
 

 

Abstract— In today’s information-based society, encryption 

along with the techniques for authentication and integrity are 

key to the security of information. Cryptographic hashing 

algorithms, such as the Secure Hashing Algorithms (SHA), are 

an integral part of the solution to the information security 

problem. This paper presents the state of art hashing 

algorithms including the security challenges for these hashing 

algorithms. It also covers the latest research on parallel 

implementations of these cryptographic algorithms. We present 

an analysis of serial and parallel implementations of these 

algorithms, both in hardware and in software, including an 

analysis of the performance and the level of protection offered 

against attacks on the algorithms. 

 
Index Terms—Cryptographic Hash Function, Parallel 

Algorithm, Cryptography, Security, Secure Hashing Algorithm 

 

I. INTRODUCTION 

he number of the computing devices have grown 

exponentially over the years. Now information mostly 

exists in the digital form, whether it belongs to a government 

organization, to a private sector enterprise, or to an 

individual. There is a huge amount of information on the 

Internet and it travels through various types of networks 

from user to user.  

Before the arrival of data processing tools, the security of 

vital information of an organization was primarily provided 

by physical means like lockers, signatures, and safe boxes. 

But now, with the development of many digital data 

processing tools, it has become necessary to have automated 

tools in order to protect the information not only when it is 

stored on various types of computing devices but also when 

it’s being communicated over the networks. The security of 

digital information need to be maintained both when it’s 

static and when it’s dynamic. For static security, the 

information stored on the computing devices must be 

properly encrypted and its access must be controlled. For 

dynamic security, appropriate network security measures 

must be in place to protect the data during its transmission. 

The security of digital information is not just a single 
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service but is a collection of various services. These services 

include: authentication, access control, data confidentiality, 

non-repudiation, and data integrity[1]. A system has to 

ensure one or more of these depending upon the security 

requirements for a particular system. For example, in 

addition to the encryption of the data, we may also need 

authentication and data integrity checks for most of the 

situations in the dynamic context [2]. The development of 

cryptographic hashing algorithms, to ensure authentication 

and data integrity services as part of ensuring information 

security, has been an active area of research. 

For ensuring data integrity, SHA-1[1] and MD5[1] are the 

most common hashing algorithms being used in various 

types of applications. Some of these applications include 

digital signature, password protection, digital forensics, SSL 

protocol, micropayment, text and content based image 

retrieval[4], and image encryption[5]. There have been 

several advances in these algorithms over the years to speed 

up the overall hashing process and to secure these algorithms 

from the attacks. This paper presents an overview of 

cryptographic hashing algorithms, including both software 

and hardware-based implementations, to achieve the goals of 

improved security and performance gains.   

The organization of the paper is as follows: In Section II, 

we discuss the background of cryptographic hash functions 

followed by the level of security offered by these algorithms 

in Section III. Section IV describes the Secure Hash 

Algorithm (SHA-1) along its successors and variants as well 

as the latest on various successful attacks on these 

algorithms. Section V discusses some recent advances in the 

parallelization of hashing algorithms with goals of 

improving their performance. Section VI provides the key 

conclusions from this paper.  

II. BACKGROUND 

The security of digital data means protecting data, such as 

a database, from destructive forces and from the unwanted 

actions of unauthorized users. Now automated information 

systems are being used to replace the traditional security 

measures. These systems use signatures, keys, dates, and 

code words to secure digital data.  These systems provide 

the security measures (preserving the integrity, availability, 

and confidentiality) in digital form to all of the information 

system resources. The main objective is to provide the 

security to data processing systems to prevent attacks on the 

digital assets. The key security services in a digital 

information systems include: 

 Authentication – to assure that communicating entity is 

the one who has claimed to be.  

Neha Kishore, Member IAENG, and Bhanu Kapoor 

Attacks on and Advances in Secure Hash 

Algorithms 

T 

IAENG International Journal of Computer Science, 43:3, IJCS_43_3_08

(Advance online publication: 27 August 2016)

 
______________________________________________________________________________________ 



 

 Access Control – to prevent the unauthorized use of the 

resources. 

 Data Confidentiality – to protect information from 

unauthorized disclosures. 

 Data Integrity – to assure that message received is same 

as one sent by an authorized body.  

 Non-Repudiation – to protect against denial by any of 

the parties involved in a communication.  

 Availability – to assure resource accessibility and 

usability to provide information services.  

These security services can be achieved by using one or 

more of the security mechanisms. Security mechanisms are 

features designed to identify, avert, or recuperate from a 

security attack. Cryptographic techniques are elements that 

underlie many of these security mechanisms. Cryptography 

is an art of disguising a message and hiding the information 

such that it is not readable by any unauthorized party. There 

are three broad areas [6] of study in cryptography: 

symmetric cryptosystems, asymmetric cryptosystems, and 

keyless cryptosystems. Symmetric cryptosystems use single 

private key to convert a plain text into cipher text (i.e. in 

disguised form) whereas asymmetric cryptosystems use set 

of two keys, public and private, for the encryption and the 

decryption processes, respectively. Both of these primitives 

provide secrecy as a service. Cryptographic Hash Functions 

(CHFs) [1] act as symmetric primitives when using keyed 

hash functions and as keyless primitives when using keyless 

hash functions. The problem of message authentication, 

message integrity, and confirming the identity of the sender 

in ecommerce applications is perhaps equally or more 

important than the encryption of the data. Message 

authentication via CHFs ensure the reliability of a message, 

validate the identity of the initiator, and ensure non-

repudiation of the originator. 

CHF is a function that takes a block of data or a long 

message as input and returns a fixed-size hash or a unique 

code, known as the Message Digest. More precisely, a hash 

function H maps bit-strings of arbitrary length from a 

domain D to strings of fixed length (n) in range R with H: 

D→R and |D| > |R|. It is considered, relatively easy to 

compute a hash value h for a given message M through the 

use of CHF. Any accidental or intentional change to the data 

leads to a complete change in the hash value. This is useful 

in ensuring data integrity as a change in data. Some of the 

common security applications of CHFs include digital 

signatures, message authentication codes (MACs) for use in 

the SSL protocol, finger-printing of any type of data, 

forensic applications, and checksums to detect any 

accidental data corruption. 

A cryptographic hash function must be able to withstand 

all known types of cryptanalytic attack. At a minimum, it 

must have the following properties of a secure cryptographic 

function:    

The CHF H can be applied to a block of message of an 

arbitrary length. 

1. It produces an output h of fixed length. 

2. It is relatively easy to compute h for a given M. 

3. Pre-image Resistance: Given h, it is infeasible to 

generate M such that H(M)=h.   

4. Second Pre-image Resistance: Given M, it is hard to 

find another message, M”, such that H(M)=H(M”). 

5. Collision Resistance: Given M≠M”, it is infeasible to 

find H(M)=H(M”). 
6. Pseudo-randomness: The value h must be deterministic 

and it must random in relation to its input.  

In recent years, there has been great development in CHFs 

that satisfy these properties. A CHF that satisfies the above 

stated first five properties are referred to as a weak hash 

function. One of the simplest hash function [1, 57] uses bit-

by-bit exclusive-OR (XOR) of the data for every block of 

the message and combines it with a one-bit circular shift or 

rotation of the resulting hash code for each block. Although 

this procedure gives a good measure of data integrity, ideally 

it doesn’t provide enough security in terms of collision 

protection when the encrypted hash value on a simple 

plaintext message. The most widely used CHF have been the 

Secure Hash Algorithm (SHA) and the Message Digest 

(MD) family. We mainly look into the SHA family in this 

paper. The MD family algorithms also have a structure that 

is similar to the SHA family algorithms.  

The next section of the paper covers the security of the 

cryptographic hash functions in terms of some of the 

desirable properties mentioned before. 

III. SECURITY OF CRYPTOGRAPHIC HASH FUNCTIONS 

The first three properties of CHFs defined in Section II 

represent some of the basic requirements for practical 

application of a CHF in various applications. The CHFs are 

said to be secure if they satisfy at least three of the basic 

properties: pre-image resistance, collision resistance, and 

second pre-image resistance. In addition, there exist many 

more application specific security properties that a CHF 

should also preserve for a given application. 

Next, the basic security properties of CHFs and the nature 

of attacks against these properties are covered. When it is 

said that an intended attack has succeeded in breaking a 

CHF, it doesn’t necessarily imply that it has been practically 

broken as well. While M\many of the attacks have been 

theoretically proven, it is still practically infeasible to crack 

them. These types of attacks mainly prove the structural or 

constructional weakness of the CHFs that can be exploited to 

make an attack practically feasible later. The MD5 algorithm 

has been subjected to such testing attacks, first theoretically 

broken, and later practically as well on the basis of 

theoretical work [7, 8]. 
 

 

Fig. 1. (a) Pre Image Collision Resistance,  (b) Weak Collision Resistance,       

(c) Strong Collision Resistance 

A. Pre-Image Resistant (PIR) 

CHFs are considered to be computationally non-invertible 

which means, if a hash code H(M) is generated for a 
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message M, it is considered to be computationally infeasible 

for an adversary (A) to retrieve the original message (M) 

back (illustrated in Fig. 1(a)). The pre-image resistant 

property assures the non-reproducibility of the original 

message. The advantage of an adversary (A) for finding a 

collision in a CHF can be defined mathematically as: 
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Unlike the encryption, there should be no "dehash" 

function. A good pre-image resistant function should be 

"hard" to invert.  Brute force attacks are considered to be 

best attacks for a CHF that is pre-image resistant. In the 

brute force attack method, random values of a message M” 

are taken and tried until a collision is found. The level of 

effort required to find a collision is proportional to 2
n
, for an 

n-bit hash value. On an average an attacker needs to try 2
n–1 

different values of M” in order to generate the same hash 

code h. The attack is not dependent on any specific 

algorithm but only on the bit length of the hash value. So, 

the complexity of finding collisions increases with the 

increase in the hash code length and greater the hash code 

length, the more secure is the hash function.  

B. Collision Resistance (CR) 

For a CHF to be weak collision resistant or second pre-

image resistant, it should be computationally infeasible for 

an adversary (A) to find two different messages M and M” 

which can generate same hash values from that CHF. That 

is, to find M, M”; such that H(M) = H(M”) but M ≠ M” 

(illustrated in Figure 1(b)). This can be expressed 

mathematically as: 

        ]);"()(" MHMHMM     (2) 

 

What this says is that given complete control over picking 

any messages you want, it should be "hard" to find two of 

them such that have the same hash value. This property 

thwarts the falsification of the message in case an encrypted 

hash code is used. The level of effort required to find a 

collision is proportional to 2
n/2

, for an n-bit hash value. 

Rogaway has stated in [9] that for any keyless hash function, 

there will always be a collision although it could be difficult 

for humans to detect but collision will still be there due to 

the pigeonhole principle. He has also named this illusion of 

humans as foundation-of-hashing dilemma. 

If the SCR property (sixth in Section II), is also satisfied, 

then the CHF is referred to as a strong CHF. 

C. Second Pre-image Resistance (SCR) 

For a CHF to be strong collision resistant, it should be 

computationally infeasible for an adversary (A) with given 

CHF H and message M to find another message M” where 

M≠M” and H(M) = H(M”) (illustrated in Figure 1(c)).  

 

                 

  ]);"()(" MHMHMM        (3) 

This attack involves much less effort than a pre-image or 

second pre-image attack. Cryptanalysis attack can be used as 

an attack against this property. Cryptanalysis is another type 

of attack which is used to check the strength of the algorithm 

and is based on the weaknesses in a particular cryptographic 

algorithm, in contrast to the brute force attack. 

The other desirable properties that a CHF should also 

preserve includes semi-free-start collision resistance, near-

collision resistance, pseudo collision resistance, chosen 

target Forced prefix pre-image resistance, partial pre-

image resistance, non-correlation etc. But satisfaction of 

these properties depends upon the type of the application 

and the level of security required in it. 

In the next section of the paper, we discuss the design and 

of the widely used family of CHF called the SHA 

algorithms. 

IV. SECURE HASH ALGORITHM 

The National Institute of Standards and Technology 

(NIST)[10] publishes a family of cryptographic hash 

functions, the Secure Hash Algorithm as a U.S. Federal 

Information Processing Standard (FIPS)[11]. This family 

includes a number of cryptographic hash functions being 

advanced over the years to meet stronger security 

requirements. 

Most of these hash functions are composed of two 

components: a compression function and a domain extender. 

 Compression function: It’s a function H which 

associates the fixed-length input to a fixed-length 

output i.e. 
nnbH }1,0{}1,0{: 

where H maps 

b+n bits to n bits. 

 Domain extender: It’s a generic process that uses the 

compression function H with fixed-length input 

iteratively and transforms into a hash function which 

can handle arbitrary length of input.  

Generally the domain extender used is the Merkle-

Damg˚ard construction[12] which works as follows: 

Step 1: Compression function ;}1,0{}1,0{: nnbH 
n-

bit constant initialization vector (IV) as shown in Fig. 2. 

 

 

 

 

Fig.  2. Compression Function of Merkle Damg˚ard Construction 

Step 2: Iterate the compression function until all the 

blocks of n bits have been hashed as shown in Fig. 3. 

 

 

Fig.  3. Domain Extender of Merkle Damg˚ard Construction 
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Next sections discuss various available SHAs including 

variants that are being looked into for applications in near 

future: SHA-0 in sub-section A, SHA-1 in B, SHA-2: SHA-

256, SHA-378, SHA-512 in C, and SHA-3 in D followed by 

a discussion on the experimented attacks on these 

algorithms. Apart from these, researchers have also 

proposed many more hash functions based on the SHA 

family [13].  

A. SHA-0 

In 1993, NIST developed the Secure Hash Algorithm 

(SHA) and published it as the FIPS 180 publication of the 

NIST. The design of the algorithm is closely based on the 

MD4 hash function. It was initially created to be used with 

the Digital Signature Standard (DSS) but due an undisclosed 

flaw, it was withdrawn after two years. It was replaced by a 

revised version of the algorithm called SHA-0 and its name 

was later changed to SHA-1. Since there was just one more 

instruction more the SHA-1 compared to the SHA-0, there 

were no reasons to keep the initial version and SHA-1 came 

into existence. SHA-1 is discussed in the next section in 

more detail.  

Attacks on SHA-0: 

An attack on SHA-0 was firstly presented at CRYPTO 98 

by Florent Chabaud and Antoine Joux[14] and they proved 

that the collisions of the hash values can be found with a 

complexity of 2
61

, much fewer than 2
80

 for a perfect CHF of 

the same size. 

In the year 2004, Biham and Chen[15] found two different 

messages that hash to closely the same value with 142 out of 

the 160 bits are equal, a near-collision for SHA-0. 

Then, on 12 August 2004, Joux, Carribault, Lemuet, and 

Jalby[16] announced a collision for the full SHA-0 

algorithm. The chances of the collision was now 1 in 2
51

 and 

about 80,000 CPU hours were used on a supercomputer with 

256 Itanium 2 processors to demonstrate the attack. This was 

a generalization of the Chabaud and Joux attack discussed 

earlier.  

Later an attack with a chance of 1 in 2
40

, much better than 

the previous one, was announced by Wang, Feng, Lai, and 

Yu[17] at the CRYPTO 2004 Rump Sessions. The attacks 

worked on MD5, SHA-0, and other similar hash functions.  

Again in February 2005, an attack with a chance of 1 in 

2
39

 complexity was found by X. Wang, Y. Lisa Yin, and H. 

Yu in SHA-0[18]. 
 

TABLE I 

ATTACKS MADE ON SHA-0 

Attacker/ 

Publisher 
Outcome Year Paper 

Florent Chabaud 

and Antoine Joux 

Collisions with 

complexity 261 

1998 Differential collisions 

in SHA-0 

Biham and Chen Full Collisions of 65 

round and collision 

with 142 bits equal 

2004 Near-collisions of 

SHA-0 

 

Joux, Carribault, 

Lemuet, and Jalby 

Collisions with 

complexity 251 

2004 Collision in SHA-0 

 

Wang, Feng, Lai, 

and Yu 

Collisions with 

complexity 240 

2004 Collisions for hash 

functions MD4 

X. Wang, Y. Lisa 

Yin, and H. Yu 

Collisions with 

complexity 239 

2005 Efficient collision 

search attacks on 

SHA0 

Table I summarizes various attacks on SHA-0 algorithm 

by different researchers and it includes the years when the 

attacks were published along with the respective 

complexities as outcome. 

After several successful collision attacks with 

progressively reduced complexity, SHA-0 and MD4 were 

considered to be insecure for further use in authentication 

purposes. 

B. SHA-1 

SHA-1[RFC3174] was designed by the National Security 

Agency (NSA) and published by the NIST as the FIPS 180-1 

publication in 1995. It is also standardized as a dedicated 

CHF in the ISO/IEC 10118 standard. The design of the 

algorithm was based on the MD4 and the MD5 algorithms. 

The compression function of SHA-1 is based on block 

cipher and its domain extender in the Merkle-Damg˚ard [12] 

construction. The maximum message or file size for the 

algorithm is 2
69

-1 bits and it produces a message digest of 

160 bits [19]. 

The compression function takes a block of size 512 bits as 

an input which is then further subdivided into sixteen 32-bit 

blocks. In SHA-1, there are 4 rounds for the updates of the 

internal state each containing 20 steps. A single round of the 

compression function in the algorithm is shown in Fig. 4, 

which transforms the five 32-bit variables to form the final 

hash value. 

 

 
 

Fig. 4. One Iteration of Compression Function of SHA-1 

SHA-1 algorithm has an Avalanche Effect i.e., even when 

only one bit of the message is changed, more than half of the 

generated hash value changes. 

 

Attacks on SHA-1: 

After the attacks were found on SHA-0, experts suggested 

that the usage of SHA-1 in forthcoming cryptosystems 

should be given a second thought. The results at CRYPTO 

2004 insisted NIST to announce the use of SHA-2 variants 

and phase out the use of SHA-1 by 2010. 

After the announcement of SHA-1, an attack was 

published [20] on a reduced version of SHA-1 that had only 

53 out of 80 rounds. This attack could ultimately find 

collisions with a computational effort of less than 2
80

 

operations. 

Wang et al. [21] announced another attack on the full 

version of SHA-1 in their February 2005 publication. In this 
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attack, collisions can be found requiring less than 2
69

 

operations as compared to a brute-force search that would 

would require 2
80

 operations to find a collision. 

On behalf of X. Wang, A. Yao, and F. Yao at the 

CRYPTO 2005 Rump sessions, an announcement was made 

on lowering of the complexity that is required to find a 

collision in SHA-1 to 2
63

. Later in December 2007, this 

announcement and its results were explained in detail by 

Martin Cochran [22]. 

A significant theoretical attack was presented by 

Christophe De Cannière and Christian Rechberger [23] at 

ASIACRYPT 2006. They proposed a two-block collision for 

64 rounds, found by using unoptimized methods with 2
35

 

compression function evaluations. Grechnikov further 

extended their attack to 73 rounds (out of 80) in 2010 in 

response to challenge to catch a collision in the full 80 

rounds of the hash function. 

In 2008, Stéphane Manuel [24] announced an attack of 

hash collisions with a projected theoretical complexity of 2
51

 

to 2
57

 operations but later, when he found out that the local 

collision paths were not autonomous, he just withdrew the 

claims. 

In paper [25], authors claimed a hash collision attack with 

complexity of 2
52

 at the Rump session of Eurocrypt 2009. 

But later authors discovered about the incorrect estimate and 

withdrew that paper as well.  

In November 2010, Marc Stevens also claimed a 

completely working near-collision attack against full SHA-1 

with a projected complexity equivalent to 2
57.5 

SHA-1 

compressions. He developed a project HashClash by making 

use of CPU power from cloud servers to break a single hash 

value of the SHA-1 algorithm. 

Table II lists various attacks on the SHA-1 algorithm as 

reported by different researchers including the years of 

publication along with the respective complexities as 

outcome. 

TABLE II 

ATTACKS MADE ON SHA-1 

Attacker/ 

Publisher 
Outcome Year Paper 

Rijmen and 

Oswald 

Collisions possible 

for 53 rounds 

instead of 80 

2005 Update on SHA-1 

Xiaoyun Wang, 

Yiqun Lisa Yin 

and H. Yu 

Collisions with 

complexity < 269 

operations 

2005 Finding collisions in the 

full SHA-1  

Wang et al., Martin 

Cochran 

Collisions with 

complexity 263 

2005 Notes on the Wang et al. 

263 SHA-1 Differential 

Path. 

Christophe De 

Cannière and 

Christian 

Rechberger 

two-block collision 

for 64-round 

2006 Finding SHA-1 

Characteristics: General 

Results and 

Applications 

Manuel, Stéphane Already known 

attack 

2008 

2011 

Classification and 

generation of 

disturbance vectors for 

collision attacks against 

SHA-1 

Cameron 

McDonald, Philip 

Hawkes and Josef 

Pieprzyk 

Paper withdrawn, 

estimate was 

incorrect 

2009 Differential Path for 

SHA-1 with complexity 

O(252) 

Marc Stevens Complexity 

equivalent to 257.5 

2010  

These attacks have rushed the transition to newer and 

stronger versions of SHA. But the SHA-1 algorithm is still 

used in a wide variety of applications which include Digital 

Signatures, TLS/SSL, SSH, and PGP. 

C. SHA-2 

Three new revised versions of SHA were added into the 

SHA family by NIST in August 2002 as the FIPS 180-2 

publication. These are known as SHA-256, SHA-384, and 

SHA-512 with the respective hash value lengths of 256, 384, 

and 512 bits [26]. Later in 2008, the FIP PUB 180-3 

publication was issued as a revised document which added 

SHA-224[RFC3874] into the family as well. These 

algorithms together are recognized as SHA-2.  

The new versions bear the same underlying resemblance 

of structure, modular arithmetic, and logical binary 

operations as that of SHA-1 without sharing its weaknesses. 

The algorithms SHA-256 and SHA-512 caries same basic 

design with the difference that SHA-256 operates on eight 

32-bit words, while SHA-512 operates on eight 64-bit words 

as designed especially for the 64-bit processors. SHA-384 is 

a slight modification to SHA-512 and uses a composite of 

different initial values of the chaining variable and its hash 

code length is 384 bits. SHA-224 is a trimmed version of 

SHA-256 algorithm with a different initial value. 

These hash functions are targeted to provide higher level 

of security. Apart from the hash size and the initial values, 

the four new functions differs from SHA-1 in the process of 

deriving sub-blocks from a block of a message. Fig. 5 shows 

single round of compression function of the SHA-2 family. 
 

 
Fig. 5. One Iteration of Compression function of SHA-2 family 

Attacks on SHA-2 

SHA-2 family has also faced cryptographic attacks partly 

resulting from the SHA-3 competition which provoked the 

researchers and attackers to work on the analysis of SHA-2 

variants. But as of now, only collision attacks found are with 

practical complexity and none of the attacks yet use the 

complete set of rounds as provided in SHA-2. Some of these 

attacks are listed in Table III along with the year of attack, 

method, and the complexity for collision as outcome. 

At the Cryptology-INDOCRYPT 2008 meeting, 

Sanadhya, Somitra Kumar, and Palash Sarkar presented a 

deterministic collision in 24/64 rounds with 2
28.5

 complexity 

of SHA-256 and in 24/80 rounds with 2
32.5

 complexity of 

SHA-512[27]. 
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TABLE III  

ATTACKS MADE ON SHA-2 VARIANTS 

Paper Year Attack Method 
Variant of 

SHA-2 
Collision 

New Collision attacks Against 

Up To 24-step SHA-2 

2008 Deterministic 

Collision 

SHA-256 

SHA-512 

In 24/64 rounds with 228.5 complexity 

In 24/80 rounds with 232.5complexity 

 
Preimages for step-reduced 

SHA-2 

2009 Preimage , Meet-in-

the-middle 

SHA-256 In 42/64 rounds with 2251.7complexity 

In 43/64 rounds with 2254.9complexity 

 

SHA-512 In 42/80 rounds with 2502.3complexity 

In 46/80 rounds with 2511.5complexity 

Advanced meet-in-the-middle 

preimage attacks 

2010 Preimage , Meet-in-

the-middle 

SHA-256 

SHA-512 

In 42/64 rounds with 2248.4complexity 

In 42/80 rounds with 2494.6 complexity 

Higher-Order Differential 

Attack on Reduced SHA-256 

2011 Pseudo Collision , 

Differential 

SHA-256 In 46/64 rounds with 2178 complexity 

In 46/64 rounds with 246complexity 

Bicliques for Pre-images: 

Attacks on Skein-512 and the 

SHA-2 family 

2011 Preimage , Biclique SHA-256 

SHA-512 

SHA-256 

SHA-512 

In 45/64 rounds with 2555.5complexity 

In 50/80 rounds with 2511.5complexity 

In 52/64 rounds with 2555complexity 

In 57/80 rounds with 2511complexity  

 

Then at ASIACRYPT 2009. Aoki et al. presented 

"Preimages for step-reduced SHA-2" [28] paper which 

discusses the meet-in-the-middle attack on SHA-256 and 

SHA-512 with different complexities. 

Guo, Jian, San Ling, Christian Rechberger, and Huaxiong 

Wang also produced meet-in-the-middle attack on SHA-256 

and SHA-512 in the paper [29], at the Advances in 

Cryptology-ASIACRYPT 2010. 

Pseudo collision differential attack was presented in 

"Higher-Order Differential Attack on Reduced SHA-256" 

[30] by Lamberger, Mario, and Florian Mendel in 2011 on 

SHA-256 with 2
178 

and 2
46 

complexity. 

In 2011, Khovratovich, Dmitry, Christian Rechberger, and 

Alexandra Savelieva also presented various attacks on SHA-

256 and SHA-512 in their paper [31]. 

D. SHA-3 

With the motivation from collision attacks on commonly 

used hash algorithms such as MD4, MD5, SHA-0, and SHA-

1, NIST announced a public competition in the Federal 

Register to have a new hashing algorithm called SHA-3. The 

announcement was published in during November, 2007.  

SHA-3 is not meant to be either directly linked with SHA-2 

family or to replace it but it will be preserving some of the 

properties of SHA-2. There were 64 submissions for the 

competition in October 2008, out of which 51 candidates 

were accepted for the first round and then 14 semi-finalists 

were selected in 2009. Later 5 finalists were selected in 

December, 2010: BLAKE[32], Grøstl[33], JH [34], Keccak 

[35] and Skein [36, 37]. On October 2, 2012, Keccak was 

announced as a winner of the competition by NIST[38].  

Keccak[35] was designed by Guido Bertoni, Joan 

Daemen, and Gilles Van Assche of STMicroelectronics and 

Michaël Peeters of NXP. It has been found that Keccak has 

better performance in hardware implementations than the 

competitors and predecessors. It has an elegant design with 

ability to execute nicely on different computing devices.  

The algorithm uses the sponge construction[39] which is 

different from the most famous Merkle-Damg˚ard 

construction. For SHA-3 competition, authors had proposed 

the largest permutation size of 1600 in the algorithm be 

named as Keccak-f[1600]. In the construction, the message 

blocks are first XORed into a subset of state of a 5×5 array 

of 64-bit values and then permuted as a whole. In each 

permutation, there is an iteration of a simple round function 

including operations like bitwise XOR, AND, NOT and 

rotations [40].  

The excellence in hardware performance of Keccak can 

be seen by the work done by Gürkaynak et al. [41], Gaj et 

al. [42], Latif et al. [43], Kavun et al. [44], Kaps et al. [45] 

and Jungk[46] presented at the Third SHA-3 Candidate 

Conference. It also gives better software performance than 

SHA-2 on modern multicore processors. For 128-bit and 

256-bit hash codes, you get 4.8 and 5.9 cycles/byte, 

respectively on a single AMD FX-8120 Bulldozer running at 

3.1GHz and 5.4 and 6.9 cycles/byte on a single Intel Xeon 

E3-1225, Sandy Bridge core running at 3.1 GHz [47]. There 

are good counter-measures like quadratic round functions 

and no table look-ups in the keyed Keccak to protect against 

power analysis attacks, cache-timing attacks, and other 

variant attacks. 
 

As of April 2014, a separate SHA-3 standard has been 

announced by NIST as the Draft FIPS Publication 202 and 

the contents are yet to be finalized for the standard. But the 

structure of the framework has already been used in various 

applications [48]. 

A complete comparison of SHA functions and their 

variants with respect to the hash size, message size, number 

of rounds, operations, security, and performance[49] is listed 

in Table IV. 

V. TOWARDS PARALLELIZATION 

In applications using CHFs, the performance of these 

algorithms is a crucial factor. Although performance 

optimized sequential implementation for these algorithms 

exist, many of them do not make use of the modern 

processor architectures that consist of multiple processing 

cores. Making hashing much faster on modern processors 

would open the doors to potentially many more 

applications while making current usages more secure and 

convenient. Researchers are striving hard to parallelize the 

hashing process and make optimum use of the power of the 

multi-core processors that are commonly available today. In 

this section, we discuss some of the latest efforts to 

parallelize CHFs both at the hardware and at the software 
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TABLE IV 

 COMPARISON OF SHA FUNCTIONS 

 

SHA-0 SHA-1 

SHA-2 SHA-3 

Algorithm SHA-224 

SHA-256 

SHA-384 

SHA-512 

SHA3-224 

SHA3-256 

SHA3-384 

SHA3-512 

Hash size (in bits) 160 160 224 

256 

384 

512 

224 

256 

384 

512 

Internal state size(no. of 

variables * size in bits) 

160 

(5×32) 

160 

(5×32) 

256 

(8×32) 

512 

(8×64) 

1600 

(5×5×64) 

Block size (in bits) 512 512 512 1024 1152 

1088 

832 

576 

Max message size  264 − 1 264 − 1 264 − 1 2128 − 1 ∞ 

No. of Rounds 80 80 64 80 24 

Operations add mod 232, 

and, or, xor, rot 

add mod 232, and, 

or, xor, rot 

add mod 232, and, 

or, xor, shr, rot 

add mod 264, and, 

or, xor, shr, rot 

and, xor, not, rot 

Security <80 (collisions 

found) 

<80 (theoretical 

attack in 261) 

112 

128 

192 

256 

112 

128 

192 

256 

Performance (MiB/s)  - 192 139 154  

 

levels. 

In 1996, Bosselaers, Govaerts, and Vandewalle [50] 

discussed the possibilities of parallelization with the arrival 

of the Pentium processors. The cryptographic hash functions 

such as MD4, MD5, and SHA-1 became faster on the 32-bit 

processors. The implementation of these algorithms were 

able to exploit the power of Pentium processors utilizing 

instruction-level parallelism with the performance gain of 

approximately 60 percent as compared to the execution on 

non-parallel architectures. They had also shown that 10 

percent of running time performance penalty is sustained by 

non-cached data and on the endianness conversion. 

In contrast to the above claims, in the paper [51], the 

authors discussed that the implementation of MD4-based 

CHFs such as the RIPEMD-128, the RIPEMD-160, and the 

SHA-1 CHF contain more software level parallelism. They 

estimated that the parallelism found in SHA-1 was a design 

principle and realizing it will require a 7-way multiple-issue 

architecture. They have also shown that as the organization 

of RIPEMD-160 is in two independent lines, future 

architectures could easily achieve software parallelism due 

to this structure. 

Junko Nakajima and Mitsuru Matsui [52] presented an 

exhaustive software performance analysis of CHFs MD5, 

RIPEMD-128 and -160, SHA-1, SHA-256, SHA-512, and 

Whirlpool on a Pentium III processor. In order to optimize 

the speed of 32-bit oriented hash functions, they have used 

pipeline scheduling and MMX registers for processing few 

of the message blocks in parallel. For 64-bit algorithms, 

SHA-512 and Whirlpool, they had utilized the 64-bit MMX 

instructions to maximize the performance. A complete 

analysis has been provided, which was a first for the SHA-

512 and the Whirlpool algorithms. 

In 2004, Praveen S.S. Gauravaram, William L. Millan, 

and Lauren J. May proposed a new cryptographic algorithm 

CRUSH[53]. In contrast to the standard Merkle Damg˚ard 

construction algorithms which can be easier in the hands of 

cryptanalysts, the proposed algorithm was based on iterated 

halving (IH) to ensure security and efficiency. The authors 

have claimed to achieve a secure CHF when the internal F-

function of IH is instantiated with a half-complexity block 

cipher. According to [53] 120 Mbits/sec of speed was 

achieved with an initial un-optimized implementation of the 

algorithm. 

In 2006, a hardware implementation of SHA 512 [54] was 

proposed. The FPGA implementation used a VHDL 

description which was synthesized and routed for high 

performance. Another FPGA-based implementation was 

designed in 2008 [55] where a digital signature security 

scheme has been implemented on a public-key crypto 

system-on-a-Chip (SoC) and included a SHA-2 hash core in 

combination with a 2048-bit RSA co-processor. The crypto 

SoC was implemented on an Altera Nios II Stratix FPGA-

based prototyping system running on a 50 MHz system 

clock and showed a throughput of 644 Mbits/sec for the 

SHA-512 hardware core.  

The hardware optimization techniques such as pipelining 

and unrolling were used [56] to present a new VLSI 

architecture for the SHA-256 and the SHA-512 hash 

functions. The processors were developed for 

implementation on the FPGAs and the results were analyzed 

and compared with other FPGA-based implementations. The 

aim of changing hardware implementation was to improve 

CHF’s performance but these techniques were weak in 

exploiting parallelism in them. It was felt that there is a great 

need for a more secure along with a finer granularity of 

parallelism in CHF. 

Another way of improving the performance was through 

the use of GPUs (Graphic Processing Unit). In 2009, an 

implementation of MD5-RC4 encryption was given using 

NVIDIA GPU cards in [57, 58]. A performance gain of 

about 3-5x was achieved on GeForce 9800GTX card. In  

[58], Hu implemented a parallel MD5 on CUDA-enabled 

GPU using task stream or task block. 

Liu et al. [59] have proposed a parallel digital signature 

method using parallelizing SHA based on content chunk for 
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improving de-duplication storage system performance and it 

used storage pipelining. The granularity of parallelism 

proposed by both Hu and Liu is coarse even though both had 

avoided to exploit parallelism of CHF among intra-stream or 

intra-task while inter-message work is performed in serial. 

In 2009 Du[60] proposed a block cipher based on fine 

granularity of parallelism for CHFs. They provide 

theoretical analysis and computer simulation to prove the 

security and performance of the proposed algorithm. The 

author has claimed it to be good choice for e-commerce 

applications but the reduction method used in the paper 

cannot ensure the security for CHF when the number of 

message blocks varies. 

Hashem Mohammed et al. [61] have proposed a parallel 

algorithm for improving the security performance in SSL 

bulk data transfer applications. They have proposed a 

framework in which encryption of the information and 

calculation of its MAC is done in parallel. The algorithm 

was simulated on two different processors with one 

processor performing the MAC calculation and the other one 

encrypting the data, simultaneously. 

In paper [62], Yantao Li et al. proposed and analyzed 

chaotic maps (chaotic asymmetric tent map, chaotic 

piecewise linear map) based parallel hash algorithm 

framework with changeable parameters. The key features of 

proposed algorithm were the parallel processing mode and 

the message expansion. First, the algorithm converts the 

expanded message blocks into their respective ASCII codes 

and then, in order to generate intermediate hash values, 

iterates the chaotic asymmetric tent map. Once this is done 

then the chaotic piecewise linear map, uninterruptedly, with 

the dynamically obtained changeable parameters from the 

position index of the respective message blocks, generates 

decimal fractions, rounds the decimal fractions to integers, 

and cascades the integers. The XOR operation is performed 

to produce the final hash value of length 128-bit. The 

authors have claimed good statistical properties, collision 

resistance, and security against meet-in-the-middle attacks 

through theoretical analysis as well as computer simulations 

of the algorithm. 

The MD6 Message-Digest Algorithm was one of the 

contestants of the SHA-3 competition and was designed by 

Rivest et al. [63]. The algorithm uses a Merkle tree-like 

structure to enable parallel processing while computing   

hashes for very long inputs. The authors have claimed a 

performance of 28 cycles/byte on an Intel Core 2 Duo for 

MD6-256 and verifiable resistance against differential 

cryptanalysis at the time of its submission. But later, it was 

found that the claims made regarding MD6’s resistance to 

differential attacks were for the submitted version and not 

for a faster reduced-round version. So, Rivest posted a 

comment at NIST on July 1, 2009, that MD6 is not ready to 

be a candidate for SHA-3 due to the lack of the proofs on 

attack resistance. Then in September 2011, a paper[64] was 

posted on MD6 website supporting MD6 with faster 

reduced-round versions which are resistant to differential 

attacks. Unfortunately, MD6 was out of the competition by 

that time. 

In IACR Cryptology, Atighehchi et al. [36] had proposed 

a parallel hash algorithm based on Skein hashing which was 

one of the candidates of SHA-3 competition organized by 

NIST. Their preliminary work presents the parallel 

implementation and associated performance evaluation of 

available Skein algorithm. To parallelize Skein, they had 

used the tree hash mode with one virtual thread for each 

node of the tree. This provides a generic method for the fine 

grain maximal parallelism approach.      

Blake [32], one of the SHA-3 finalists, was based on Dan 

Bernstein's ChaCha stream cipher. In the algorithm, before 

each ChaCha round, an input block is XORed after 

permutation with some of the round constants and added. 

There were two variants of this algorithm, a 32-bit BLAKE-

256 and a BLAKE-224 with output hash sizes of 256 and 

224 bits and a 64-bit BLAKE-512 and BLAKE-384 with 

output hash sizes of 512 and 384 bits, respectively. Some 

collision attacks were also presented in [65] on the BLOKE 

and BRAKE versions of the BLAKE algorithm.  

Then later, BLAKE2[66] was presented as an improved 

version of the BLAKE algorithm. The authors claim to have 

highest security like the SHA-3 and performance similar to 

MD5 on 64-bit systems using at least 33% less RAM than 

SHA-2 or SHA-3. The algorithm is based on the same 

concept as that of the ChaCha stream cipher. There are also 

two variants of the BLAKE2 algorithm: BLAKE2b 

(BLAKE2) for 64-bit platforms producing hash of any size 

ranging 1 to 64 bytes and BLAKE2s for 8 to 32 bit 

platforms producing hash of any size ranging 1 to 32 bytes. 

Algorithms give increased performance on parallel systems 

with capability of keyed hashing, hashing with a salt, 

updatable or incremental tree-hashing, or any combination 

these. According to [66], BLAKE2 provides up to 890 

MiB/s on a single Intel Xeon E3-1225, Sandy Bridge 

@3.1GHz core, and up to 559 MiB/s on a single AMD FX-

8120 Bulldozer, running at 3.1GHz. 

Grøstl [33] was another SHA-3 competition finalist. It is 

an iterated hash function with its compression function 

constructed from two fixed large distinct permutations. The 

components of the algorithm are based on block cipher AES 

algorithm, as the S-box and the diffusion layers construction 

are similar to that of AES algorithm leading to the desirable 

strong confusion and diffusion in the algorithm. The effect 

of well-known generic attacks has been made difficult by its 

wide pipe construction in which the size of output is 

significantly smaller than the size of internal state. The 

publication claims to have good performance of Grøstl on 

various platforms with counter-measures against the side- 

channel attacks. Keccak[35] is another parallel hashing 

algorithm accepted as new SHA-3 algorithm (discussed in 

section IV C). 

In the 4th IEEE International Advance Computing 

Conference (IACC) 2014, N. Kishore and B.Kapoor [67] 

proposed a new way of parallelizing the CHFs. The 

algorithm implements recursive hash construction on 

multiple-core processor systems. The approach is to break 

the chain dependencies of the Merkle Damg˚ard 

construction leading to a faster and secure CHF. They have 

also discussed collision probability and the performance 

implications of the algorithm. It was implemented using the 

OpenMP API and run on AMD FX-8120 Bulldozer at 

3.1GHz on an 8-core machine and showing a performance 
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TABLE V  

COMPARISON OF PARALLEL HASHING ALGORITHMS 

CPU architecture Frequency Algorithm Technique Cycles/byte MiB/s 

AMD FX(tm)-8320 3.5 GHz SHA-1    Merkle Damg˚ard Construction 39.24 75 

AMD FX(tm)-8320 3.5 GHz SHA-256   Merkle Damg˚ard Construction 26.87 110 

  AMD Barcelona   2.2 GHz MD6   Tree based  Hashing 4.9 427 

  AMD Barcelona with 

  8800GT GPU Card 
  2.2 GHz MD6   Tree based  Hashing 5.5 375 

  Intel Core 2 Duo   3.1 GHz Skein- 512   Tree based  Hashing 6.5 454 

  AMD Opteron 6168   1.9 GHz Grøstl-224/256   Permutation Based 20.7 101.35 

  Intel Core 2 Duo   2.4GHz Blake   HAIFA Construction 28.3 80.87 

  AMD FX(tm)-8320   3.5 GHz RSHA-1   EITRH Construction 6.35 465 

 

gain of up to 3X. They have also proposed its 

implementation on the mobile devices as parallel 

implementation can take advantage of dynamic voltage and 

frequency scaling techniques to make it more energy 

efficient.  

Table V shows a comparison of some of the recently 

developed parallel CHFs using the cycles/byte and the 

MiB/s metrics. The CPU architecture, core frequency, 

construction method, and the algorithm parallelized have 

been listed as well in the table.  

VI. CONCLUSION AND SUMMARY 

Cryptographic hash functions have gathered an 

unprecedented interest among researchers in recent years. 

With the advances in hardware and software, the attacks 

have also become more efficient and common. In this paper, 

we have surveyed the literature related to the advances in the 

CHFs for the readers. We have discussed the role of CHFs 

in security along with the basic security necessities for a 

function to become a secure CHF. In the second part of the 

paper, we have focused on the SHA family covering SHA-0, 

SHA-1, SHA-2, and SHA-3 advances along with the 

documented attacks on these algorithms. It is further 

supported by a tabular comparison of all the variants of SHA 

considering key parameters. 

The third part of the paper covers the parallelization of 

CHFs both at hardware and software level. It also covers the 

parallelization of existing and recently developed parallel 

CHFs. The SHA-3 implementation and the related 

competition for secure CHFs has drawn everybody’s 

attention towards the parallelization research for the CHFs.  
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