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Abstract—The expanding cloud computing services offer
great opportunities for consumers to obtain better and cheaper
service conveniently, which however raises new challenges on
how to select the best service provider out of the huge pool.
Although existing literatures have proposed several provider
selection frameworks, none of them considered the perfor-
mance unpredictability and dynamics caused by competition
among cloud users. In this paper, we consider the online
provider selection framework, where users dynamically and
individually select their service providers based on experienced
performance, and investigate the distributed decision-making
strategy to achieve overall and individual performance guaran-
tee. Specifically, we propose the learning-based selection policy,
named Exp3.C, which regulates the system converging to a
set of pure Nash equilibriums (PNE) of a congestion game in
the homogeneous scenarios. Further, we show that even in a
chaotic scenario where cloud users maybe irrational (which
results in disordered and unpredictable behaviors) and the
available resource of providers may change, the user’s profit
is guaranteed to approach that of selecting the best provider
(which is derived with the assumption that all providers’ status
evolution are known) at the rate O(

√
T ) in T rounds. Finally,

numerical results validate the effectiveness of the proposed
algorithm.

Index Terms—Cloud computing, Provider Selection, Online
Learning, Congestion Game

I. INTRODUCTION

MANY of today’s Information Technology (IT) appli-
cations rely on access to state-of-the-art computing

facilities. In response to the resulting demand for flexible
computing resources, cloud computing has taken the IT in-
dustry by storm over the past few years [1]. Cloud computing
emerges as a paradigm to deliver on-demand service (e.g.,
infrastructure, platform, software, etc.) to customers, much
akin to electricity or cable television [2], [3]. The paradigm
shift from IT as a product to IT as a service and the
accompanying flexibility proliferate the cloud applications
[4], [5]. According to [6], [7], the public cloud services
market is expected to expand from $109 billion in 2012 to
$207 billion by 2016.

With the growth of public cloud service offerings, for
cloud customers it has become increasingly imperative to
determine which service provider to use, for performance
optimization as well as cost minimization [8], [9]. Com-
monly, cloud providers declare their available resource as
well as corresponding price on their webs. Thus, an intuitive
method for the cloud user is to select the provider according
to the published information and its own demand. Most of
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the existing cloud marketplaces use service level agreements
(SLAs) to express and negotiate user requirements and offers
for services. Consequently, plenty of work has been paid
on SLA-based provider selection [10], [11], [12], [13]. Un-
fortunately, although SLAs document QoS levels, the actual
performance have not been found to be consistent among
providers [14] and the provider-aroused QoS-violation (such
as cloud outages) happens from time to time [15], [16]. This
is partially due to the fact that the actual performance of any
complex software system (such as a modern cloud platform
or a cloud application) is intrinsically unpredictable [17]. The
computer operating systems that drive cloud platforms today
do not provide real-time guarantees; meanwhile, there is no
foundational theory to guide us in building practical tools to
predict and control the performance of programs. Moreover,
the multi-tier interaction behavior in the cloud marketplace
further adds the complexity of performance prediction. e.g.,
for a end user to select SaaS (software as a service) provider,
a particular SaaS is likely running on top of another PaaS
(platform as a service) or IaaS (infrastructure as a service).
The interaction between the SaaS and PaaS/IaaS highly
influence the end user’s QoS performance [18], [19].

Therefore, an alternative approach for customers is to
select its service provider by evaluating the real performance
of cloud providers [14], [20], [21]. These solutions to some
extent derive the actually perceived QoS for users with
specific applications, by measuring the cloud with some
indicating parameters, such as storage service response time,
network latency, available bandwidth, job execution time, etc.
However, they yield heavy measuring overhead in practical
scenarios. Firstly, the real cloud performance is always
dynamic and unpredictable due to the resource sharing, e.g.,
it is revealed by the latest measurements on Amazon EC2
that the standard medium instances experience up to 66%
variation of the network I/O throughput [20], and the write
I/O bandwidth of standard small instances can vary by as
much as 50% from the mean [21]. Therefore, the user has
to probe enough samples for deriving accurate performance
statistic, which results in time-consuming measurements.
Secondly, in real-world cloud marketplace, the heterogeneity
of data centers (infrastructures of cloud providers) [22]
and application traffics (workloads from cloud users) [23]
becomes common. The off-line measurements on each type
of workload-hardware pair in the huge cloud pool will
undoubtedly bring noticeable processing overhead. Thirdly,
in case that the cloud providers may upgrade their hardware
and software infrastructure, and new providers may enter
the market [14], periodical probing the huge cloud pool is
required for achieving optimal decision-making, resulting in
unacceptable cost for most of the cloud customers.

In this paper, we investigate the online provider selection
framework, which helps cloud users to select proper service
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providers without dedicated probing overhead. Specifically,
each user in the clouds individually selects service provider
according to its own historical experience on the providers’
QoS performance. The goal of our work is to devise efficient
decision-making policy, guiding users to promote their long-
term benefits. Note that similar online selection framework
has been proposed for choosing low-risk provider for obtain-
ing secure cloud service [24] and replica server for improving
QoE in content distribution networks [25]. However, none of
them considered the interactive user behaviors as well as the
performance dynamics caused by competition among cloud
users. While for the general cloud scenario, dynamic sharing
of resource across customers and applications is common. As
a consequence, the uncontrollable competition among users
would inevitably decreasing the QoS performance [20]. What
makes the problem worse is that, the quantitative analysis on
the impact of competition over system performance is still
an open problem in cloud system. In this work, we proposed
an online learning algorithm, named Exp3.C, for guiding the
user’s decision-making. The main results are as follows.
• In homogeneous scenarios, the system would converge

to a set of pure Nash equilibriums (PNE) of a con-
gestion game, if all users apply the proposed strategy
individually.

• In a chaotic scenario where the available resource
of providers are non-stochastically changing, and/or
the users are heterogeneous (or some users maybe
irrational), the user’s per-round profit approaches that
of selecting the best single provider (obtained by a
prophet) at the rate O(

√
T ) in T rounds.

The remainder of this paper is organized as follows.
Section II list the related work. Our considered system model
and problem statement are given in Section III. In Section
IV, we present the proposed learning policy and analyze
the regret performance and convergence. Section V evaluate
and analyze the effectiveness of learning policy by extensive
simulations. Finally, Section VI concludes our work.

II. RELATED WORK

Service-Level-Agreement (SLA) is a well-recognized con-
cept in describing the quality of cloud service, and thus is
widely studied in cloud provider selection. SLA ontologies
[10], [11], [12], [13] try to facilitate the user-provider match-
ing process by introducing ontologies as enhancement to
plain SLA documents. The market participants are required
to specify the semantics of their requirements as well as
service offerings in such ontologies, which is a costly pro-
cedure. Unlike ontologies, the SLA mapping technique [26],
[27], [28] are focusing on bridging the differences between
two SLAs that with differing syntax but the same semantic.
These studies greatly facilitate users to choosing a proper
cloud provider automatically. However, as stated before,
the inherent limitations of SLA restricts its performance in
QoS-sensitive applications. The reasons are twofold. On one
hand, some factors that really influence the user-perceived
QoS are uncontrolled by the cloud provider, e.g., the wide
area network bandwidth and delay, and thus can hardly
be specified by existing SLA description framework. On
the other hand, with the dynamic resource sharing nature
as well as the intrinsic complexity of cloud system, it is

highly intractable for the cloud operator to make accurate
performance prediction and hard QoS provision to its diverse
users [29]. As a result, for the cloud users it is impractical
to achieve optimal decisions by just reading the providers
published SLA specifications.

In achieving automatic cloud provider selection, several
literatures have paid attention on the issue of system devel-
opment. A semi-automated, extensible, and simplified system
for infrastructure services selection, called CloudRecom-
mender is proposed in [30], [31]. The core idea in CloudRec-
ommender is to formally capture the domain knowledge
of services using a declarative logic-based language, and
then implement it in a recommender service on top of
a relational data model. The author in [32] presented a
system architecture that helps deciding the cloud providers
based on the given requirements, and manages the desired
resources by automatically creating new virtual machines
from available providers. In contrast to these work focusing
on realize automatic provider selection system, we try to
devise intelligent decision-making framework with the goal
of optimizing the cloud users’ profit. So, these studies are
complementary to our work.

Meanwhile, several studies have focused on evaluation
of the real performance of cloud providers by off-line
measurements, so as to help customers pick a cloud that
fits their needs. CloudCmp [14] built a cloud measuring
tool for helping end user to evaluate the QoS performance
of customer’s application running on a particular cloud.
The elastic computing, persistent storage, and networking
services offered by a cloud along metrics are measured for
investigating their impact on the performance of different
applications. The Cloud Service Measurement Index Consor-
tium (CSMIC) [33] proposed a framework based on common
characteristics of Cloud services. The aim of this consortium
is to define each of the QoS attributes given in the framework
and provide a methodology for computing a relative index for
comparing different Cloud services. Later, SMICloud [34] is
developed to systematically measure all the QoS attributes
proposed by CSMIC and rank the Cloud services based on
these attributes. The Analytical Hierarchical Process (AHP)
is used to evaluate the cloud services based on the diverse
QoS requirements of different applications. Although with
great advantages in QoS provision, these off-line solutions
face two issues in practical implementation. On one hand, it
is impracticable to request all cloud providers to open their
APIs for public query, thus the accurate QoS performance of
a cloud could only be obtained by the user trying correspond-
ing service. On the other hand, the vast cloud marketplace
with diverse providers as well as the dynamic nature of cloud,
requires sufficient and periodical measurements to be aware
of providers’ status, which results in huge investigating cost.

Most recently, online selection scheme has been intro-
duced in service selection for secure cloud computing [24]
and content distribution networks [25]. Focusing on the
reliability of cloud service, SelCSP [24] dynamically selects
service provider according to estimated risk of interaction.
Both trustworthiness and competence are considered in
choosing cloud provider, which are derived from personal
experiences gained through feedbacks. In [25], a QoE-based
replica server selection algorithm in the context of a content
distribution network architecture is proposed. Online learning
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framework is introduced for improving the user’s QoE by
adaptively regulating server selection according to the user’s
past experience. Unlike the considered online learning prob-
lem in [24] and [25], where the user’s object (or reward
function) is independent to other users’ actions. The reward
of a user’s action in our problem is really influenced by other
user’s behaviors, since the QoS of a cloud customer using
a provider relates to the number of users associated to that
provider. As a result, learning with competition framework
is introduced in this work, assisting decision-making with
the performance uncertainty caused by competition behavior
among users as well as dynamic nature of cloud resource.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Consider there are M ≥ 1 cloud customers (termed
“users”), denoted by set M = {1, 2, . . . ,M}, and N > 1
cloud service providers, denoted by set N = {1, 2, . . . , N}.
Each user, says i, has a candidate provider set Ni ⊆ N.
The candidate set Ni is composed of providers that fulfill
the basic requirements of user i. At each round, the user
selects exactly one provider for obtaining cloud service. Each
user could dynamically change its provider for benefiting its
own profit from round to round. The cloud service prices
are given by {c1, c2, . . . , cN} and is known to all users.
We consider that the user knows the exact number of its
candidate providers, i.e., Ni (This is consistent with real
scenarios, as the user could query such information via web);
however, the total number of users present in the system (i.e.,
M ) and the candidate provider set of others are unknown to
users. This model is richer and more realistic than previously
used models [17], [18] that assume the number of users is
known or Ni = N for all i ∈M.

Let rj(t) ∈ [0, 1] be the total achievable service of
provider j at time t, which relies on multiple factors,
such as the dynamic network condition between the service
provider and its backup PaaS/IaaS server, the available com-
puting/storage resource provider attained from its PaaS/IaaS,
etc. Without loss of generality, we consider that rj(t)t=1,2,...

is generated by an i.i.d process with support [0, 1] and mean
µj ∈ [0, 1], for characterizing the performance uncertainty of
provider j. Note that we assume that all rewards belong to the
[0, 1] interval here, however, the generalization of our results
to rewards in [a, b] for arbitrary a < b is straightforward.
Heterogeneous system is considered, i.e., the N providers
are commonly with diverse value of µ; moreover, the statistic
information is unknown to users.

Let gj ∈ [0, 1] be the QoS reward discount function (RDF)
on provider j due to congestion or resource sharing, where
gj(k) represents the reward discount factor when there are
k users connecting provider j concurrently. RDF is assumed
to be a decreasing function of k, however, the exact form is
unknown to users. We hold the strict constrain for covering
most realistic scenarios that, no direct communication is
allowed among users; moreover, the user could observe the
QoS reward (i.e., rj(t)gj (kj(t))) after trying a particular ser-
vice, but never know the exact value of rj(t) and gj (kj(t)).

Let Si = Ni be the set of feasible actions of user i and
σi ∈ Si be the specific action, i.e., provider selected by user
i. Let S = S1 × S2 × . . .× SM be the set of feasible action
profiles and σ = {σ1, σ2, . . . , σM} ∈ S be the action profile

Algorithm Exp3.C
Parameter: a non-increasing sequence of real numbers ηt.
Initialize: set Ûij(0) = 0 and pij(1) = 1

N for
j = 1, 2, . . . , Ni.

1: for t=1,2,. . . ,T do
2: Select provider σi(t) randomly according to the proba-

bility distribution pi(t) = [pi1(t), pi2(t), . . . , piNi(t)].
3: Receive service from σi(t) and attain reward uσi(t).
4: for j = 1, 2, . . . , Ni do
5: if j = σi(t) then
6: Set Ûij(t) = Ûij(t− 1) +

uij(t)
pij(t)

.
7: else
8: Set Ûij(t) = Ûij(t− 1).
9: end if

10: end for
11: Update probability distribution pi(t + 1) = [pi1(t +

1), pi2(t+ 1), . . . , piNi(t+ 1)], where

pij(t+ 1) =
exp

(
ηtÛij(t)

)
∑N
j=1 exp

(
ηtÛij(t)

) (2)

12: end for

Fig. 1. Pseudo-code of Exp3.C in user i

of users. Suppose that a user selects provider j at time t.
The profit it attained is then given by

uj(t) = rj(t)gj

(
M∑
m=1

I{σm(t)=j}

)
− cj (1)

where I{·} is the indicator function. The objective of this
work is to devise an online policy πi for user i, mapping
from its historical actions {σi(1), σi(1), . . . , σi(t − 1)} and
corresponding rewards {ui(1), ui(1), . . . , ui(t−1)} to action
σi(t), for profit maximization.

IV. ONLINE POLICY FOR CLOUD PROVIDER SELECTION

In this section, we present and analyze the online learning
algorithm Exp3.C. We will show that: 1) if all users follow
our algorithm then the system converges to a set of pure
Nash equilibria (PNE) of a congestion game; and 2) even in
a chaotic system that users maybe irrational (which results in
disordered and unpredictable behaviors) and/or the available
resource of providers are non-stochastically changing, the
user’s profit is guaranteed—–specifically, the user’s per-
round profit of Exp3.C approaches that of selecting the best
single provider (by a prophet) at the rate O(

√
T ) in T rounds.

The algorithm Exp3.C, described in Figure 1, is a vari-
ant of the algorithm Exp3 [35], [36], which is used for
solving exploration and exploitation trade-off in adversary
environment. On each time step t, the user, says user i,
draws an action σi(t) according to a predefined probability
vector {pi1(t), pi2(t), . . . , piNi(t)}, where each element in
the vector indicates the probability of choosing a particular
provider. The selection probability of a provider is initialized
to be 1

N , and is later updated round by round according to
the derived cumulative reward of the provider. Specifically,
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the algorithm assigns to each action a probability mass
exponential in the estimated cumulative reward for that
action, as in Equ.(2). It is worth to note that for the drawn
action σi(t), Exp3.C sets the estimated reward ûσi(t) to
uσi(t)/piσi(t). Such process, i.e., dividing the actual gain
by the probability that the provider was chosen compensates
the reward of cloud providers that are unlikely to be cho-
sen. This choice of estimated rewards guarantees that their
expectations are equal to the actual rewards for each action;
that is, E[ûij(t)|σi(1), σi(2), . . . , σi(t− 1)] = uij(t) where
the expectation is taken with respect to the random choice
of it at trial t given the choices {σi(1), σi(2), . . . , σi(t−1)}
in the previous t− 1 trials.

A. Congestion Game Formulation

Consider that all users are using Exp3.C independently
for selecting service provider from its own candidate set.
We explicitly note that users’ behaviors are dependent, e.g.,
a user’s action would affect other users’ reward and updates,
thus impact their decisions. In order to formulate such inter-
action behavior, we introduce the concept of congestion game
[37], [38]. Congestion games are non-cooperative games in
which the utility of each player depends only on the player’s
strategy and the number of other players that either choose
the same strategy, or some strategies that “overlaps” with it.
A congestion game has a potential function and the local
maxima of the potential function corresponds to PNE, and
every sequence of asynchronous improvement steps is finite
and converges to PNE [39], [40].

Formally, a congestion game is given by the tuple(
M,N, (Si)i∈M , (uj)j∈N

)
, where M denotes a set of users,

and N is a set of resources. Si ⊂ 2N is the action space of
user i, and uj is a pay-off function associated with resource
j, which is a function of the number of users competing for
that resource. Recalling the user’s reward function described
in Equ.(1), it is straightforward to formulate our problem
as congestion game. With this formulation, we have the
following statement:

Theorem 1: From all but a measure 0 set of starting
points, when ηt = η is arbitrarily small, the solution of the
Exp3.C converges to the set of pure Nash equilibrium of the
congestion game

(
M,N, (Si)i∈M , (uj)j∈N

)
.

Proof: Let wij(t) = exp
(
ηÛij(t− 1)

)
and define

uij(t) = 0 for j 6= σi(t). Then, the Equ.(2) can be rewritten
as follows.

pij(t+ 1) =
wij(t) exp

(
η
uij(t)
pij(t)

)
∑N
j=1

{
wij(t) exp

(
η
uij(t)
pij(t)

)}
Note that pij(t) =

wij(t)∑N

j=1
wij(t)

. The above equation can be

further expressed as

pij(t+ 1) =
pij(t)

[
exp

(
η

pij(t)

)]uij(t)
∑N
j=1

{
pij(t)

[
exp

(
η

pij(t)

)]uij(t)}
This indicates that our learning algorithm falls into the class
so called aggregate monotonic selection (AMS) dynamics
[41], [42], and the update equation is identical to that of

[40, Equ.(1)]. As a result, the proof of converging to PNE
follows from [40, Theorem 3.9, 4.1 and 4.4]. We recommend
the readers refer to [40] for detailed and strict proof, and here
briefly explain the steps in the proof only.

The deduction is based on analyzing a differential equation
expressing a continuum limit of the multiplicative-weights
update process, as the multiplicative factor approaches 1 and
time is renormalized accordingly. The first step is to show
that every flow line of the differential equation converges
to the set of fixed points, by proving that the potential
function associated with the congestion game is a Lyapunov
function for any AMS dynamics. Then the stability analysis
using the Jacobian matrix yields that every stable fixed point
corresponds to a Nash equilibrium. Then one can prove that
for any stable fixed point the eigenvalues of the Jacobian
must be zero. This implies that every stable fixed point
corresponds to a weakly stable Nash equilibrium strategy
in the game theoretic sense. Then using techniques from
algebraic geometry, one can prove that the existence of a
non-pure weakly stable equilibrium implies the vanishing of
a non-zero polynomial function of the edge costs, which
implies that almost every weakly stable Nash equilibrium
is a pure Nash equilibrium of the congestion game. We
further need to investigate the error introduced by treating
the discrete time update rule as a continuous time process.
However, by taking the parameter η infinitesimal we can
approximate the discrete time process by the continuous time
process. For a discussion when η is not infinitesimal one can
define approximately stable equilibrium. This concludes the
proof of Theorem 1.

B. Worst Case Performance Analysis

As in previous section, we consider that the users are
using Exp3.C and thus the user could learn the stochas-
tic pay-off of different providers and predict other users’
behaviors. However, in practical scenario there are much
more uncertain factors such as other users may act under
their own (irrational) policies (that we don’t exactly know),
the number of users in the system may change (some users
may enter the cloud market and some others may exit), the
volume of providers’ resource may non-stochastically vary,
etc. In respect with the environmental chaos, it is meaningless
to analyze the system overall performance. In this section,
we consider all the influencing factors as an adversary who
decides the reward assignment among the providers in each
round, and thus derive the worst-case performance bound.

We start by introducing the reward model with adversary
and the concept of regret. At each round t = 1, 2, . . .,
simultaneously with the user’s choice of the provider σt ∈
{1, 2, . . . , N}, an adversary assigns to each j = 1, . . . , N
the reward uj(t) ∈ [0, 1]. For any reward assignment and for
any T > 0, the user’s accumulated reward is

∑T
t=1 uσt(t).

We measure the performance of the user compared with the
performance of the best single provider through the pseudo-
regret defined as

R̄(T ) = max
j=1,...,N

E

[
T∑
t=1

uj(t)

]
− E

[
T∑
t=1

uσt(t)

]
(3)

Then, we have the following statement:
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Theorem 2: 1) If Exp3.C is run with ηt =
√

lnN
tN , then

the pseudo-regret is upper bounded by

R̄(T ) ≤ 2
√
TN lnN (4)

2) If the time horizon T is known, then the pseudo-regret
bound can be further revised as

R̄(T ) ≤
√

2TN lnN (5)

by setting ηt = η =
√

2 lnN
TN .

Proof: For prove this theorem, we introduce the follow-
ing lemma.

Lemma 1: For any non-increasing sequence (ηt)t∈N,
Exp3.C satisfies

R̄T ≤
N

2

T∑
t=1

ηt +
lnN

ηT
(6)

Proof: We give a skeleton proof for Lemma 1 here and
refer the readers to [35], [36] for more details.

As the first step, we can verify that:

Ej∼p(t)[ûj(t)] = uσt(t), Eσt∼p(t)[ûj(t)] = uj(t) (7)

Ej∼p(t)[û
2
j (t)] =

u2σt(t)

pσt(t)
, Eσt∼p(t)

1

pσt(t)
= N (8)

Then, they imply

T∑
t=1

un(t)−
T∑
t=1

uσt(t) =
T∑
t=1

Eσt∼p(t)[ûn(t)]

−
T∑
t=1

Ej∼p(t)[ûj(t)] (9)

Moreover, Ej∼p(t)[ûj(t)] can be rewritten as

Ej∼p(t)[ûj(t)] =
1

ηt
ln
{
Ej∼p(t) [exp (ηt (ûj(t)))]

}
− 1

ηt
ln
{
Ej∼p(t)

[
exp

(
ηt
(
ûj(t)− En∼p(t)[ûn(t)]

))]}
(10)

Further, we have the following equality for the first term of
right hand in Equ.(10):

− 1

ηt
ln
{
Ej∼p(t)

[
exp

(
ηt
(
ûj(t)− En∼p(t)[ûn(t)]

))]}
≤ ηt

2pσt(t)
(11)

and for the second term:

1

ηt
ln
{
Ej∼p(t) [exp (ηt (ûj(t)))]

}
= Φt−1(ηt)− Φt(ηt)

(12)
where Φt(η) = 1

η ln
{

1
N

∑N
j=1 exp(ηÛj(t))

}
.

Putting Equ.(9)(10)(11) and (12) together, we have

T∑
t=1

un(t)−
T∑
t=1

uσt(t) ≤
T∑
t=1

ηt
2pσt(t)

+

T∑
t=1

{Φt−1(ηt)− Φt(ηt)} −
T∑
t=1

Eσt∼p(t)[ûn(t)]

Note that E
[∑T

t=1
ηt

2pσt (t)

]
= N

2

∑T
t=1 ηt, and

T∑
t=1

{Φt−1(ηt)− Φt(ηt)} =
T∑
t=1

ûn(t)

+
T−1∑
t=1

{Φt(ηt+1)− Φt(ηt)}+
lnN

ηT

We have

E

[
T∑
t=1

un(t)−
T∑
t=1

uσt(t)

]
≤ N

2

T∑
t=1

ηt

+
lnN

ηT
+ E

[
T−1∑
t=1

{Φt(ηt+1)− Φt(ηt)}

]
With the condition that “ηt is a non-increasing se-

quence with respect to t”, we further establish that
E
[∑T−1

t=1 {Φt(ηt+1)− Φt(ηt)}
]
≤ 0, which finally con-

cludes the proof of Lemma 1.
With the results of Lemma 1, the second term of Theorem

1 could be obtained directly by putting ηt =
√

2 lnN
TN into

Equ.(6).
For the first term, we have

R̄T ≤ N

2

T∑
t=1

√
lnN

tN
+
√
TN lnN

≤ 1

2

√
N lnN

∫ T

t=0

1√
t

+
√
TN lnN

= 2
√
TN lnN

which completes the proof of Theorem 2.
Theorem 2 shows that no matter how the cloud market

changes, the user’s per-round profit of Exp3.C approaches
that of selecting the best single provider (by a prophet) at the
rate O(

√
T ) in T rounds, which greatly boosts the confidence

of implementing the algorithm in real scenarios.

V. NUMERICAL RESULTS

In this section, we show the convergence as well as ef-
fectiveness of the proposed learning algorithm by numerical
simulations.

Four cloud providers are considered offering computing
service, whose computing capacity are normalized to be 1,
0.8, 0.6 and 0.4, respectively. The number of cloud users is
set to be 20. The users’ traffic needs are set to be ranging
from 0.1 to 0.2. Specifically, user 1 has a normalized traffic
of 0.1, and the traffic of user 20 is 0.2. The minimum
traffic gap between two users is 0.005. Note that here we
raised the normalized traffic needs of each cloud user, so
as to simulate the competition behaviors. We consider a
typical cloud resource-sharing scheme, in where all the users
requirements should be satisfied if the cloud resource is
sufficient; otherwise, the rewards of all the cloud customers
would decrease proportionately to their request. By setting
the parameter η = 1, we carried out the dynamic provider
selection and utilization process.

To show the learning and convergence process, we depict
the evolution of users and providers’ reward in a particular
run. From the perspective of cloud offering, the provider’s
resource utility ratio is critical. We depict the achieved
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Fig. 2. The Variation of Cloud-provider-achieved Capacity
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Fig. 3. The Variation of Cloud-user-derived Traffic

capacity of each service provider in Fig.2. The achieved
capacity is defined as the actual served traffic load, which
is differing from the provider’s achievable capacity as well
as the total traffic uploaded to the provider. Recall that the
summation of users’ normalized traffic needs is 3, which is
higher than the providers’ total computing capacity 2.8. Thus,
all the providers could reach their capacity in ideal situation.
As shown in the figure, at the beginning the conflicting
choices among users boiled down the capacity. Even in such
resource shortage case, considerable proportion of the cloud
resource is under-utilized. The learning algorithm eliminates
the resource waste by virtually coordinating users selections.
We are inspired by the simulation result, which shows that
all the four providers’ capacity are reached after 300 rounds.

In respect of cloud consumers, the users’ actual traffic
served by cloud providers could be used as an indicator
showing the learning process. In Fig.3, all the 20 users’ actual
traffic served by cloud providers are depicted as a function
of time. Due to space limitation, the label of each curve is
omitted in the figure. From the figure, we find that the system
is highly dynamic due to the competition behavior at the first
200 rounds; and within about 320 rounds, all users converge
to a stable status, which reveals system equilibrium.

We further show the learning process in Fig.4, by depicting

the evolution of users’ selection policy (i.e., the probability of
selecting a particular provider). For space saving, we exhibit
the first 6 users’ policy evolution only in the figure. The
label of “select P1” in the figure indicates “the probability
of selecting the first cloud provider ”, and the rest can
be done in the same manner. The curves clearly reveal
the evolution process and convergence of users’ decisions:
the selections are highly conflicting at the beginning, and
then users dynamically adapt their selections according to
their own observation, and finally the system achieves a
coordinating status.

It is shown in Fig.4 that the convergence speeds of differ-
ent users are diverse. For some users, typically represented by
the sixth user in this figure, their selection policy converges
soon as the learning and competition process goes on. While
for some other users, their convergence speed is relatively
long, e.g., the first user in the figure achieves stable policy
with nearly 350 selections. Moreover, the convergence of
learning process is actually uncertain due to the stochastic
nature of environment as well as users’ behaviors. Hence,
the convergence speeds of different experimental runs are
independent.

In order to reveal the statistical results of convergence rate,
we conduct 600 independent runs, where each run lasts for
800 time slots. The convergence rate is represented by the
learning time before a user arriving its stable policy. Here, a
user achieves a stable policy is defined as the situation that
its probability of choosing a particular provider is higher
than 0.99. We count and record the times of all the users
achieving stable state, in all the 600 runs. In addition to the
overall distribution, two other related indicators are derived,
i.e., the time of the first user and the last user achieving stable
policy in each run. The former shows the fastest convergence
time of users, while the latter could be considered as the
system convergence time. The results are shown in Fig.5.
It reveals that some of the users attain rapid convergence:
in 99% of the 600 runs, the fastest converging user achieves
stable within only 30 time rounds. For the general cases, over
60% of the overall users achieve stable in 100 time rounds,
and nearly 90% users’ policies converge in 250 steps. In
respect of system convergence time, over 75% of the cases
the system converges in 500 time steps.

Finally, the system totally achieved capacity is explored,
where the intuitive randomized policy is introduced for
comparison. Three kinds of scenarios are considered, i.e.,
the low traffic mode, medium traffic mode and high traffic
mode. The users’ traffic needs of the three modes are set
to be ranging from 0.05 to 0.1 with step of 0.0025, ranging
from 0.1 to 0.2 with step of 0.005, and ranging from 0.2 to
0.4 with step of 0.01, respectively. For each scenario, 600
independent runs are conducted. Each run lasts for 800 time
slots.

The results are shown in Fig.6. In all the three scenarios,
the effectiveness of learning algorithms is apparent. As time
goes on, the system capacity with learning policies increases,
widening the gap over the randomized policy. Typically, as
shown in the medium traffic case, although the total capacity
provided by the cloud providers is 2.8 (normalized value,
the summation of 1, 0.8, 0.6 and 0.4), the intuitive policy
only achieved 2.3, resulting in 18% capacity loss. While with
the proposed learning algorithm, the system performance is
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Fig. 4. Convergence of Users’ Action
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improved quickly and efficiently as time goes on, and finally
converges to nearly full load of cloud capacity. Another
observation we derived from this figure is that, the system
converges faster in the scenario with higher traffic load. e.g.,
the number of time slots for achieving stable in low traffic
case is nearly 700, and that in medium and high traffic are
300 and 100 respectively.

VI. CONCLUSION

Cloud computing has become an important paradigm for
outsourcing various IT needs of organizations. Currently,
there are many cloud providers who offer different cloud
services with different price and performance attributes.
With the growing number of cloud offerings, it has also
becomes challenging for cloud customers to find the best
cloud services which can satisfy their QoS requirements,
especially when there are plenty of cloud users dynamically
selecting the cloud service concurrently. In order to handle
the unpredictability caused by both the randomness of cloud
status and competition among users, we devised the learning-
based dynamic provider selection framework and proposed

Fig. 6. The Total Cloud Capacity Variation

corresponding online algorithm. We proved the stability
and advancement of the proposed learning algorithm, by
appealing to congestion game formulation. The robustness
of our algorithm is further shown by regret analysis in the
chaotic environment.
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