

Abstract— In today’s information-based society, encryption

along with the techniques for authentication and integrity are

key to the security of information. Cryptographic hashing

algorithms, such as the Secure Hashing Algorithms (SHA), are

an integral part of the solution to the information security

problem. This paper presents the state of art hashing

algorithms including the security challenges for these hashing

algorithms. It also covers the latest research on parallel

implementations of these cryptographic algorithms. We present

an analysis of serial and parallel implementations of these

algorithms, both in hardware and in software, including an

analysis of the performance and the level of protection offered

against attacks on the algorithms.

Index Terms—Cryptographic Hash Function, Parallel

Algorithm, Cryptography, Security, Secure Hashing Algorithm

I. INTRODUCTION

he number of the computing devices have grown

exponentially over the years. Now information mostly

exists in the digital form, whether it belongs to a government

organization, to a private sector enterprise, or to an

individual. There is a huge amount of information on the

Internet and it travels through various types of networks

from user to user.

Before the arrival of data processing tools, the security of

vital information of an organization was primarily provided

by physical means like lockers, signatures, and safe boxes.

But now, with the development of many digital data

processing tools, it has become necessary to have automated

tools in order to protect the information not only when it is

stored on various types of computing devices but also when

it’s being communicated over the networks. The security of

digital information need to be maintained both when it’s

static and when it’s dynamic. For static security, the

information stored on the computing devices must be

properly encrypted and its access must be controlled. For

dynamic security, appropriate network security measures

must be in place to protect the data during its transmission.

The security of digital information is not just a single

Manuscript received October 08, 2015; revised January 29, 2016 . This

work is part of the research work done on Cryptographic Hash Functions

for the fulfillment of the degree of Doctorate.

N. Kishore is with Chitkara University, Barotiwala, Himachal Pradesh,

174103, India (phone: +91-9592405665, 01795-661026; e-mail:

nehakishore.garg@gmail.com).

B. Kapoor is Consultant/Owner, Mimasic, Dallas, TX USA, and teaches

at Walden University. He is also an adjunct faculty in the Department of

Computer Science and Engineering at Chitkara University, Barotiwala,

Himachal Pradesh, 174103, India (e-mail: bkapoor@mimasic.com).

service but is a collection of various services. These services

include: authentication, access control, data confidentiality,

non-repudiation, and data integrity[1]. A system has to

ensure one or more of these depending upon the security

requirements for a particular system. For example, in

addition to the encryption of the data, we may also need

authentication and data integrity checks for most of the

situations in the dynamic context [2]. The development of

cryptographic hashing algorithms, to ensure authentication

and data integrity services as part of ensuring information

security, has been an active area of research.

For ensuring data integrity, SHA-1[1] and MD5[1] are the

most common hashing algorithms being used in various

types of applications. Some of these applications include

digital signature, password protection, digital forensics, SSL

protocol, micropayment, text and content based image

retrieval[4], and image encryption[5]. There have been

several advances in these algorithms over the years to speed

up the overall hashing process and to secure these algorithms

from the attacks. This paper presents an overview of

cryptographic hashing algorithms, including both software

and hardware-based implementations, to achieve the goals of

improved security and performance gains.

The organization of the paper is as follows: In Section II,

we discuss the background of cryptographic hash functions

followed by the level of security offered by these algorithms

in Section III. Section IV describes the Secure Hash

Algorithm (SHA-1) along its successors and variants as well

as the latest on various successful attacks on these

algorithms. Section V discusses some recent advances in the

parallelization of hashing algorithms with goals of

improving their performance. Section VI provides the key

conclusions from this paper.

II. BACKGROUND

The security of digital data means protecting data, such as

a database, from destructive forces and from the unwanted

actions of unauthorized users. Now automated information

systems are being used to replace the traditional security

measures. These systems use signatures, keys, dates, and

code words to secure digital data. These systems provide

the security measures (preserving the integrity, availability,

and confidentiality) in digital form to all of the information

system resources. The main objective is to provide the

security to data processing systems to prevent attacks on the

digital assets. The key security services in a digital

information systems include:

 Authentication – to assure that communicating entity is

the one who has claimed to be.

Neha Kishore, Member IAENG, and Bhanu Kapoor

Attacks on and Advances in Secure Hash

Algorithms

T

IAENG International Journal of Computer Science, 43:3, IJCS_43_3_08

(Advance online publication: 27 August 2016)

__

 Access Control – to prevent the unauthorized use of the

resources.

 Data Confidentiality – to protect information from

unauthorized disclosures.

 Data Integrity – to assure that message received is same

as one sent by an authorized body.

 Non-Repudiation – to protect against denial by any of

the parties involved in a communication.

 Availability – to assure resource accessibility and

usability to provide information services.

These security services can be achieved by using one or

more of the security mechanisms. Security mechanisms are

features designed to identify, avert, or recuperate from a

security attack. Cryptographic techniques are elements that

underlie many of these security mechanisms. Cryptography

is an art of disguising a message and hiding the information

such that it is not readable by any unauthorized party. There

are three broad areas [6] of study in cryptography:

symmetric cryptosystems, asymmetric cryptosystems, and

keyless cryptosystems. Symmetric cryptosystems use single

private key to convert a plain text into cipher text (i.e. in

disguised form) whereas asymmetric cryptosystems use set

of two keys, public and private, for the encryption and the

decryption processes, respectively. Both of these primitives

provide secrecy as a service. Cryptographic Hash Functions

(CHFs) [1] act as symmetric primitives when using keyed

hash functions and as keyless primitives when using keyless

hash functions. The problem of message authentication,

message integrity, and confirming the identity of the sender

in ecommerce applications is perhaps equally or more

important than the encryption of the data. Message

authentication via CHFs ensure the reliability of a message,

validate the identity of the initiator, and ensure non-

repudiation of the originator.

CHF is a function that takes a block of data or a long

message as input and returns a fixed-size hash or a unique

code, known as the Message Digest. More precisely, a hash

function H maps bit-strings of arbitrary length from a

domain D to strings of fixed length (n) in range R with H:

D→R and |D| > |R|. It is considered, relatively easy to

compute a hash value h for a given message M through the

use of CHF. Any accidental or intentional change to the data

leads to a complete change in the hash value. This is useful

in ensuring data integrity as a change in data. Some of the

common security applications of CHFs include digital

signatures, message authentication codes (MACs) for use in

the SSL protocol, finger-printing of any type of data,

forensic applications, and checksums to detect any

accidental data corruption.

A cryptographic hash function must be able to withstand

all known types of cryptanalytic attack. At a minimum, it

must have the following properties of a secure cryptographic

function:

The CHF H can be applied to a block of message of an

arbitrary length.

1. It produces an output h of fixed length.

2. It is relatively easy to compute h for a given M.

3. Pre-image Resistance: Given h, it is infeasible to

generate M such that H(M)=h.

4. Second Pre-image Resistance: Given M, it is hard to

find another message, M”, such that H(M)=H(M”).

5. Collision Resistance: Given M≠M”, it is infeasible to

find H(M)=H(M”).
6. Pseudo-randomness: The value h must be deterministic

and it must random in relation to its input.

In recent years, there has been great development in CHFs

that satisfy these properties. A CHF that satisfies the above

stated first five properties are referred to as a weak hash

function. One of the simplest hash function [1, 57] uses bit-

by-bit exclusive-OR (XOR) of the data for every block of

the message and combines it with a one-bit circular shift or

rotation of the resulting hash code for each block. Although

this procedure gives a good measure of data integrity, ideally

it doesn’t provide enough security in terms of collision

protection when the encrypted hash value on a simple

plaintext message. The most widely used CHF have been the

Secure Hash Algorithm (SHA) and the Message Digest

(MD) family. We mainly look into the SHA family in this

paper. The MD family algorithms also have a structure that

is similar to the SHA family algorithms.

The next section of the paper covers the security of the

cryptographic hash functions in terms of some of the

desirable properties mentioned before.

III. SECURITY OF CRYPTOGRAPHIC HASH FUNCTIONS

The first three properties of CHFs defined in Section II

represent some of the basic requirements for practical

application of a CHF in various applications. The CHFs are

said to be secure if they satisfy at least three of the basic

properties: pre-image resistance, collision resistance, and

second pre-image resistance. In addition, there exist many

more application specific security properties that a CHF

should also preserve for a given application.

Next, the basic security properties of CHFs and the nature

of attacks against these properties are covered. When it is

said that an intended attack has succeeded in breaking a

CHF, it doesn’t necessarily imply that it has been practically

broken as well. While M\many of the attacks have been

theoretically proven, it is still practically infeasible to crack

them. These types of attacks mainly prove the structural or

constructional weakness of the CHFs that can be exploited to

make an attack practically feasible later. The MD5 algorithm

has been subjected to such testing attacks, first theoretically

broken, and later practically as well on the basis of

theoretical work [7, 8].

Fig. 1. (a) Pre Image Collision Resistance, (b) Weak Collision Resistance,

(c) Strong Collision Resistance

A. Pre-Image Resistant (PIR)

CHFs are considered to be computationally non-invertible

which means, if a hash code H(M) is generated for a

IAENG International Journal of Computer Science, 43:3, IJCS_43_3_08

(Advance online publication: 27 August 2016)

__

https://en.wikipedia.org/wiki/Cryptanalysis#Types_of_cryptanalytic_attack

:)($";}1,0{$Pr[)(
][

MAMnMAAdv
mcr

H

:$)",Pr[()(
][

AMMAAdv
mscr

H

IV hH

M

message M, it is considered to be computationally infeasible

for an adversary (A) to retrieve the original message (M)

back (illustrated in Fig. 1(a)). The pre-image resistant

property assures the non-reproducibility of the original

message. The advantage of an adversary (A) for finding a

collision in a CHF can be defined mathematically as:

);(:}1,0{$Pr[)(
][

MHXMAAdv
mpir

H

];)"(:)($" XMHXAM (1)

Unlike the encryption, there should be no "dehash"

function. A good pre-image resistant function should be

"hard" to invert. Brute force attacks are considered to be

best attacks for a CHF that is pre-image resistant. In the

brute force attack method, random values of a message M”

are taken and tried until a collision is found. The level of

effort required to find a collision is proportional to 2
n
, for an

n-bit hash value. On an average an attacker needs to try 2
n–1

different values of M” in order to generate the same hash

code h. The attack is not dependent on any specific

algorithm but only on the bit length of the hash value. So,

the complexity of finding collisions increases with the

increase in the hash code length and greater the hash code

length, the more secure is the hash function.

B. Collision Resistance (CR)

For a CHF to be weak collision resistant or second pre-

image resistant, it should be computationally infeasible for

an adversary (A) to find two different messages M and M”

which can generate same hash values from that CHF. That

is, to find M, M”; such that H(M) = H(M”) but M ≠ M”

(illustrated in Figure 1(b)). This can be expressed

mathematically as:

]);"()(" MHMHMM (2)

What this says is that given complete control over picking

any messages you want, it should be "hard" to find two of

them such that have the same hash value. This property

thwarts the falsification of the message in case an encrypted

hash code is used. The level of effort required to find a

collision is proportional to 2
n/2

, for an n-bit hash value.

Rogaway has stated in [9] that for any keyless hash function,

there will always be a collision although it could be difficult

for humans to detect but collision will still be there due to

the pigeonhole principle. He has also named this illusion of

humans as foundation-of-hashing dilemma.

If the SCR property (sixth in Section II), is also satisfied,

then the CHF is referred to as a strong CHF.

C. Second Pre-image Resistance (SCR)

For a CHF to be strong collision resistant, it should be

computationally infeasible for an adversary (A) with given

CHF H and message M to find another message M” where

M≠M” and H(M) = H(M”) (illustrated in Figure 1(c)).

]);"()(" MHMHMM (3)

This attack involves much less effort than a pre-image or

second pre-image attack. Cryptanalysis attack can be used as

an attack against this property. Cryptanalysis is another type

of attack which is used to check the strength of the algorithm

and is based on the weaknesses in a particular cryptographic

algorithm, in contrast to the brute force attack.

The other desirable properties that a CHF should also

preserve includes semi-free-start collision resistance, near-

collision resistance, pseudo collision resistance, chosen

target Forced prefix pre-image resistance, partial pre-

image resistance, non-correlation etc. But satisfaction of

these properties depends upon the type of the application

and the level of security required in it.

In the next section of the paper, we discuss the design and

of the widely used family of CHF called the SHA

algorithms.

IV. SECURE HASH ALGORITHM

The National Institute of Standards and Technology

(NIST)[10] publishes a family of cryptographic hash

functions, the Secure Hash Algorithm as a U.S. Federal

Information Processing Standard (FIPS)[11]. This family

includes a number of cryptographic hash functions being

advanced over the years to meet stronger security

requirements.

Most of these hash functions are composed of two

components: a compression function and a domain extender.

 Compression function: It’s a function H which

associates the fixed-length input to a fixed-length

output i.e.
nnbH }1,0{}1,0{:

where H maps

b+n bits to n bits.

 Domain extender: It’s a generic process that uses the

compression function H with fixed-length input

iteratively and transforms into a hash function which

can handle arbitrary length of input.

Generally the domain extender used is the Merkle-

Damg˚ard construction[12] which works as follows:

Step 1: Compression function ;}1,0{}1,0{: nnbH
n-

bit constant initialization vector (IV) as shown in Fig. 2.

Fig. 2. Compression Function of Merkle Damg˚ard Construction

Step 2: Iterate the compression function until all the

blocks of n bits have been hashed as shown in Fig. 3.

Fig. 3. Domain Extender of Merkle Damg˚ard Construction

IAENG International Journal of Computer Science, 43:3, IJCS_43_3_08

(Advance online publication: 27 August 2016)

__

Next sections discuss various available SHAs including

variants that are being looked into for applications in near

future: SHA-0 in sub-section A, SHA-1 in B, SHA-2: SHA-

256, SHA-378, SHA-512 in C, and SHA-3 in D followed by

a discussion on the experimented attacks on these

algorithms. Apart from these, researchers have also

proposed many more hash functions based on the SHA

family [13].

A. SHA-0

In 1993, NIST developed the Secure Hash Algorithm

(SHA) and published it as the FIPS 180 publication of the

NIST. The design of the algorithm is closely based on the

MD4 hash function. It was initially created to be used with

the Digital Signature Standard (DSS) but due an undisclosed

flaw, it was withdrawn after two years. It was replaced by a

revised version of the algorithm called SHA-0 and its name

was later changed to SHA-1. Since there was just one more

instruction more the SHA-1 compared to the SHA-0, there

were no reasons to keep the initial version and SHA-1 came

into existence. SHA-1 is discussed in the next section in

more detail.

Attacks on SHA-0:

An attack on SHA-0 was firstly presented at CRYPTO 98

by Florent Chabaud and Antoine Joux[14] and they proved

that the collisions of the hash values can be found with a

complexity of 2
61

, much fewer than 2
80

 for a perfect CHF of

the same size.

In the year 2004, Biham and Chen[15] found two different

messages that hash to closely the same value with 142 out of

the 160 bits are equal, a near-collision for SHA-0.

Then, on 12 August 2004, Joux, Carribault, Lemuet, and

Jalby[16] announced a collision for the full SHA-0

algorithm. The chances of the collision was now 1 in 2
51

 and

about 80,000 CPU hours were used on a supercomputer with

256 Itanium 2 processors to demonstrate the attack. This was

a generalization of the Chabaud and Joux attack discussed

earlier.

Later an attack with a chance of 1 in 2
40

, much better than

the previous one, was announced by Wang, Feng, Lai, and

Yu[17] at the CRYPTO 2004 Rump Sessions. The attacks

worked on MD5, SHA-0, and other similar hash functions.

Again in February 2005, an attack with a chance of 1 in

2
39

 complexity was found by X. Wang, Y. Lisa Yin, and H.

Yu in SHA-0[18].

TABLE I

ATTACKS MADE ON SHA-0

Attacker/

Publisher
Outcome Year Paper

Florent Chabaud

and Antoine Joux

Collisions with

complexity 261

1998 Differential collisions

in SHA-0

Biham and Chen Full Collisions of 65

round and collision

with 142 bits equal

2004 Near-collisions of

SHA-0

Joux, Carribault,

Lemuet, and Jalby

Collisions with

complexity 251

2004 Collision in SHA-0

Wang, Feng, Lai,

and Yu

Collisions with

complexity 240

2004 Collisions for hash

functions MD4

X. Wang, Y. Lisa

Yin, and H. Yu

Collisions with

complexity 239

2005 Efficient collision

search attacks on

SHA0

Table I summarizes various attacks on SHA-0 algorithm

by different researchers and it includes the years when the

attacks were published along with the respective

complexities as outcome.

After several successful collision attacks with

progressively reduced complexity, SHA-0 and MD4 were

considered to be insecure for further use in authentication

purposes.

B. SHA-1

SHA-1[RFC3174] was designed by the National Security

Agency (NSA) and published by the NIST as the FIPS 180-1

publication in 1995. It is also standardized as a dedicated

CHF in the ISO/IEC 10118 standard. The design of the

algorithm was based on the MD4 and the MD5 algorithms.

The compression function of SHA-1 is based on block

cipher and its domain extender in the Merkle-Damg˚ard [12]

construction. The maximum message or file size for the

algorithm is 2
69

-1 bits and it produces a message digest of

160 bits [19].

The compression function takes a block of size 512 bits as

an input which is then further subdivided into sixteen 32-bit

blocks. In SHA-1, there are 4 rounds for the updates of the

internal state each containing 20 steps. A single round of the

compression function in the algorithm is shown in Fig. 4,

which transforms the five 32-bit variables to form the final

hash value.

Fig. 4. One Iteration of Compression Function of SHA-1

SHA-1 algorithm has an Avalanche Effect i.e., even when

only one bit of the message is changed, more than half of the

generated hash value changes.

Attacks on SHA-1:

After the attacks were found on SHA-0, experts suggested

that the usage of SHA-1 in forthcoming cryptosystems

should be given a second thought. The results at CRYPTO

2004 insisted NIST to announce the use of SHA-2 variants

and phase out the use of SHA-1 by 2010.

After the announcement of SHA-1, an attack was

published [20] on a reduced version of SHA-1 that had only

53 out of 80 rounds. This attack could ultimately find

collisions with a computational effort of less than 2
80

operations.

Wang et al. [21] announced another attack on the full

version of SHA-1 in their February 2005 publication. In this

IAENG International Journal of Computer Science, 43:3, IJCS_43_3_08

(Advance online publication: 27 August 2016)

__

attack, collisions can be found requiring less than 2
69

operations as compared to a brute-force search that would

would require 2
80

 operations to find a collision.

On behalf of X. Wang, A. Yao, and F. Yao at the

CRYPTO 2005 Rump sessions, an announcement was made

on lowering of the complexity that is required to find a

collision in SHA-1 to 2
63

. Later in December 2007, this

announcement and its results were explained in detail by

Martin Cochran [22].

A significant theoretical attack was presented by

Christophe De Cannière and Christian Rechberger [23] at

ASIACRYPT 2006. They proposed a two-block collision for

64 rounds, found by using unoptimized methods with 2
35

compression function evaluations. Grechnikov further

extended their attack to 73 rounds (out of 80) in 2010 in

response to challenge to catch a collision in the full 80

rounds of the hash function.

In 2008, Stéphane Manuel [24] announced an attack of

hash collisions with a projected theoretical complexity of 2
51

to 2
57

 operations but later, when he found out that the local

collision paths were not autonomous, he just withdrew the

claims.

In paper [25], authors claimed a hash collision attack with

complexity of 2
52

 at the Rump session of Eurocrypt 2009.

But later authors discovered about the incorrect estimate and

withdrew that paper as well.

In November 2010, Marc Stevens also claimed a

completely working near-collision attack against full SHA-1

with a projected complexity equivalent to 2
57.5

SHA-1

compressions. He developed a project HashClash by making

use of CPU power from cloud servers to break a single hash

value of the SHA-1 algorithm.

Table II lists various attacks on the SHA-1 algorithm as

reported by different researchers including the years of

publication along with the respective complexities as

outcome.

TABLE II

ATTACKS MADE ON SHA-1

Attacker/

Publisher
Outcome Year Paper

Rijmen and

Oswald

Collisions possible

for 53 rounds

instead of 80

2005 Update on SHA-1

Xiaoyun Wang,

Yiqun Lisa Yin

and H. Yu

Collisions with

complexity < 269

operations

2005 Finding collisions in the

full SHA-1

Wang et al., Martin

Cochran

Collisions with

complexity 263

2005 Notes on the Wang et al.

263 SHA-1 Differential

Path.

Christophe De

Cannière and

Christian

Rechberger

two-block collision

for 64-round

2006 Finding SHA-1

Characteristics: General

Results and

Applications

Manuel, Stéphane Already known

attack

2008

2011

Classification and

generation of

disturbance vectors for

collision attacks against

SHA-1

Cameron

McDonald, Philip

Hawkes and Josef

Pieprzyk

Paper withdrawn,

estimate was

incorrect

2009 Differential Path for

SHA-1 with complexity

O(252)

Marc Stevens Complexity

equivalent to 257.5

2010

These attacks have rushed the transition to newer and

stronger versions of SHA. But the SHA-1 algorithm is still

used in a wide variety of applications which include Digital

Signatures, TLS/SSL, SSH, and PGP.

C. SHA-2

Three new revised versions of SHA were added into the

SHA family by NIST in August 2002 as the FIPS 180-2

publication. These are known as SHA-256, SHA-384, and

SHA-512 with the respective hash value lengths of 256, 384,

and 512 bits [26]. Later in 2008, the FIP PUB 180-3

publication was issued as a revised document which added

SHA-224[RFC3874] into the family as well. These

algorithms together are recognized as SHA-2.

The new versions bear the same underlying resemblance

of structure, modular arithmetic, and logical binary

operations as that of SHA-1 without sharing its weaknesses.

The algorithms SHA-256 and SHA-512 caries same basic

design with the difference that SHA-256 operates on eight

32-bit words, while SHA-512 operates on eight 64-bit words

as designed especially for the 64-bit processors. SHA-384 is

a slight modification to SHA-512 and uses a composite of

different initial values of the chaining variable and its hash

code length is 384 bits. SHA-224 is a trimmed version of

SHA-256 algorithm with a different initial value.

These hash functions are targeted to provide higher level

of security. Apart from the hash size and the initial values,

the four new functions differs from SHA-1 in the process of

deriving sub-blocks from a block of a message. Fig. 5 shows

single round of compression function of the SHA-2 family.

Fig. 5. One Iteration of Compression function of SHA-2 family

Attacks on SHA-2

SHA-2 family has also faced cryptographic attacks partly

resulting from the SHA-3 competition which provoked the

researchers and attackers to work on the analysis of SHA-2

variants. But as of now, only collision attacks found are with

practical complexity and none of the attacks yet use the

complete set of rounds as provided in SHA-2. Some of these

attacks are listed in Table III along with the year of attack,

method, and the complexity for collision as outcome.

At the Cryptology-INDOCRYPT 2008 meeting,

Sanadhya, Somitra Kumar, and Palash Sarkar presented a

deterministic collision in 24/64 rounds with 2
28.5

 complexity

of SHA-256 and in 24/80 rounds with 2
32.5

 complexity of

SHA-512[27].

IAENG International Journal of Computer Science, 43:3, IJCS_43_3_08

(Advance online publication: 27 August 2016)

__

http://en.wikipedia.org/wiki/ASIACRYPT
http://en.wikipedia.org/wiki/Big_O_notation

TABLE III

ATTACKS MADE ON SHA-2 VARIANTS

Paper Year Attack Method
Variant of

SHA-2
Collision

New Collision attacks Against

Up To 24-step SHA-2

2008 Deterministic

Collision

SHA-256

SHA-512

In 24/64 rounds with 228.5 complexity

In 24/80 rounds with 232.5complexity

Preimages for step-reduced

SHA-2

2009 Preimage , Meet-in-

the-middle

SHA-256 In 42/64 rounds with 2251.7complexity

In 43/64 rounds with 2254.9complexity

SHA-512 In 42/80 rounds with 2502.3complexity

In 46/80 rounds with 2511.5complexity

Advanced meet-in-the-middle

preimage attacks

2010 Preimage , Meet-in-

the-middle

SHA-256

SHA-512

In 42/64 rounds with 2248.4complexity

In 42/80 rounds with 2494.6 complexity

Higher-Order Differential

Attack on Reduced SHA-256

2011 Pseudo Collision ,

Differential

SHA-256 In 46/64 rounds with 2178 complexity

In 46/64 rounds with 246complexity

Bicliques for Pre-images:

Attacks on Skein-512 and the

SHA-2 family

2011 Preimage , Biclique SHA-256

SHA-512

SHA-256

SHA-512

In 45/64 rounds with 2555.5complexity

In 50/80 rounds with 2511.5complexity

In 52/64 rounds with 2555complexity

In 57/80 rounds with 2511complexity

Then at ASIACRYPT 2009. Aoki et al. presented

"Preimages for step-reduced SHA-2" [28] paper which

discusses the meet-in-the-middle attack on SHA-256 and

SHA-512 with different complexities.

Guo, Jian, San Ling, Christian Rechberger, and Huaxiong

Wang also produced meet-in-the-middle attack on SHA-256

and SHA-512 in the paper [29], at the Advances in

Cryptology-ASIACRYPT 2010.

Pseudo collision differential attack was presented in

"Higher-Order Differential Attack on Reduced SHA-256"

[30] by Lamberger, Mario, and Florian Mendel in 2011 on

SHA-256 with 2
178

and 2
46

complexity.

In 2011, Khovratovich, Dmitry, Christian Rechberger, and

Alexandra Savelieva also presented various attacks on SHA-

256 and SHA-512 in their paper [31].

D. SHA-3

With the motivation from collision attacks on commonly

used hash algorithms such as MD4, MD5, SHA-0, and SHA-

1, NIST announced a public competition in the Federal

Register to have a new hashing algorithm called SHA-3. The

announcement was published in during November, 2007.

SHA-3 is not meant to be either directly linked with SHA-2

family or to replace it but it will be preserving some of the

properties of SHA-2. There were 64 submissions for the

competition in October 2008, out of which 51 candidates

were accepted for the first round and then 14 semi-finalists

were selected in 2009. Later 5 finalists were selected in

December, 2010: BLAKE[32], Grøstl[33], JH [34], Keccak

[35] and Skein [36, 37]. On October 2, 2012, Keccak was

announced as a winner of the competition by NIST[38].

Keccak[35] was designed by Guido Bertoni, Joan

Daemen, and Gilles Van Assche of STMicroelectronics and

Michaël Peeters of NXP. It has been found that Keccak has

better performance in hardware implementations than the

competitors and predecessors. It has an elegant design with

ability to execute nicely on different computing devices.

The algorithm uses the sponge construction[39] which is

different from the most famous Merkle-Damg˚ard

construction. For SHA-3 competition, authors had proposed

the largest permutation size of 1600 in the algorithm be

named as Keccak-f[1600]. In the construction, the message

blocks are first XORed into a subset of state of a 5×5 array

of 64-bit values and then permuted as a whole. In each

permutation, there is an iteration of a simple round function

including operations like bitwise XOR, AND, NOT and

rotations [40].

The excellence in hardware performance of Keccak can

be seen by the work done by Gürkaynak et al. [41], Gaj et

al. [42], Latif et al. [43], Kavun et al. [44], Kaps et al. [45]

and Jungk[46] presented at the Third SHA-3 Candidate

Conference. It also gives better software performance than

SHA-2 on modern multicore processors. For 128-bit and

256-bit hash codes, you get 4.8 and 5.9 cycles/byte,

respectively on a single AMD FX-8120 Bulldozer running at

3.1GHz and 5.4 and 6.9 cycles/byte on a single Intel Xeon

E3-1225, Sandy Bridge core running at 3.1 GHz [47]. There

are good counter-measures like quadratic round functions

and no table look-ups in the keyed Keccak to protect against

power analysis attacks, cache-timing attacks, and other

variant attacks.

As of April 2014, a separate SHA-3 standard has been

announced by NIST as the Draft FIPS Publication 202 and

the contents are yet to be finalized for the standard. But the

structure of the framework has already been used in various

applications [48].

A complete comparison of SHA functions and their

variants with respect to the hash size, message size, number

of rounds, operations, security, and performance[49] is listed

in Table IV.

V. TOWARDS PARALLELIZATION

In applications using CHFs, the performance of these

algorithms is a crucial factor. Although performance

optimized sequential implementation for these algorithms

exist, many of them do not make use of the modern

processor architectures that consist of multiple processing

cores. Making hashing much faster on modern processors

would open the doors to potentially many more

applications while making current usages more secure and

convenient. Researchers are striving hard to parallelize the

hashing process and make optimum use of the power of the

multi-core processors that are commonly available today. In

this section, we discuss some of the latest efforts to

parallelize CHFs both at the hardware and at the software

IAENG International Journal of Computer Science, 43:3, IJCS_43_3_08

(Advance online publication: 27 August 2016)

__

http://en.wikipedia.org/wiki/Keccak

TABLE IV

 COMPARISON OF SHA FUNCTIONS

SHA-0 SHA-1

SHA-2 SHA-3

Algorithm SHA-224

SHA-256

SHA-384

SHA-512

SHA3-224

SHA3-256

SHA3-384

SHA3-512

Hash size (in bits) 160 160 224

256

384

512

224

256

384

512

Internal state size(no. of

variables * size in bits)

160

(5×32)

160

(5×32)

256

(8×32)

512

(8×64)

1600

(5×5×64)

Block size (in bits) 512 512 512 1024 1152

1088

832

576

Max message size 264 − 1 264 − 1 264 − 1 2128 − 1 ∞

No. of Rounds 80 80 64 80 24

Operations add mod 232,

and, or, xor, rot

add mod 232, and,

or, xor, rot

add mod 232, and,

or, xor, shr, rot

add mod 264, and,

or, xor, shr, rot

and, xor, not, rot

Security <80 (collisions

found)

<80 (theoretical

attack in 261)

112

128

192

256

112

128

192

256

Performance (MiB/s) - 192 139 154

levels.

In 1996, Bosselaers, Govaerts, and Vandewalle [50]

discussed the possibilities of parallelization with the arrival

of the Pentium processors. The cryptographic hash functions

such as MD4, MD5, and SHA-1 became faster on the 32-bit

processors. The implementation of these algorithms were

able to exploit the power of Pentium processors utilizing

instruction-level parallelism with the performance gain of

approximately 60 percent as compared to the execution on

non-parallel architectures. They had also shown that 10

percent of running time performance penalty is sustained by

non-cached data and on the endianness conversion.

In contrast to the above claims, in the paper [51], the

authors discussed that the implementation of MD4-based

CHFs such as the RIPEMD-128, the RIPEMD-160, and the

SHA-1 CHF contain more software level parallelism. They

estimated that the parallelism found in SHA-1 was a design

principle and realizing it will require a 7-way multiple-issue

architecture. They have also shown that as the organization

of RIPEMD-160 is in two independent lines, future

architectures could easily achieve software parallelism due

to this structure.

Junko Nakajima and Mitsuru Matsui [52] presented an

exhaustive software performance analysis of CHFs MD5,

RIPEMD-128 and -160, SHA-1, SHA-256, SHA-512, and

Whirlpool on a Pentium III processor. In order to optimize

the speed of 32-bit oriented hash functions, they have used

pipeline scheduling and MMX registers for processing few

of the message blocks in parallel. For 64-bit algorithms,

SHA-512 and Whirlpool, they had utilized the 64-bit MMX

instructions to maximize the performance. A complete

analysis has been provided, which was a first for the SHA-

512 and the Whirlpool algorithms.

In 2004, Praveen S.S. Gauravaram, William L. Millan,

and Lauren J. May proposed a new cryptographic algorithm

CRUSH[53]. In contrast to the standard Merkle Damg˚ard

construction algorithms which can be easier in the hands of

cryptanalysts, the proposed algorithm was based on iterated

halving (IH) to ensure security and efficiency. The authors

have claimed to achieve a secure CHF when the internal F-

function of IH is instantiated with a half-complexity block

cipher. According to [53] 120 Mbits/sec of speed was

achieved with an initial un-optimized implementation of the

algorithm.

In 2006, a hardware implementation of SHA 512 [54] was

proposed. The FPGA implementation used a VHDL

description which was synthesized and routed for high

performance. Another FPGA-based implementation was

designed in 2008 [55] where a digital signature security

scheme has been implemented on a public-key crypto

system-on-a-Chip (SoC) and included a SHA-2 hash core in

combination with a 2048-bit RSA co-processor. The crypto

SoC was implemented on an Altera Nios II Stratix FPGA-

based prototyping system running on a 50 MHz system

clock and showed a throughput of 644 Mbits/sec for the

SHA-512 hardware core.

The hardware optimization techniques such as pipelining

and unrolling were used [56] to present a new VLSI

architecture for the SHA-256 and the SHA-512 hash

functions. The processors were developed for

implementation on the FPGAs and the results were analyzed

and compared with other FPGA-based implementations. The

aim of changing hardware implementation was to improve

CHF’s performance but these techniques were weak in

exploiting parallelism in them. It was felt that there is a great

need for a more secure along with a finer granularity of

parallelism in CHF.

Another way of improving the performance was through

the use of GPUs (Graphic Processing Unit). In 2009, an

implementation of MD5-RC4 encryption was given using

NVIDIA GPU cards in [57, 58]. A performance gain of

about 3-5x was achieved on GeForce 9800GTX card. In

[58], Hu implemented a parallel MD5 on CUDA-enabled

GPU using task stream or task block.

Liu et al. [59] have proposed a parallel digital signature

method using parallelizing SHA based on content chunk for

IAENG International Journal of Computer Science, 43:3, IJCS_43_3_08

(Advance online publication: 27 August 2016)

__

improving de-duplication storage system performance and it

used storage pipelining. The granularity of parallelism

proposed by both Hu and Liu is coarse even though both had

avoided to exploit parallelism of CHF among intra-stream or

intra-task while inter-message work is performed in serial.

In 2009 Du[60] proposed a block cipher based on fine

granularity of parallelism for CHFs. They provide

theoretical analysis and computer simulation to prove the

security and performance of the proposed algorithm. The

author has claimed it to be good choice for e-commerce

applications but the reduction method used in the paper

cannot ensure the security for CHF when the number of

message blocks varies.

Hashem Mohammed et al. [61] have proposed a parallel

algorithm for improving the security performance in SSL

bulk data transfer applications. They have proposed a

framework in which encryption of the information and

calculation of its MAC is done in parallel. The algorithm

was simulated on two different processors with one

processor performing the MAC calculation and the other one

encrypting the data, simultaneously.

In paper [62], Yantao Li et al. proposed and analyzed

chaotic maps (chaotic asymmetric tent map, chaotic

piecewise linear map) based parallel hash algorithm

framework with changeable parameters. The key features of

proposed algorithm were the parallel processing mode and

the message expansion. First, the algorithm converts the

expanded message blocks into their respective ASCII codes

and then, in order to generate intermediate hash values,

iterates the chaotic asymmetric tent map. Once this is done

then the chaotic piecewise linear map, uninterruptedly, with

the dynamically obtained changeable parameters from the

position index of the respective message blocks, generates

decimal fractions, rounds the decimal fractions to integers,

and cascades the integers. The XOR operation is performed

to produce the final hash value of length 128-bit. The

authors have claimed good statistical properties, collision

resistance, and security against meet-in-the-middle attacks

through theoretical analysis as well as computer simulations

of the algorithm.

The MD6 Message-Digest Algorithm was one of the

contestants of the SHA-3 competition and was designed by

Rivest et al. [63]. The algorithm uses a Merkle tree-like

structure to enable parallel processing while computing

hashes for very long inputs. The authors have claimed a

performance of 28 cycles/byte on an Intel Core 2 Duo for

MD6-256 and verifiable resistance against differential

cryptanalysis at the time of its submission. But later, it was

found that the claims made regarding MD6’s resistance to

differential attacks were for the submitted version and not

for a faster reduced-round version. So, Rivest posted a

comment at NIST on July 1, 2009, that MD6 is not ready to

be a candidate for SHA-3 due to the lack of the proofs on

attack resistance. Then in September 2011, a paper[64] was

posted on MD6 website supporting MD6 with faster

reduced-round versions which are resistant to differential

attacks. Unfortunately, MD6 was out of the competition by

that time.

In IACR Cryptology, Atighehchi et al. [36] had proposed

a parallel hash algorithm based on Skein hashing which was

one of the candidates of SHA-3 competition organized by

NIST. Their preliminary work presents the parallel

implementation and associated performance evaluation of

available Skein algorithm. To parallelize Skein, they had

used the tree hash mode with one virtual thread for each

node of the tree. This provides a generic method for the fine

grain maximal parallelism approach.

Blake [32], one of the SHA-3 finalists, was based on Dan

Bernstein's ChaCha stream cipher. In the algorithm, before

each ChaCha round, an input block is XORed after

permutation with some of the round constants and added.

There were two variants of this algorithm, a 32-bit BLAKE-

256 and a BLAKE-224 with output hash sizes of 256 and

224 bits and a 64-bit BLAKE-512 and BLAKE-384 with

output hash sizes of 512 and 384 bits, respectively. Some

collision attacks were also presented in [65] on the BLOKE

and BRAKE versions of the BLAKE algorithm.

Then later, BLAKE2[66] was presented as an improved

version of the BLAKE algorithm. The authors claim to have

highest security like the SHA-3 and performance similar to

MD5 on 64-bit systems using at least 33% less RAM than

SHA-2 or SHA-3. The algorithm is based on the same

concept as that of the ChaCha stream cipher. There are also

two variants of the BLAKE2 algorithm: BLAKE2b

(BLAKE2) for 64-bit platforms producing hash of any size

ranging 1 to 64 bytes and BLAKE2s for 8 to 32 bit

platforms producing hash of any size ranging 1 to 32 bytes.

Algorithms give increased performance on parallel systems

with capability of keyed hashing, hashing with a salt,

updatable or incremental tree-hashing, or any combination

these. According to [66], BLAKE2 provides up to 890

MiB/s on a single Intel Xeon E3-1225, Sandy Bridge

@3.1GHz core, and up to 559 MiB/s on a single AMD FX-

8120 Bulldozer, running at 3.1GHz.

Grøstl [33] was another SHA-3 competition finalist. It is

an iterated hash function with its compression function

constructed from two fixed large distinct permutations. The

components of the algorithm are based on block cipher AES

algorithm, as the S-box and the diffusion layers construction

are similar to that of AES algorithm leading to the desirable

strong confusion and diffusion in the algorithm. The effect

of well-known generic attacks has been made difficult by its

wide pipe construction in which the size of output is

significantly smaller than the size of internal state. The

publication claims to have good performance of Grøstl on

various platforms with counter-measures against the side-

channel attacks. Keccak[35] is another parallel hashing

algorithm accepted as new SHA-3 algorithm (discussed in

section IV C).

In the 4th IEEE International Advance Computing

Conference (IACC) 2014, N. Kishore and B.Kapoor [67]

proposed a new way of parallelizing the CHFs. The

algorithm implements recursive hash construction on

multiple-core processor systems. The approach is to break

the chain dependencies of the Merkle Damg˚ard

construction leading to a faster and secure CHF. They have

also discussed collision probability and the performance

implications of the algorithm. It was implemented using the

OpenMP API and run on AMD FX-8120 Bulldozer at

3.1GHz on an 8-core machine and showing a performance

IAENG International Journal of Computer Science, 43:3, IJCS_43_3_08

(Advance online publication: 27 August 2016)

__

TABLE V

COMPARISON OF PARALLEL HASHING ALGORITHMS

CPU architecture Frequency Algorithm Technique Cycles/byte MiB/s

AMD FX(tm)-8320 3.5 GHz SHA-1 Merkle Damg˚ard Construction 39.24 75

AMD FX(tm)-8320 3.5 GHz SHA-256 Merkle Damg˚ard Construction 26.87 110

 AMD Barcelona 2.2 GHz MD6 Tree based Hashing 4.9 427

 AMD Barcelona with

 8800GT GPU Card
 2.2 GHz MD6 Tree based Hashing 5.5 375

 Intel Core 2 Duo 3.1 GHz Skein- 512 Tree based Hashing 6.5 454

 AMD Opteron 6168 1.9 GHz Grøstl-224/256 Permutation Based 20.7 101.35

 Intel Core 2 Duo 2.4GHz Blake HAIFA Construction 28.3 80.87

 AMD FX(tm)-8320 3.5 GHz RSHA-1 EITRH Construction 6.35 465

gain of up to 3X. They have also proposed its

implementation on the mobile devices as parallel

implementation can take advantage of dynamic voltage and

frequency scaling techniques to make it more energy

efficient.

Table V shows a comparison of some of the recently

developed parallel CHFs using the cycles/byte and the

MiB/s metrics. The CPU architecture, core frequency,

construction method, and the algorithm parallelized have

been listed as well in the table.

VI. CONCLUSION AND SUMMARY

Cryptographic hash functions have gathered an

unprecedented interest among researchers in recent years.

With the advances in hardware and software, the attacks

have also become more efficient and common. In this paper,

we have surveyed the literature related to the advances in the

CHFs for the readers. We have discussed the role of CHFs

in security along with the basic security necessities for a

function to become a secure CHF. In the second part of the

paper, we have focused on the SHA family covering SHA-0,

SHA-1, SHA-2, and SHA-3 advances along with the

documented attacks on these algorithms. It is further

supported by a tabular comparison of all the variants of SHA

considering key parameters.

The third part of the paper covers the parallelization of

CHFs both at hardware and software level. It also covers the

parallelization of existing and recently developed parallel

CHFs. The SHA-3 implementation and the related

competition for secure CHFs has drawn everybody’s

attention towards the parallelization research for the CHFs.

REFERENCES

[1] S. William and W. Stallings, "Cryptography and Network Security,

4/E," 2006.

[2] M. A. Alia, A. A. Tamimi, and O. N. AL-Allaf, " Cryptography

Based Authentication Methods," Lecture Notes in Engineering and

Computer Science: Proceedings of The World Congress on

Engineering and Computer Science 2014, WCECS 2014, 22-24

October, 2014, San Francisco, USA, pp 199-204.

[3] C. Chandersekaran and W. R. Simpson, "Cryptography for a High-

Assurance Web-Based Enterprise," Lecture Notes in Engineering

and Computer Science: Proceedings of The World Congress on

Engineering and Computer Science 2013,

WCECS 2013, 23-25 October, 2013, San Francisco, USA, pp 23-

28.

[4] N. Zhang, K. L. Man, T. Yu, and C.-U. Lei, "Text and content based

image retrieval via locality sensitive hashing," Engineering Letters,

vol. 19, pp. 228-234, 2011.

[5] M. A. B. Younes and A. Jantan, "Image Encryption Using Block-

Based Transformation Algorithm," IAENG International Journal of

Computer Science, vol. 35, pp15-23,2008.

[6] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook

of applied cryptography: CRC press, 2010.

[7] V. Klima, "Tunnels in Hash Functions: MD5 Collisions Within a

Minute," IACR Cryptology ePrint Archive, vol. 2006, p. 105, 2006.

[8] M. Stevens, A. Sotirov, J. Appelbaum, A. Lenstra, D. Molnar, D. A.

Osvik, et al., "Short chosen-prefix collisions for MD5 and the

creation of a rogue CA certificate," in Advances in Cryptology-

CRYPTO 2009, ed: Springer, 2009, pp. 55-69.

[9] P. Rogaway, "Formalizing human ignorance," in Progress in

Cryptology-VIETCRYPT 2006, ed: Springer, 2006, pp. 211-228.

[10] NIST. Available: http://www.nist.gov/

[11] FIPS. Available: http://www.nist.gov/itl/fips.cfm

[12] I. Mironov, "Hash functions: Theory, attacks, and applications,"

Microsoft Research, Silicon Valley Campus. Noviembre de, 2005.

[13] X. Chan and G. Liu, "Discussion of One Improved Hash Algorithm

Based on MD5 and SHA1," Lecture Notes in Engineering and

Computer Science: Proceedings of The World Congress on

Engineering and Computer Science 2007,

WCECS 2007, 24-26 October, 2007, San Francisco, USA, pp 270-

273.

[14] F. Chabaud and A. Joux, "Differential collisions in SHA-0," in

Advances in Cryptology—CRYPTO'98, 1998, pp. 56-71.

[15] E. Biham and R. Chen, "Near-collisions of SHA-0," in Advances in

Cryptology–CRYPTO 2004, 2004, pp. 290-305.

[16] A. Joux, P. Carribault, C. Lemuet, and W. Jalby, "Collision in SHA-

0," Announced in sci. crypt on, vol. 12, 2004.

[17] X. Wang, D. Feng, X. Lai, and H. Yu, "Collisions for hash functions

MD4," MD5, HAVAL-128 and RIPEMD, rump session of Crypto,

vol. 4, 2004.

[18] X. Wang, H. Yu, and Y. L. Yin, "Efficient collision search attacks

on SHA-0," in Advances in Cryptology–CRYPTO 2005, 2005, pp.

1-16.

[19] (15th August). SHA-1. Available: http://en.wikipedia.org/wiki/SHA-

1

[20] V. Rijmen and E. Oswald, "Update on SHA-1," Topics in

Cryptology–CT-RSA 2005, pp. 58-71, 2005.

[21] X. Wang, Y. L. Yin, and H. Yu, "Finding collisions in the full SHA-

1," in Advances in Cryptology–CRYPTO 2005, 2005, pp. 17-36.

[22] M. Cochran, "Notes on the Wang et al. 263 SHA-1 Differential

Path," IACR Cryptology ePrint Archive, vol. 2007, p. 474, 2007.

[23] C. De Canniere and C. Rechberger, "Finding SHA-1 characteristics:

General results and applications," Advances in Cryptology–

ASIACRYPT 2006, pp. 1-20, 2006.

[24] S. Manuel, "Classification and generation of disturbance vectors for

collision attacks against SHA-1," Designs, Codes and

Cryptography, vol. 59, pp. 247-263, 2011.

[25] C. McDonald, P. Hawkes, and J. Pieprzyk, "Differential Path for

SHA-1 with complexity O(2^52)," IACR Cryptology ePrint

Archive, vol. 2009, p. 259, 2009.

[26] (15 August). SHA-2. Available: en.wikipedia.org/wiki/SHA-2

[27] S. K. Sanadhya and P. Sarkar, "New collision attacks against up to

24-step SHA-2," Progress in Cryptology-INDOCRYPT 2008, pp.

91-103, 2008.

IAENG International Journal of Computer Science, 43:3, IJCS_43_3_08

(Advance online publication: 27 August 2016)

__

http://www.nist.gov/
http://www.nist.gov/itl/fips.cfm
http://en.wikipedia.org/wiki/SHA-1
http://en.wikipedia.org/wiki/SHA-1

[28] K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki, and L. Wang,

"Preimages for step-reduced SHA-2," Advances in Cryptology–

ASIACRYPT 2009, pp. 578-597, 2009.

[29] J. Guo, S. Ling, C. Rechberger, and H. Wang, "Advanced meet-in-

the-middle preimage attacks: First results on full Tiger, and

improved results on MD4 and SHA-2," Advances in Cryptology-

ASIACRYPT 2010, pp. 56-75, 2010.

[30] M. Lamberger and F. Mendel, "Higher-Order Differential Attack on

Reduced SHA-256," IACR Cryptology ePrint Archive, vol. 2011, p.

37, 2011.

[31] D. Khovratovich, C. Rechberger, and A. Savelieva, "Bicliques for

preimages: attacks on Skein-512 and the SHA-2 family," in Fast

Software Encryption, 2012, pp. 244-263.

[32] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan, "Sha-3

proposal blake," Submission to NIST, 2008.

[33] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C.

Rechberger, M. Schläffer, et al., "Grøstl–a SHA-3 candidate,"

Submission to NIST, 2008.

[34] R. Bhattacharyya, A. Mandal, and M. Nandi, "Security analysis of

the mode of JH hash function," in Fast Software Encryption, 2010,

pp. 168-191.

[35] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, "Keccak,"

in Advances in Cryptology–EUROCRYPT 2013, ed: Springer, 2013,

pp. 313-314.

[36] K. Atighehchi, A. Enache, T. Muntean, and G. Risterucci, "An

Efficient Parallel Algorithm for Skein Hash Functions," IACR

Cryptology ePrint Archive, vol. 2010, p. 432, 2010.

[37] E. Andreeva, B. Mennink, B. Preneel, and M. Škrobot, "Security

analysis and comparison of the SHA-3 finalists BLAKE, Grøstl, JH,

Keccak, and Skein," in Progress in Cryptology-AFRICACRYPT

2012, ed: Springer, 2012, pp. 287-305.

[38] C. Boutin, "NIST selects winner of Secure Hash Algorithm(SHA-3)

Competition," Press release., October, vol. 2, 2012.

[39] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, "Sponge

functions," in ECRYPT hash workshop, 2007.

[40] (18 August). SHA-3. Available: http://en.wikipedia.org/wiki/SHA-3

[41] F. K. Gürkaynak, K. Gaj, B. Muheim, E. Homsirikamol, C. Keller,

M. Rogawski, et al., "Lessons learned from designing a 65nm ASIC

for evaluating third round SHA-3 candidates," in Third SHA-3

Candidate Conference (March 2012), 2012.

[42] K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, and M. U.

Sharif, "Comprehensive Evaluation of High-Speed and Medium-

Speed Implementations of Five SHA-3 Finalists Using Xilinx and

Altera FPGAs," IACR Cryptology ePrint Archive, vol. 2012, p. 368,

2012.

[43] K. Latif, M. M. Rao, A. Aziz, and A. Mahboob, "Efficient hardware

implementations and hardware performance evaluation of sha-3

finalists," in The Third SHA-3 Candidate Conference, 2012.

[44] E. B. Kavun and T. Yalcin, "On the suitability of SHA-3 finalists

for lightweight applications," in ser. The Third SHA-3 Candidate

Conference, 2012.

[45] J.-P. Kaps, P. Yalla, K. K. Surapathi, B. Habib, S. Vadlamudi, and

S. Gurung, "Lightweight implementations of SHA-3 finalists on

FPGAs," in The Third SHA-3 Candidate Conference, 2012.

[46] B. Jungk, "Evaluation of compact FPGA implementations for all

SHA-3 finalists," in The Third SHA-3 Candidate Conference, 2012.

[47] (1 September). Keccak. Available: http://keccak.noekeon.org/

[48] P. Caballero-Gil, F. Martın-Fernández, and C. Caballero-Gil, "Tree-

Based Management of Revoked Certificates in Vehicular Ad-hoc

Networks," Lecture Notes in Engineering and Computer Science:

Proceedings of The World Congress on Engineering 2013,

WCE 2013, 3-5 July, 2013, London, U.K., pp 1425-1430.

[49] Performance on AMD Opteron. Available:

http://www.cryptopp.com/benchmarks-amd64.html

[50] A. Bosselaers, R. Govaerts, and J. Vandewalle, "Fast hashing on the

Pentium," in Advances in Cryptology—CRYPTO’96, 1996, pp. 298-

312.

[51] A. Bosselaers, R. Govaerts, and J. Vandewalle, "SHA: a design for

parallel architectures?," in Advances in Cryptology—

EUROCRYPT’97, 1997, pp. 348-362.

[52] J. Nakajima and M. Matsui, "Performance analysis and parallel

implementation of dedicated hash functions," in Advances in

Cryptology—EUROCRYPT 2002, 2002, pp. 165-180.

[53] P. Gauravaram, W. Millan, and L. May, "CRUSH: A New

Cryptographic Hash Function using Iterated Halving Technique," in

Cryptographic Algorithms and their Uses, 2004, pp. 28-39.

[54] L. Hong-Qiang and M. Chang-yun, "Hardware Implementation of

Hash Function SHA-512," in Innovative Computing, Information

and Control, 2006. ICICIC'06. First International Conference on,

2006, pp. 38-42.

[55] M. Khalil, M. Nazrin, and Y. Hau, "Implementation of SHA-2 hash

function for a digital signature System-on-Chip in FPGA," in

Electronic Design, 2008. ICED 2008. International Conference on,

2008, pp. 1-6.

[56] R. P. McEvoy, F. M. Crowe, C. C. Murphy, and W. P. Marnane,

"Optimisation of the SHA-2 family of hash functions on FPGAs," in

Emerging VLSI Technologies and Architectures, 2006. IEEE

Computer Society Annual Symposium on, 2006, p. 6 pp.

[57] C. Li, H. Wu, S. Chen, X. Li, and D. Guo, "Efficient

implementation for MD5-RC4 encryption using GPU with CUDA,"

in Anti-counterfeiting, Security, and Identification in

Communication, 2009. ASID 2009. 3rd International Conference

on, 2009, pp. 167-170.

[58] G. Hu, J. Ma, and B. Huang, "High throughput implementation of

MD5 algorithm on GPU," in Ubiquitous Information Technologies

& Applications, 2009. ICUT'09. Proceedings of the 4th

International Conference on, 2009, pp. 1-5.

[59] C. Liu, Y. Xue, D. Ju, and D. Wang, "A novel optimization method

to improve de-duplication storage system performance," in Parallel

and Distributed Systems (ICPADS), 2009 15th International

Conference on, 2009, pp. 228-235.

[60] M. Du, B. He, Y. Wang, J. Wu, and D. Xiao, "Parallel Hash

Function Based on Block Cipher," in E-Business and Information

System Security, 2009. EBISS'09. International Conference on,

2009, pp. 1-4.

[61] H. M. Alaidaros, "Enhancing Secure Sockets Layer Bulk Data

Trnsfer Phase Performance With Parallel Cryptography Algorithm,"

2007.

[62] Y. Li, D. Xiao, S. Deng, Q. Han, and G. Zhou, "Parallel Hash

function construction based on chaotic maps with changeable

parameters," Neural Computing and Applications, vol. 20, pp.

1305-1312, 2011.

[63] R. L. Rivest, B. Agre, D. V. Bailey, C. Crutchfield, Y. Dodis, K. E.

Fleming, et al., "The MD6 hash function–a proposal to NIST for

SHA-3," Submission to NIST, vol. 2, p. 3, 2008.

[64] E. Heilman, "Restoring the differential security of MD6," in

ECRYPT II Hash Workshop, 2011.

[65] J. Vidali, P. Nose, and E. Pašalić, "Collisions for variants of the

BLAKE hash function," Information Processing Letters, vol. 110,

pp. 585-590, 2010.

[66] (5 September). BLAKE2. Available: https://blake2.net/

[67] N. Kishore and B. Kapoor, "An efficient parallel algorithm for hash

computation in security and forensics applications," in Advance

Computing Conference (IACC), 2014 IEEE International, 2014, pp.

873-877.

Dr. Neha Kishore (M’14) was born in

Chandigarh, India in 1984. She has done her

PhD in Computer Science and Engineering

from Chitkara University, India in year 2015.

Her area of research includes Parallel

Computing and Information Security.

 She is working as an Associate Professor in

Chitkara University, H.P., India for last six

years. She has many research papers and poster presentations at

International Journals/Conferences in her credits.

Dr. Kishore is a member of ACM, IAENG, Internet Society,

UACEE. She has been certified as an ACM Ambassador.

Dr. Bhanu Kapoor started his technical career

in 1987 with Texas Instruments. Since 1996,

he has taught several undergraduate and

graduate courses in the areas of computer

science and electrical engineering. He has

received six U.S. patents, and has participated

in various industry panels. His written works

include more than 50 papers that have been

presented at IEEE/ACM conferences or published in journals.

IAENG International Journal of Computer Science, 43:3, IJCS_43_3_08

(Advance online publication: 27 August 2016)

__

http://en.wikipedia.org/wiki/SHA-3
http://keccak.noekeon.org/
http://www.cryptopp.com/benchmarks-amd64.html

