
An Efficient Dynamic Programming Algorithm for
a New Generalized LCS Problem

Daxin Zhu, Lei Wang, Jun Tian∗ and Xiaodong Wang∗

Abstract—In this paper, we consider a generalized longest
common subsequence problem, in which a constraining se-
quence of length s must be included as a substring and the
other constraining sequence of length t must be included as a
subsequence of two main sequences and the length of the result
must be maximal. For the two input sequences X and Y of
lengths n and m, and the given two constraining sequences
of length s and t, we present an O(nmst) time dynamic
programming algorithm for solving the new generalized longest
common subsequence problem. The time complexity can be
reduced further to cubic time in a more detailed analysis. The
correctness of the new algorithm is proved.

Index Terms—generalized longest common subsequence, NP-
hard problems, dynamic programming, time complexity

I. INTRODUCTION

The longest common subsequence (LCS) problem is a
well-known measurement for computing the similarity of two
strings. It can be broadly applied in diverse areas, such as
file comparison, pattern matching and computational biology
[3], [4], [8]–[12], [14], [15].

Given two sequences X and Y , the longest common
subsequence (LCS) problem is to find a subsequence of
X and Y whose length is the longest among all common
subsequences of the two given sequences.

For some biological applications some constraints must
be applied to the LCS problem. These kinds of variants of
the LCS problem are called the constrained LCS (CLCS)
problem. Recently, Chen and Chao [1] proposed the more
generalized forms of the CLCS problem, the generalized
constrained longest common subsequence (GC-LCS) prob-
lem. For the two input sequences X and Y of lengths n
and m,respectively, and a constraint string P of length r,
the GC-LCS problem is a set of four problems which are

Manuscript received December 9, 2015; revised February 22, 2016.
This work was supported in part by the Quanzhou Foundation of Science

and Technology under Grant No.2013Z38, Fujian Provincial Key Laboratory
of Data-Intensive Computing and Fujian University Laboratory of Intelligent
Computing and Information Processing.

Daxin Zhu is with Quanzhou Normal University, Quanzhou,
China.(email:dex@qztc.edu.cn)

Lei Wang is with Facebook, 1 Hacker Way, Menlo Park, CA 94052, USA.
Jun Tian is with Fujian Medical University, Fuzhou, China.
Xiaodong Wang is with Fujian University of Technology, Fuzhou, China.
∗Corresponding author.

to find the LCS of X and Y including/excluding P as a
subsequence/substring, respectively.

In this paper, we consider a more general constrained
longest common subsequence problem called SEQ-IC-STR-
IC-LCS, in which a constraining sequence of length s must
be included as a substring and the other constraining se-
quence of length t must be included as a subsequence of two
main sequences and the length of the result must be maximal.
We will present the first efficient dynamic programming
algorithm for solving this problem.

The organization of the paper is reproduced below.
In the following 4 sections, we describe our presented

dynamic programming algorithm for the SEQ-IC-STR-IC-
LCS problem.

In Section 2 the preliminary knowledge for presenting
our algorithm for the SEQ-IC-STR-IC-LCS problem is dis-
cussed. In Section 3 we give a new dynamic programming
solution for the SEQ-IC-STR-IC-LCS problem with time
complexity O(nmst), where n and m are the lengths of the
two given input strings, and s and t the lengths of the two
constraining sequences. In Section 4 the time complexity is
further improved to O(nms). Some concluding remarks are
in Section 5.

II. CHARACTERIZATION OF THE GENERALIZED LCS
PROBLEM

A sequence is a string of characters over an alphabet
∑

.
A subsequence of a sequence X is obtained by deleting zero
or more characters from X (not necessarily contiguous). A
substring of a sequence X is a subsequence of successive
characters within X .

For a given sequence X = x1x2 · · ·xn of length n, the ith
character of X is denoted as xi ∈

∑
for any i = 1, · · · , n.

A substring of X from position i to j can be denoted as
X[i : j] = xixi+1 · · ·xj . If i 6= 1 or j 6= n, then the substring
X[i : j] = xixi+1 · · ·xj is called a proper substring of X .
A substring X[i : j] = xixi+1 · · ·xj is called a prefix or a
suffix of X if i = 1 or j = n, respectively.

An appearance of sequence X = x1x2 · · ·xn in sequence
Y = y1y2 · · · ym, for any X and Y , starting at position
j is a sequence of strictly increasing indexes i1, i2, · · · , in
such that i1 = j, and X = yi1 , yi2 , · · · , yin . A compact

IAENG International Journal of Computer Science, 43:2, IJCS_43_2_09

(Advance online publication: 18 May 2016)

 
______________________________________________________________________________________ 



appearance of X in Y starting at position j is the appearance
of the smallest last index in. A match for sequences X and
Y is a pair (i, j) such that xi = yj . The total number of
matches for X and Y is denoted by δ. It is obvious that
δ ≤ nm.

For the two input sequences X = x1x2 · · ·xn and
Y = y1y2 · · · ym of lengths n and m, respectively, and two
constrained sequences P = p1p2 · · · ps and Q = q1q2 · · · qt
of lengths s and t, the SEQ-IC-STR-IC-LCS problem is
to find a constrained LCS of X and Y including P as a
subsequence and including Q as a substring.

Definiton 1: Let Z(i, j, k, r) denote the set of all LCSs of
X[1 : i] and Y [1 : j] such that for each z ∈ Z(i, j, k, r), z
includes P [1 : k] as a subsequence, and includes Q[1 : r] as
a substring, where 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ s, and
0 ≤ r ≤ t. The length of an LCS in Z(i, j, k, r) is denoted
as g(i, j, k, r).

Definiton 2: Let W (i, j, k, r) denote the set of all LCSs
of X[1 : i] and Y [1 : j] such that for each w ∈W (i, j, k, r),
w includes P [1 : k] as a subsequence, and includes Q[1 : r]

as a suffix, where 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ s, and
0 ≤ r ≤ t. The length of an LCS in W (i, j, k, r) is denoted
as f(i, j, k, r).

Definiton 3: Let U(i, j, k) denote the set of all LCSs of
X[i : n] and Y [j : m] such that for each u ∈ U(i, j, k), u
includes P [k : s] as a subsequence, where 1 ≤ i ≤ n, 1 ≤
j ≤ m, 0 ≤ k ≤ s. The length of an LCS in U(i, j, k) is
denoted as h(i, j, k).

Definiton 4: Let V (i, j, k) denote the set of all LCSs of
X[1 : i] and Y [1 : j] such that for each v ∈ V (i, j, k), v
includes P [1 : k] as a subsequence, where 1 ≤ i ≤ n, 1 ≤
j ≤ m, 0 ≤ k ≤ s. The length of an LCS in V (i, j, k) is
denoted as v(i, j, k).

A problem decomposition on the STR-IC-LCS problem
was pointed out in [5]. A similar property is also valid for
the SEQ-IC-STR-IC-LCS problem.

Property 1: If Z[1 : l] = z1, z2, · · · , zl ∈ Z(n,m, s, t),
and for some t ≤ l′ ≤ l, Z[l′ − t + 1 : l′] = Q[1 : t], then
Z[1 : l] is a concatenation of the following two substrings,
for some 1 ≤ i ≤ n and 1 ≤ j ≤ m:

1) The prefix Z[1 : l′]: Z[1 : l′] is an LCS Z1 of X[1 : i]

and Y [1 : j] including P [1 : k] as a subsequence, and
including Q as the suffix, i.e. Z[1 : l′] ∈W (i, j, k, t).

2) The suffix Z[l′ + 1 : l]: Z[l′ + 1 : l] is an LCS Z2 of
X[i+1 : n] and Y [j+1 : m] including P [k+1 : s] as
a subsequence, i.e. Z[l′+1 : l] ∈ V (i+1, j+1, k+1).

The following theorem characterizes the structure of an
optimal solution based on optimal solutions to subproblems,
for computing the LCSs in W (i, j, k, r), for any 1 ≤ i ≤
n, 1 ≤ j ≤ m, 0 ≤ k ≤ s, and 0 ≤ r ≤ t.

Theorem 1: If Z[1 : l] = z1, z2, · · · , zl ∈ W (i, j, k, r),
then the following conditions hold:

1) If r = 0, xi = yj and k > 0, xi = pk, then zl = xi =

yj = pk and Z[1 : l − 1] ∈W (i− 1, j − 1, k − 1, r).
2) If r = 0, xi = yj and k = 0 or k > 0, xi 6= pk, then

zl = xi = yj and Z[1 : l − 1] ∈W (i− 1, j − 1, k, r).
3) If r > 0, xi = yj = qr and k > 0, xi = pk, then

zl = xi = yj = pk = qr and Z[1 : l − 1] ∈ W (i −
1, j − 1, k − 1, r − 1).

4) If r > 0, xi = yj = qr and k = 0 or k > 0, xi 6= pk,
then zl = xi = yj = qr and Z[1 : l − 1] ∈ W (i −
1, j − 1, k, r − 1).

5) If r > 0, xi = yj and xi 6= qr, then zl 6= xi and
Z[1 : l] ∈W (i− 1, j − 1, k, r).

6) If xi 6= yj , then zl 6= xi implies Z[1 : l] ∈ W (i −
1, j, k, r).

7) If xi 6= yj , then zl 6= yj implies Z[1 : l] ∈ W (i, j −
1, k, r).

Proof.
1. In this case, we do not have any constraints on Q, due

to r = 0. Since xi = yj = pk = zl, Z[1 : l−1] is a common
subsequence of X[1 : i − 1] and Y [1 : j − 1] including
P [1 : k−1] as a subsequence. We can show that Z[1 : l−1] is
an LCS of X[1 : i−1] and Y [1 : j−1] including P [1 : k−1]
as a subsequence. Assume by contradiction that there exists
a common subsequence a of X[1 : i − 1] and Y [1 : j − 1]

including P [1 : k − 1] as a subsequence, whose length is
greater than l − 1. Then the concatenation of a and zl will
result in a common subsequence of X[1 : i] and Y [1 : j]

including P [1 : k] as a subsequence, whose length is greater
than l. This is a contradiction.

2. In this case, since xi = yj 6= pk, we have xi = yj = zl

and zl 6= pk. Therefore, Z[1 : l−1] is a common subsequence
of X[1 : i − 1] and Y [1 : j − 1] including P [1 : k] as
a subsequence. We can show that Z[1 : l − 1] is an LCS
of X[1 : i − 1] and Y [1 : j − 1] including P [1 : k] as
a subsequence. Assume by contradiction that there exists a
common subsequence a of X[1 : i − 1] and Y [1 : j − 1]

including P [1 : k] as a subsequence, whose length is greater
than l− 1. Then the concatenation of a and zl will result in
a common subsequence of X[1 : i] and Y [1 : j] including
P [1 : k] as a subsequence, whose length is greater than l.
This is a contradiction.

3. Since xi = yj = pk = qr, we have xi = yj = zl and
Z[1 : l−1] is a common subsequence of X[1 : i−1] and Y [1 :

j−1] including P [1 : k−1] as a subsequence and including
Q[1 : r − 1] as a suffix. We can show that Z[1 : l− 1] is an
LCS of X[1 : i−1] and Y [1 : j−1] including P [1 : k−1] as
a subsequence and including Q[1 : r−1] as a suffix. Assume
by contradiction that there exists a common subsequence a

IAENG International Journal of Computer Science, 43:2, IJCS_43_2_09

(Advance online publication: 18 May 2016)

 
______________________________________________________________________________________ 



of X[1 : i − 1] and Y [1 : j − 1] including P [1 : k − 1] as
a subsequence and including Q[1 : r− 1] as a suffix, whose
length is greater than l − 1. Then the concatenation of a
and zl will result in a common subsequence of X[1 : i] and
Y [1 : j] including P [1 : k] as a subsequence and including
Q[1 : r] as a suffix, whose length is greater than l. This is a
contradiction.

4. Since xi = yj = qr and xi 6= pk, we have xi = yj = zl

and Z[1 : l − 1] is a common subsequence of X[1 : i − 1]

and Y [1 : j − 1] including P [1 : k] as a subsequence and
including Q[1 : r−1] as a suffix. We can show that Z[1 : l−1]
is an LCS of X[1 : i−1] and Y [1 : j−1] including P [1 : k] as
a subsequence and including Q[1 : r−1] as a suffix. Assume
by contradiction that there exists a common subsequence a
of X[1 : i − 1] and Y [1 : j − 1] including P [1 : k] as a
subsequence and including Q[1 : r − 1] as a suffix, whose
length is greater than l − 1. Then the concatenation of a
and zl will result in a common subsequence of X[1 : i] and
Y [1 : j] including P [1 : k] as a subsequence and including
Q[1 : r] as a suffix, whose length is greater than l. This is a
contradiction.

5. In this case, if xi = yj = zl, then zl 6= qr, and thus
Q[1 : r] is not a suffix of Z[1 : l]. Therefore, we have
xi = yj 6= zl, and Z[1 : l] must be a common subsequence
of X[1 : i − 1] and Y [1 : j − 1] including P [1 : k] as a
subsequence and including Q[1 : r] as a suffix. It is obvious
that Z[1 : l] is also an LCS of X[1 : i− 1] and Y [1 : j − 1]

including P [1 : k] as a subsequence and including Q[1 : r]

as a suffix.
6. Since xi 6= yj and zl 6= xi, Z[1 : l] must be a common

subsequence of X[1 : i− 1] and Y [1 : j] including P [1 : k]

as a subsequence and including Q[1 : r] as a suffix. It is
obvious that Z[1 : l] is also an LCS of X[1 : i − 1] and
Y [1 : j] including P [1 : k] as a subsequence and including
Q[1 : r] as a suffix.

7. Since xi 6= yj and zl 6= yj , Z[1 : l] must be a common
subsequence of X[1 : i] and Y [1 : j−1] including P [1 : k] as
a subsequence and including Q[1 : r] as a suffix. It is obvious
that Z[1 : l] is also an LCS of X[1 : i] and Y [1 : j − 1]

including P [1 : k] as a subsequence and including Q[1 : r]

as a suffix.
The proof is completed. �

III. A SIMPLE DYNAMIC PROGRAMMING ALGORITHM

Our new algorithm for solving the SEQ-IC-STR-IC-LCS
problem is composed of three main stages. The first stage
is to find LCSs in W (i, j, k, r). Let f(i, j, k, r) denote the
length of an LCS in W (i, j, k, r). By the optimal substructure
properties of the SEQ-IC-STR-IC-LCS problem shown in
Theorem 1, we can build the following recursive formula

for computing f(i, j, k, r). For any 1 ≤ i ≤ n, 1 ≤ j ≤
m, 0 ≤ k ≤ s, and 0 ≤ r ≤ t, the values of f(i, j, k, r) can
be computed by the following recursive formula (1).

The boundary conditions of this recursive formula are
f(i, 0, 0, 0) = f(0, j, 0, 0) = 0 and f(i, 0, k, r) =

f(0, j, k, r) = −∞ for any 0 ≤ i ≤ n, 0 ≤ j ≤ m, 0 ≤
k ≤ s, and 0 ≤ r ≤ t.

Based on this formula, our algorithm for computing
f(i, j, k, r) is a standard dynamic programming algorithm.
By the recursive formula (1), the dynamic programming
algorithm for computing f(i, j, k, r) can be implemented as
the following Algorithm 1.

Algorithm 1 Suffix
Input: Strings X = x1 · · ·xn, Y = y1 · · · ym of lengths
n and m, respectively, and two constrained sequences P =

p1p2 · · · ps and Q = q1q2 · · · qt of lengths s and t
Output: f(i, j, k, r), the length of an LCS of X[1 : i] and
Y [1 : j] including P [1 : k] as a subsequence, and including
Q[1 : r] as a suffix, for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ s,
and 0 ≤ r ≤ t.

1: for all i, j, k, r , 0 ≤ i ≤ n, 0 ≤ j ≤ m, 0 ≤ k ≤ s and
0 ≤ r ≤ t do

2: f(i, 0, k, r), f(0, j, k, r) ←
−∞, f(i, 0, 0, 0), f(0, j, 0, 0) ← 0 {boundary
condition}

3: end for
4: for all i, j, k, r , 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ s and

0 ≤ r ≤ t do
5: if xi 6= yj then
6: f(i, j, k, r) ← max{f(i − 1, j, k, r), f(i, j −

1, k, r)}
7: else if r = 0 then
8: if k > 0 and xi = pk then
9: f(i, j, k, r)← 1 + f(i− 1, j − 1, k − 1, r)

10: else
11: f(i, j, k, r)← 1 + f(i− 1, j − 1, k, r)

12: end if
13: else if xi = qr then
14: if k > 0 and xi = pk then
15: f(i, j, k, r)← 1 + f(i− 1, j − 1, k − 1, r − 1)

16: else
17: f(i, j, k, r)← 1 + f(i− 1, j − 1, k, r − 1)

18: end if
19: else
20: f(i, j, k, r)← f(i− 1, j − 1, k, r)

21: end if
22: end for

It is obvious that the algorithm requires O(nmst) time and
space. For each value of f(i, j, k, r) computed by algorithm

IAENG International Journal of Computer Science, 43:2, IJCS_43_2_09

(Advance online publication: 18 May 2016)

 
______________________________________________________________________________________ 



f(i, j, k, r) =



max {f(i− 1, j, k, r), f(i, j − 1, k, r)} if xi 6= yj

1 + f(i− 1, j − 1, k − 1, r) if r = 0 ∧ xi = yj ∧ k > 0 ∧ xi = pk

1 + f(i− 1, j − 1, k, r) if r = 0 ∧ xi = yj ∧ (k = 0 ∨ xi 6= pk)

1 + f(i− 1, j − 1, k − 1, r − 1) if k > 0 ∧ r > 0 ∧ xi = yj = pk = qr

1 + f(i− 1, j − 1, k, r − 1) if r > 0 ∧ xi = yj = qr ∧ (k = 0 ∨ xi 6= pk)

f(i− 1, j − 1, k, r) if r > 0 ∧ xi = yj ∧ xi 6= qr

(1)

Suffix, the corresponding LCS of X[1 : i] and Y [1 : j]

including P [1 : k] as a subsequence, and including Q[1 : r]

as a suffix, can be constructed by backtracking through the
computation paths from (i, j, k, r) to (0, 0, 0, 0). The follow-
ing algorithm back(i, j, k, r) is the backtracking algorithm
to obtain the LCS, not only its length. The time complexity
of the algorithm back(i, j, k, r) is obviously O(n+m).

Algorithm 2 back(i, j, k, r)
Input: Integers i, j, k, r
Output: The LCS of X[1 : i] and Y [1 : j] including
P [1 : k] as a subsequence and Q[1 : r] as a suf-
fix

1: if i < 1 or j < 1 then
2: return
3: end if
4: if xi 6= yj then
5: if f(i− 1, j, k, r) > f(i, j − 1, k, r) then
6: back(i− 1, j, k, r)

7: else
8: back(i, j − 1, k, r)

9: end if
10: else if r = 0 then
11: if k > 0 and xi = pk then
12: back(i− 1, j − 1, k − 1, r)

13: print xi

14: else
15: back(i− 1, j − 1, k, r)

16: print xi

17: end if
18: else if xi = qr then
19: if k > 0 and xi = pk then
20: back(i− 1, j − 1, k − 1, r − 1)

21: print xi

22: else
23: back(i− 1, j − 1, k, r − 1)

24: print xi

25: end if
26: else
27: back(i− 1, j − 1, k, r)

28: end if

The second stage of our algorithm is to find LCSs in

U(i, j, k). The length of an LCS in U(i, j, k) is denoted as
h(i, j, k). Chin et al. [5] presented a dynamic programming
algorithm with O(nms) time and space. A reverse version of
the dynamic programming algorithm for computing h(i, j, k)
can be described as follows.

Algorithm 3 SEQ-IC-R
Input: Strings X = x1 · · ·xn, Y = y1 · · · ym of lengths
n and m, respectively, and a constrained sequence P =

p1p2 · · · ps of lengths s
Output: h(i, j, k), the length of an LCS of X[i : n] and
Y [j : m] including P [k : s] as a subsequence, for all 1 ≤
i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ s.

1: for all i, j, k , 0 ≤ i ≤ n, 0 ≤ j ≤ m, 1 ≤ k ≤ s do
2: h(i,m + 1, k), h(n + 1, j, k) ← −∞ {boundary

condition}
3: end for
4: for i = n down to 1 do
5: for j = m down to 1 do
6: for k = s+ 1 down to 1 do
7: if xi 6= yj then
8: h(i, j, k)← max{h(i+ 1, j, k), h(i, j + 1, k)}
9: else

10: if k > s or k ≤ s and xi 6= pk then
11: h(i, j, k)← 1 + h(i+ 1, j + 1, k)

12: else if xi = pk then
13: h(i, j, k)← 1 + h(i+ 1, j + 1, k + 1)

14: end if
15: end if
16: end for
17: end for
18: end for

For each value of h(i, j, k) computed by algorithm
SEQ-IC-R, the corresponding LCS of X[i : n] and Y [j : m]

including P [k : s] as a subsequence, can be constructed by
backtracking through the computation paths from (i, j, k)

to (0, 0, 0). The following algorithm backr(i, j, k) is the
backtracking algorithm to obtain the corresponding LCS,
not only its length. The time complexity of the algorithm
backr(i, j, k) is obviously O(n+m).

By Property 1 for the SEQ-IC-STR-IC-LCS problem, the
dynamic programming matrices f(i, j, k, r) and h(i, j, k)

IAENG International Journal of Computer Science, 43:2, IJCS_43_2_09

(Advance online publication: 18 May 2016)

 
______________________________________________________________________________________ 



Algorithm 4 backr(i, j, k)
Input: Integers i, j, k
Output: The LCS of X[i : n] and Y [j : m] including P [k :

s] as a subsequence

1: if i > n or j > m then
2: return
3: end if
4: if xi 6= yj then
5: if h(i+ 1, j, k) > h(i, j + 1, k) then
6: backr(i+ 1, j, k)

7: else
8: backr(i, j + 1, k)

9: end if
10: else
11: if k > s or k ≤ s and xi 6= pk then
12: print xi

13: backr(i+ 1, j + 1, k)

14: else if xi = pk then
15: print xi

16: backr(i+ 1, j + 1, k + 1)

17: end if
18: end if

computed by the algorithms Suffix and SEQ-IC-R can now
be combined to obtain the solutions of the SEQ-IC-STR-
IC-LCS problem as follows. This is the last stage of our
algorithm.

From the ’for’ loops of the algorithm, it is readily seen that
the algorithm requires O(nms) time. Therefore, the overall
time of our algorithm for solving the SEQ-IC-STR-IC-LCS
problem is O(nmst).

IV. IMPROVEMENTS OF THE ALGORITHM

S. Deorowicz [3] proposed the first quadratic-time algo-
rithm for the STR-IC-LCS problem. A similar idea can be
exploited to improve the time complexity of our dynamic
programming algorithm for solving the SEQ-IC-STR-IC-
LCS problem. The improved algorithm is also based on
dynamic programming with some preprocessing. To show
its correctness it is necessary to prove some more structural
properties of the problem.

Let Z[1 : l] = z1, z2, · · · , zl ∈ Z(n,m, s, t), be a
constrained LCS of X and Y including P as a subse-
quence and including Q as a substring. Let also I =

(i1, j1), (i2, j2), · · · , (il, jl) be a sequence of indices of X
and Y such that Z[1 : l] = xi1 , xi2 , · · · , xil and Z[1 :

l] = yj1 , yj2 , · · · , yjl . From the problem statement, there
must exist an index d ∈ [1, l − t + 1] such that Q =

xid , xid+1
, · · · , xid+t−1

and Q = yjd , yjd+1
, · · · , yjd+t−1

.

Algorithm 5 SEQ-IC-STR-IC-LCS
Input: Strings X = x1 · · ·xn, Y = y1 · · · ym of lengths
n and m, respectively, and two constrained sequences P =

p1p2 · · · ps and Q = q1q2 · · · qt of lengths s and t
Output: The constrained LCS of X and Y includ-
ing P as a subsequence, and including Q as a sub-
string.

1: Suffix {compute f(i, j, k, r)}
2: SEQ-IC-R {compute h(i, j, k)}
3: i∗, j∗, k∗ ← 0, tmp← −∞
4: for i = 1 to n do
5: for j = 1 to m do
6: for k = 1 to s do
7: x← f(i, j, k, t) + h(i+ 1, j + 1, k + 1)

8: if tmp < x then
9: tmp← x, i∗ ← i, j∗ ← j, k∗ ← k

10: end if
11: end for
12: end for
13: end for
14: if tmp > 0 then
15: back(i∗, j∗, k∗, t)

16: backr(i∗ + 1, j∗ + 1, k∗ + 1)

17: end if
18: return max{0, tmp}, i∗, j∗, k∗

Theorem 2: Let i′d = id and for all e ∈ [1, t − 1], i′d+e

be the smallest possible, but larger than i′d+e−1, index of X
such that xid+e

= xi′d+e
. The sequence of indices

I ′ = (i1, j1), (i2, j2), · · · , (id−1, jd−1), (i′d, jd), (i′d+1, jd+1), · · · ,

(i′d+t−1, jd+t−1), (id+t, jd+t), · · · , (il, jl)

defines the same constrained LCS as Z[1 : l].
Proof.

From the definition of indices i′d+e, it is obvious that
they form an increasing sequence, since i′d = id, and
i′d+t−1 ≤ id+t−1. The sequence i′d, · · · , i′d+t−1 is of course
a compact appearance of Q in X starting at id. Therefore,
both components of I ′ pairs form increasing sequences and
for any (i′u, ju), xi′u = yju . Therefore, I ′ defines the same
constrained LCS as Z[1 : l].

The proof is completed. �
The same property is also true for the jth components

of the sequence I . Therefore, we can conclude that when
finding a constrained LCS in Z(i, j, k, r), instead of check-
ing any common subsequences of X and Y it suffices to
check only such common subsequences that contain compact
appearances of Q both in X and Y . The number of different

IAENG International Journal of Computer Science, 43:2, IJCS_43_2_09

(Advance online publication: 18 May 2016)

 
______________________________________________________________________________________ 



compact appearances of Q in X and Y will be denoted by
δx and δy , respectively. It is obvious that δxδy ≤ δ, since a
pair (i, j) defines a compact appearance of Q in X starting
at ith position and compact appearance of Q in Y starting
at jth position only for some matches.

Base on Theorem 2, we can reduce the time complexity of
our dynamic programming from O(nmst) to O(nms). The
improved algorithm consists of also three principal stages.
In the first stage, both sequences X and Y are preprocessed
to determine two corresponding arrays lx and ly. For each
occurrence i of the first character q1 of Q in X , the index j
of the last character qt of a compact appearance of Q in X
is recorded as lxi = j. A similar preprocessing is applicable
to the sequence Y .

Algorithm 6 Prep
Input: X,Y
Output: For each 1 ≤ i ≤ n, the minimal index r = lxi

such that X[i : r] includes Q as a subsequence
For each 1 ≤ j ≤ m, the minimal index r =

lyj such that Y [j : r] includes Q as a subse-
quence

1: for i = 1 to n do
2: if xi = q1 then
3: lxi ← left(X,n, i)

4: else
5: lxi ← 0

6: end if
7: end for
8: for j = 1 to m do
9: if yj = q1 then

10: lyj ← left(Y,m, j)

11: else
12: lyj ← 0

13: end if
14: end for

In the algorithm Prep, function left is used to find the
index lxi of the last character qt of a compact appearance
of Q.

In the second stage of the improved algorithm, two DP
matrices of SEQ-IC-LCS problem are computed: h(i, j, k),
the reverse one defined by Definition 3, and v(i, j, k), the
forward one defined by Definition 4. Both of the DP matrices
can be computed by the SEQ-IC-LCS algorithm of Chin et
al. [5].

In the last stage, two preprocessed arrays lx and ly are
used to determine the final results. To this end for each
match (i, j) for X and Y the ends (lxi, lyi) of compact
appearances of Q in X starting at position i and in Y starting
at position j are read. The length of an SEQ-IC-STR-IC-

Algorithm 7 left(X,n, i)
Input: Integers n, i and X[1 : n]

Output: The minimal index r such that X[i : r] includes Q
as a subsequence

1: a← i+ 1, b← 2

2: while a ≤ n and b ≤ t do
3: if xa = qb then
4: b← b+ 1

5: else
6: a← a+ 1

7: end if
8: end while
9: if b > t then

10: return a− 1

11: else
12: return 0
13: end if

Algorithm 8 SEQ-IC
Input: Strings X = x1 · · ·xn, Y = y1 · · · ym of lengths
n and m, respectively, and a constrained sequence P =

p1p2 · · · ps of length s
Output: v(i, j, k), the length of an LCS of X[1 : i] and
Y [1 : j] including P [1 : k] as a subsequence, for all 1 ≤ i ≤
n, 1 ≤ j ≤ m, 0 ≤ k ≤ s.

1: for all i, j, k , 0 ≤ i ≤ n, 0 ≤ j ≤ m, 1 ≤ k ≤ s do
2: h(i, 0, k), h(0, j, k)← −∞ {boundary condition}
3: end for
4: for i = 1 to n do
5: for j = 1 to m do
6: for k = 0 to s do
7: if xi 6= yj then
8: v(i, j, k)← max{v(i− 1, j, k), v(i, j − 1, k)}
9: else

10: if k = 0 or k > 0 and xi 6= pk then
11: v(i, j, k)← 1 + v(i− 1, j − 1, k)

12: else if xi = pk then
13: v(i, j, k)← 1 + v(i− 1, j − 1, k − 1)

14: end if
15: end if
16: end for
17: end for
18: end for

IAENG International Journal of Computer Science, 43:2, IJCS_43_2_09

(Advance online publication: 18 May 2016)

 
______________________________________________________________________________________ 



Algorithm 9 backf(i, j, k)
Input: Integers i, j, k
Output: The LCS of X[1 : i] and Y [1 : j] including P [1 : k]

as a subsequence

1: if i < 1 or j < 1 then
2: return
3: end if
4: if xi 6= yj then
5: if v(i− 1, j, k) > v(i, j − 1, k) then
6: backr(i− 1, j, k)

7: else
8: backr(i, j − 1, k)

9: end if
10: else
11: if k = 0 or k > 0 and xi 6= pk then
12: backr(i− 1, j − 1, k)

13: print xi

14: else if xi = pk then
15: backr(i− 1, j − 1, k − 1)

16: print xi

17: end if
18: end if

LCS, g(n,m, s, t) defined by Definition 1, containing these
appearances of Q is determined as a sum of three parts. The
first part is, for some indices i, j, k, r, v(i− 1, j − 1, k), the
constrained LCS length of prefixes of X and Y ending at
positions i−1 and j−1, including P [1 : k] as a subsequence.
The second part is h(lxi +1, lyj +1, r+1), the constrained
LCS length of suffixes of X and Y starting at positions lxi+1

and lyj + 1, including P [r + 1 : t] as a subsequence, where
the index r can be determined by k. The last part is t, the
length of the constrained sequence Q.

For each integer k, 1 ≤ k ≤ s, let premax(k) denote the
maximum length l (0 ≤ l ≤ t− k+1) such that Q includes
P [k : k + l − 1] as a subsequence.

Since the constrained LCS A of the prefixes of X and Y
ending at positions i − 1 and j − 1, includes P [1 : k] as
a subsequence, the concatenation of A and Q will include
P [1 : r] as a subsequence, where r = k + premax(k + 1).

The constrained LCS B of the suffixes of X and Y starting
at positions lxi + 1 and lyj + 1, includes P [r + 1 : t] as a
subsequence. Therefore, the concatenation of A,Q and B

includes P as a subsequence.
According to the matrices v(i, j, k) and h(i, j, k), back-

tracking can be used to obtain the optimal subsequence, not
only its length.

Theorem 3: The algorithm SEQ-IC-STR-IC-LCS cor-
rectly computes a constrained LCS in Z(n,m, s, t). The
algorithm requires O(nms) time and to O(nms) space in

Algorithm 10 premax(k)
Input: Integers k
Output: The maximum length r (0 ≤ r ≤ t − k + 1)

such that Q includes P [k : k + r − 1] as a subse-
quence

1: a← k, b← 1, r ← 0

2: while a ≤ s and b ≤ t do
3: if pa = qb then
4: a← a+ 1, r ← r + 1

5: else
6: b← b+ 1

7: end if
8: end while
9: return r

Algorithm 11 SEQ-IC-STR-IC-LCS
Input: Strings X = x1 · · ·xn, Y = y1 · · · ym of lengths
n and m, respectively, and two constrained sequences P =

p1p2 · · · ps and Q = q1q2 · · · qt of lengths s and t
Output: The length of an LCS of X and Y includ-
ing P as a subsequence, and including Q as a sub-
string.

1: SEQ-IC {compute v(i, j, k)}
2: SEQ-IC-R {compute h(i, j, k)}
3: Prep {compute lx, ly}
4: i∗, j∗, k∗, r∗ ← 0, tmp← 0

5: for i = 1 to n do
6: for j = 1 to m do
7: if lxi = lyj then
8: for k = 0 to s do
9: r ← k + premax(k + 1)

10: c← v(i− 1, j− 1, k)+ h(lxi +1, lyj +1, r+

1) + t

11: if tmp < c then
12: tmp← c, i∗ ← i, j∗ ← j, k∗ ← k, r∗ ← r

13: end if
14: end for
15: end if
16: end for
17: end for
18: if tmp > 0 then
19: backf(i∗ − 1, j∗ − 1, k∗)

20: print Q

21: backr(lxi∗ + 1, lyj∗ + 1, r∗ + 1)

22: end if
23: return max{0, tmp}, i∗, j∗, k∗, r∗

IAENG International Journal of Computer Science, 43:2, IJCS_43_2_09

(Advance online publication: 18 May 2016)

 
______________________________________________________________________________________ 



the worst case.
Proof. The time and space complexities of the algorithm
are dominated by the computation of the two dynamic
programming matrices v(i, j, k) and h(i, j, k). It is obvious
that they are all O(nms) in the worst case.

The proof is completed. �

V. CONCLUDING REMARKS

We have suggested a new dynamic programming solution
for the new generalized constrained longest common sub-
sequence problem SEQ-IC-STR-IC-LCS. The first dynamic
programming algorithm requires O(nmst) in the worst case,
where n,m, s, t are the lengths of the four input sequences
respectively. The time complexity can be reduced further
to cubic time in a more thorough analysis. Many other
generalized constrained longest common subsequence (GC-
LCS) problems have analogous structures. It is not clear that
whether the similar technique of this paper can be applied
to these problems to achieve efficient algorithms. We will
explore these problems further.

REFERENCES

[1] Chen Y.C., Chao K.M. On the generalized constrained longest com-
mon subsequence problems, J. Comb. Optim. 21(3), 2011, pp. 383-392.

[2] Crochemore M.,Hancart C., and Lecroq T., Algorithms on strings,
Cambridge University Press, Cambridge, UK, 2007.

[3] Deorowicz S., Quadratic-time algorithm for a string constrained LCS
problem, Inform. Process. Lett. 112(11), 2012, pp. 423-426.

[4] Deorowicz S., Obstoj J., Constrained longest common subsequence
computing algorithms in practice, Comput. Inform. 29(3), 2010, pp.
427-445.

[5] Gotthilf Z., Hermelin D., Lewenstein M., Constrained LCS: hardness
and approximation. In: Proceedings of the 19th annual symposium on
combinatorial pattern matching, CPM’08, Pisa, Italy, 2008, pp. 255-
262.

[6] Gotthilf Z., Hermelin D., Landau G.M., Lewenstein M., Restricted
LCS. In: Proceedings of the 17th international conference on string
processing and information retrieval, SPIRE’10, Los Cabos, Mexico,
2010, pp. 250-257.

[7] Gusfield, D.,Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge University Press,
Cambridge, UK, 1997.

[8] Khand M. A. H., Akter S., Rashid M. A., and Yaakob S. B., Velocity
Tentative PSO: An Optimal Velocity Implementation based Particle
Swarm Optimization to Solve Traveling Salesman Problem, IAENG
International Journal of Computer Science, vol. 42, no.3, 2015, pp221-
232.

[9] Klement V., and Oberhuber T., Multigrid Method for Linear Comple-
mentarity Problem and Its Implementation on GPU, IAENG Interna-
tional Journal of Applied Mathematics, vol. 45, no.3, 2015, pp193-197.

[10] Mirdehghan S.M., M. Nazaari A., and Vakili J., Relations Among
Technical, Cost and Revenue Efficiencies in Data Envelopment Anal-
ysis, IAENG International Journal of Applied Mathematics, vol. 45,
no.4, 2015, pp249-258.

[11] Peng Y.H., Yang C.B., Huang K.S., Tseng K.T., An algorithm and
applications to sequence alignment with weighted constraints, Int. J.
Found. Comput. Sci. 21(1),2010, pp. 51-59.

[12] Tang C.Y., Lu C.L., Constrained multiple sequence alignment tool de-
velopment and its application to RNase family alignment, J. Bioinform.
Comput. Biol. 1, 2003, pp. 267-287.

[13] Tseng C.T., Yang C.B., Ann H.Y., Efficient algorithms for the longest
common subsequence problem with sequential substring constraints.
J. Complexity 29, 2013, pp. 44-52.

[14] Yan J., Li M., and Xu J., An Adaptive Strategy Applied to Memetic
Algorithms, IAENG International Journal of Computer Science, vol.
42, no.2, 2015, pp73-84.

[15] Zhu D., Wang L., Tian J., and Wang X., A Simple Polynomial Time
Algorithm for the Generalized LCS Problem with Multiple Substring
Exclusive Constraints, IAENG International Journal of Computer
Science, vol. 42, no.3, 2015, pp214-220.

IAENG International Journal of Computer Science, 43:2, IJCS_43_2_09

(Advance online publication: 18 May 2016)

 
______________________________________________________________________________________ 




