4 5 6 7 8 9 10 11

T
im

e
(s

)

Agent

Pure K-means MAS-IDS

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_10

(Advance online publication: 29 February 2016)

__

TABLE IV

COMPARISON OF THE AVERAGE ACCURACY AND PROCESSING TIME (S) BETWEEN PURE K-MEANS AND MAS-IDS FOR THE SECOND COMPUTER

Dataset Measure Pure K-means
MAS-IDS (no of agents)

2 3 4 5 6 7 8 9 10

DS1

Acc 61.26 59.76 60.43 59.61 55.16 57.73 54.63 54.52 52.38 52.8

DR 78.62 83.78 82.92 83.5 77.46 78.04 80.28 79.16 79.56 79.34

FAR 60.1 58.26 59.06 58.38 62.14 61.58 60.02 61.02 60.81 60.94

Time 500.15 176.529 115.614 79.208 77.774 76.668 52.798 51.17 27.307 32.315

DS2

Acc 53.63 59.95 64.2 62.95 63.17 59.33 49.97 56.18 54.21 55.88

DR 56.6 70.79 75.51 77.89 79.34 70.96 66.46 78.38 74.18 67.41

FAR 53.35 51.9 49.11 48.05 46.03 51.3 54.53 47.11 50.77 53.66

Time 749.576 339.665 271.482 275.816 179.182 160.751 154.159 101.966 105.764 105.674

DS3

Acc 51.69 60.26 65.13 60.22 58.03 58.25 54.37 57.21 58.73 54.59

DR 55.62 69.39 83.4 76.83 72.64 69.45 71.19 76.29 80.17 74.71

FAR 52.23 50.88 43.15 47.4 49.59 50.75 50.46 47.86 45.72 48.53

Time 1751.59 669.304 476.507 468.738 299.723 204.478 199.858 184.941 184.892 155.206

DS4

Acc 56.19 55.01 54.36 55.05 61.5 58.14 52.11 55.06 59.64 57.45

DR 58.4 58.47 58.54 58.49 79.52 67.48 70.38 70.4 73.16 76.74

FAR 52.02 53.7 53.32 53.65 46.52 51.21 50.35 50.28 49.88 48.85

Time 1153.84 878.666 841.643 571.136 335.432 323.88 321.999 277.757 287.798 271.269

Fig. 5. Compared the performance between pure K-means and MAS-IDS

for the second computer

Fig. 6. Compared the processing time between pure K-means and MAS-

IDS for the second computer

IDS; at the same time, the difference of the accuracy

between the 2 methods ranged from 1.8% to 2.4%.

Moreover, the optimal value for the number of agents who

can be created in the proposed system was equal to the

number of logical processors that were currently non-busy

in the system environment.

In Fig. 7, the comparison of performance between the

first computer and the second computer for all datasets was

given; while Fig. 8 compared the processing time between

two computers for all datasets. The processing time between

two computers presented a difference, whereby the second

computer displayed better performance than the first

computer since the second computer had more cores (logical

processors) for its CPU than the first computer.

Fig. 7. Comparison of the performance between two computers

Fig. 8. Comparison of the processing time between two computers

On the other hand, the performance of the two computers

was very close, as shown in Fig. 7, and the small difference

between them was due to the random selection of initial

cluster centres. Finally, the effect of the dataset’s size on the

performance of MAS-IDS was discussed. The normal state

of increasing the size of the datasets had increased the

processing time of analysing these datasets, as shown in Fig.

10. At the same time, the increase of the dataset’s size did

not affect the performance of detecting attacks, noticeably

because the accuracy depended on the technique applied in

the detection of attacks. Fig. 9 showed the performance of

MAS-IDS depends on the size of the datasets.

VI. CONCLUSION AND FUTURE WORKS

In this paper, the real-time IDS using the Multi-agent

System (MAS-IDS) to reduce the time of processing traffic

data network was presented; moreover, the analysis of large

0

10

20

30

40

50

60

70

80

Acc DR FAR

P
er

fo
rm

an
ce

Pure K-means MAS-IDS

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 9 10 11

T
im

e
(s

)

Agent

Pure K-means MAS-IDS

0

10

20

30

40

50

60

70

80

Acc DR FAR

P
er

fo
rm

an
ce

1st Computer 2nd Computer

0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8 9 10 11

T
im

e
(s

)

Agent

1st Computer 2nd Computer

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_10

(Advance online publication: 29 February 2016)

__

amounts of data within the system in the shortest possible

time was achieved. The proposed system in this study had

introduced the main concept of dividing the traffic data

network into a number of data subsets in order to process

these data subsets in parallelism by using a set of analysis

agents distributed throughout the system environment. The

dividing process depended on 2 important factors: The

number of logic processors (cores) and the size of the data

packets. Therefore, coordinator agents were used to dividing

the captured data network, based on the number of available

logical processors at the current moment, and then to send

them to the analysis agents for processing. The application

of the Multi-agent System proved its great capabilities of

improving the performance of IDS by reducing the time

required to reach the desired goal for identifying attacks; at

the same time, the accuracy of IDS was acceptable and did

not have a vast difference from the traditional method that

does not involve division. Three types of agents were

utilised: coordinator agents, communication agents and

analysis agents. The KDD'99 dataset was employed to

evaluate the performance of the system, using all types of

attacks within this dataset: DoS, Probe, R2L and U2R. The

results had shown that the MAS-IDS reduced the processing

time (up to 81%) in comparison to pure K-means; this

proved the high performance of the system so as to be

adopted as a real-time system. The experiment results

further demonstrated that whenever the number of agents

(which depended on the number of cores in the CPUs) had

increased, the percentage of reducing the time would further

increase as well.

Fig. 9. Effect of dataset’s size on the performance

Fig. 10. The processing time of dataset’s size

In future works, the plan will be to implement MAS-IDS

with real data networks, and the aim will be to use new

methods of selecting the initial centres of clusters and

improving the accuracy of IDS with less processing time. In

addition, the future goal will be to apply the proposed

method in a network that has a large number of computers.

REFERENCES

[1] H.-J. Liao, C.-H. Richard Lin, Y.-C. Lin, and K.-Y. Tung, "Intrusion

detection system: A comprehensive review," Journal of Network and

Computer Applications, vol. 36, no. 1, pp. 16-24, 2013.
[2] E. Corchado and Á. Herrero, "Neural visualization of network traffic

data for intrusion detection," Applied Soft Computing, vol. 11, no. 2,
pp. 2042-2056, 2011.

[3] J. Allen, A. Christie, W. Fithen, J. McHugh, and J. Pickel, "State of

the practice of intrusion detection technologies," DTIC Document,
2000.

[4] M. N. Mohammed and N. Sulaiman, "Intrusion detection system

based on SVM for WLAN," Procedia Technology, vol. 1, pp. 313-
317, 2012.

[5] W. Wang, X. Guan, and X. Zhang, "Processing of massive audit data

streams for real-time anomaly intrusion detection," Computer
Communications, vol. 31, no. 1, pp. 58-72, 2008.

[6] Z. Zali, M. R. Hashemi, and H. Saidi, "Real-Time Intrusion Detection

Alert Correlation and Attack Scenario Extraction Based on the
Prerequisite-Consequence Approach," The ISC Int'l Journal of

Information Security, vol. 4, no. 2, pp. 125-136, 2013.

[7] P. Sangkatsanee, N. Wattanapongsakorn, and C. Charnsripinyo,
"Practical real-time intrusion detection using machine learning

approaches," Computer Communications, vol. 34, no. 18, pp. 2227-

2235, 2011.
[8] A. Boukerche, R. B. Machado, K. R. Jucá, J. B. M. Sobral, and M. S.

Notare, "An agent based and biological inspired real-time intrusion

detection and security model for computer network operations,"
Computer Communications, vol. 30, no. 13, pp. 2649-2660, 2007.

[9] M. Amini, R. Jalili, and H. R. Shahriari, "RT-UNNID: A practical

solution to real-time network-based intrusion detection using
unsupervised neural networks," Computers and Security, vol. 25, no.

6, pp. 459-468, 2006.

[10] V. Thiago, P. Rego, and J. Souza, "Multi-agents Architecture for

Distributed Intrusion Detection," in The Ninth Advanced International

Conference on Telecommunications, 2013, pp. 49-54.

[11] M. Navarro, Á. Herrero, E. Corchado, and V. Julián, "Approaching
Real-Time Intrusion Detection through MOVICAB-IDS," in 5th

International Workshop on Soft Computing Models in Industrial and

Environmental Applications, 2010, pp. 9-18.
[12] Y. Jung, M. Kim, A. Masoumzadeh, and J. B. Joshi, "A survey of

security issue in multi-agent systems," Artificial Intelligence Review,

vol. 37, no. 3, pp. 239-2 60, 2012.
[13] A. S. Ashoor and S. Gore, "Intrusion Detection System (IDS): Case

Study," International Journal of Materials and Mechanics

Engineering, vol. 1, no. 3, pp. 1-5, 2011.
[14] Á. Herrero, M. Navarro, E. Corchado, and V. JuliáN, "RT-

MOVICAB-IDS: Addressing real-time intrusion detection," Future

Generation Computer Systems, vol. 29, no. 1, pp. 250-2 61, 2013.
[15] D. E. Culler, J. P. Singh, and A. Gupta, Parallel computer

architecture: a hardware/software approach: Gulf Professional

Publishing, 1999.

[16] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, "MIDeA: a multi-

parallel intrusion detection architecture," in Proceedings of the 18th

conference on Computer and communications security, 2011, pp. 297-
308.

[17] C. V. Kopek, E. W. Fulp, and P. S. Wheeler, "Distributed data
parallel techniques for content-matching intrusion detection systems,"

in Military Communications Conference, 2007. MILCOM 2007.

IEEE, 2007, pp. 1-7.
[18] F. I. Shiri, B. Shanmugam, and N. B. Idris, "A parallel technique for

improving the performance of signature-based network intrusion

detection system," in 3rd International Conference on
Communication Software and Networks (ICCSN), 2011, pp. 692-696.

[19] H. Sallay, K. A. AlShalfan, and O. B. Fred, "A scalable distributed

IDS Architecture for High speed Networks," International Journal of
Computer Science and Network Security, vol. 9, no. 8, pp. 9-16, 2009.

[20] C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer, "Stateful

intrusion detection for high-speed network's," in Proceedings IEEE
Symposium on Security and Privacy, 2002, pp. 285-293.

[21] J. S. Balasubramaniyan, J. O. Garcia-Fernandez, D. Isacoff, E.

Spafford, and D. Zamboni, "An architecture for intrusion detection
using autonomous agents," in Proceedings 14th Annual Computer

Security Applications Conference, 1998, pp. 13-24.

[22] J. Sen, I. Sengupta, and P. R. Chowdhury, "An architecture of a
distributed intrusion detection system using cooperating agents," in

0

10

20

30

40

50

60

70

80

90

DS1 DS2 DS3 DS4

P
er

fo
rm

an
ce

Acc DR FAR

0

50

100

150

200

250

300

DS1 DS2 DS3 DS4

T
im

e
(s

)

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_10

(Advance online publication: 29 February 2016)

__

International Conference on Computing & Informatics, ICOCI'06,

2006, pp. 1-6.
[23] O. Oriola, A. Adeyemo, and A. Robert, "Distributed Intrusion

Detection System Using P2P Agent Mining Scheme," African Journal

of Computing & ICT, vol. 5, no. 2, pp. 3-10, 2012.
[24] R. Páez, M. Y. Uribe, and M. Torres, "Internal Security on an IDS

Based on Agents," International Journal of Network Security & Its

Applications, vol. 5, no. 4, pp. 129-142, 2013.
[25] P. Gogoi, M. H. Bhuyan, D. Bhattacharyya, and J. K. Kalita, "Packet

and flow based network intrusion dataset," in Contemporary

Computing, ed: Springer, 2012, pp. 322-334.
[26] N. Sengupta, J. Sen, J. Sil, and M. Saha, "Designing of on line

intrusion detection system using rough set theory and Q-learning

algorithm," Neurocomputing, vol. 111, pp. 161-168, 2013.
[27] P. Asrodia and H. Patel, "Analysis of various packet sniffing tools for

network monitoring and analysis," International Journal of Electrical,

Electronics and Computer Engineering, vol. 1, no. 1, pp. 55-58, 2012.
[28] A. A. Cárdenas, R. Berthier, R. B. Bobba, J. H. Huh, J. G. Jetcheva,

D. Grochocki, et al., "A Framework for Evaluating Intrusion

Detection Architectures in Advanced Metering Infrastructures," IEEE
Transactions on Smart Grid, vol. 5, no. 2, pp. 906-915, 2014.

[29] L. Portnoy, "Intrusion detection with unlabeled data using clustering,"

in Proceedings of ACM CSS Workshop on Data Mining Applied to
Security, 2001, pp. 1-14.

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_10

(Advance online publication: 29 February 2016)

__

