

Abstract—In the software quality assurance process, it is

crucial to prevent defective software to be delivered to

customers since it can save the maintenance cost and increase

software quality and reliability. Software defect prediction is

recognized as an important process to automatically detect the

possibility of having an error in the software. After defects are

detected, it is then needed to identify their severity levels to

avoid any effects that may obstruct the whole system. There

were many trials attempts to capture errors by employing

traditional supervised learning techniques. However, all of

them are often faced with an imbalanced issue and scarcity of

data, which causes decreased prediction performance. In this

paper, we present a Two-Stage Model to detect and rank

defects in software. The model focuses on two tasks. First, we

will capture defects by applying an unbiased SVM called “R-

SVM,” which reduces a bias of the majority class by using the

concept of threshold adjustment. Second, the detected modules

will be ranked according to their severity levels by using our

algorithm called “OS-YATSI,” that combines semi-supervised

learning and oversampling strategy to tackle the imbalanced

issue. The experiment was conducted on 15 Java programs. The

result showed that the proposed model outperformed all of the

traditional approaches. In the defect prediction model, R-SVM

significantly outperformed others on 6 programs in terms of F1.

In the defect ranking model, OS-YATSI significantly

outperformed all baseline classifiers on all programs at an

average of 23.75% improvement in term of macro F1.

Index Terms—software defect prediction, defect severity

categorization, imbalanced issue, threshold adjustment, semi-

supervised learning

I. INTRODUCTION

OFTWARE defect is an anomaly in the software. It is also

referred to as a bug, fault, or error. It can be found in the

source code. It may be a cause of failures to the software that

cannot work properly, or does not meet the requirements

specifications. As mentioned above, it is obvious that the

creation of software products without any defects or bugs is

difficult since human is a developer, which can cause the

errors.

Software development organizations realize an

importance of software production and quality assurance

process to achieve the quality software that can respond to

customer needs and actually works. However, to acquired

quality software that is required a defect prediction, which is

a key process in the field of software engineering. It is an

attempt to automatically detect errors in the software, which

can help developers to fix the bugs and prevent any serious

damages to the whole system. Therefore, it is very important

to detect all of the defects as early as possible before

publishing the software.

Many researchers have been aware of the software defect

issue and proposed several defect prediction frameworks by

applying traditional supervised learning techniques [1-4],

feature selection [5], and sampling strategies [6].

Unfortunately, all of these works showed relatively low

prediction performance due to the class imbalanced issue,

which is an important factor that tremendously drop

prediction performance.
Class imbalanced issue is a major problem in the field of

data mining since the technology application is diverse and

still growing. Thus, the size of data also increases and it

becomes difficult to classify. Imbalanced issue occurs where

one of the two classes having more example (majority class)

than other classes (minority class). The most of algorithm

focuses on classification of majority class, while ignores

minority class. Therefore, these classifiers always give better

results with the majority class and poor results with minority

class. For example, assume the percentage of defected

modules is only 10%, while the remaining modules (90%)

are non-defected. Although the detection system incorrectly

classifies all modules as non-defected ones, the accuracy is

still 90%!

Apart from detecting software defects, it is also important

to rank them by their severity. Defect severity is a degree of

impact that a defect has on the development or operation of

a software system. Different defects have different impacts

on the software. Some of them may only slow down the

process, whiles others may be a cause of failures to the

whole system. Therefore, it is important to categorize each

defect by their severity levels, which can help developers to

prioritize the defects and prevent any serious damages to the

whole system.
There were many attempts to automatically classify defect

severity. Almost of them required bug report from the user

as an input. SEVERIS [7] is a software severity assessment

system that utilize a textual description from reported issues.

[8-10] applied traditional data mining techniques to predict a

severity level from user feedbacks. [11, 12] employed a text

mining algorithm along with a feature selection mechanism

to select important keywords from bug reports. However,

these works relied on the bug description, which means that

Two Stage Model to Detect and Rank Software

Defects on Imbalanced and Scarcity Data Sets

Teerawit Choeikiwong and Peerapon Vateekul

S

Manuscript received July 22, 2016.

Teerawit Choeikiwong is a graduate student with the Department of

Computer Engineering, Faculty of Engineering, Chulalongkorn University,

Bangkok, 10330, Thailand (e-mail: Teerawit.Ch@student.chula.ac.th).

Peerapon Vateekul, Ph.D. is a lecturer with the Department of Computer

Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok,

10330, Thailand (e-mail: Peerapon.V@chula.ac.th).

IAENG International Journal of Computer Science, 43:3, IJCS_43_3_10

(Advance online publication: 27 August 2016)

__

serious damages may already occur. Thus, it should be more

efficient to early capture all defects along with their severity

levels directly from a software metrics during the software

production stage.

At the production stage, the number of defected modules

is very small when comparing to the non-defected ones.

Moreover, only a small number of defected modules are

described along with their severity levels, while most of

them do not have it. For example, the Eclipse PDE UI

project [13] has 209 defective modules composing of 59

defects (28.23%) and 150 defects (71.77%) of known and

unknown severity levels, respectively. Thus, it is not good

idea to use a supervised learning algorithm that only relies

on labeled data without considering imbalance and scarcity

of the data. Furthermore, 46 defects (77.97%) of defects

with severity levels are defined as “moderate effects (Level

2)” out of 3 levels. This situation is referred as “imbalanced

problem” which is known to tremendously drop prediction

performance.

In this paper, we aim to propose a model to detect bugs in

software by applying an unbiased support vector machine

called “R-SVM,” our previous work [14, 15] which reduces

a bias from majority class by using threshold adjustment. In

addition, we also propose a model to rank the defect

modules according to their severity levels by using our

algorithm called “OS-YATSI,” [16] that combines YATSI

[17], a self-training semi-supervised learning algorithm, and

SMOTE [18], an oversampling technique. It enhances a

prediction performance by utilizing unlabeled data, while

amending imbalanced issue all together. The experiment was

conducted on 15 Java programs [13, 19] and, then, the result

was compared to the original YATSI and several supervised

learning techniques: Decision Tree (DT), Naïve Bayes (NB),

k-NN and SVM.

The rest of paper is organized as follows. Section II

presents an overview of the related work. Section III

provides the background knowledge that use in this paper.

The detail of the proposed method are presented in Section

IV. Section V shows the data sets and the experimental

results. Finally, this paper is concluded in Section VI.

II. RELATED WORKS

A. Related Works in Defect Prediction

In the field of software defect prediction, there were many

trials that apply several machine learning techniques. [5]

applied Naïve Bayes for constructing a model to predict

software defects. There was an investigation on the feature

selection strategy using information gain. The result showed

that their system achieved 71 % of the mean probability

detection (PD) and 25 % of the mean false alarm rate (PF).

[1] introduced a novel algorithm called “GA-CSSVM,” that

built around SVM and used Genetic Algorithm (GA) to

improve the cost sensitive in SVM. The experimental result

showed that it reached a promising performance in terms of

AUC. [2] proposed an algorithm called “Roughly Balanced

Bagging (RBBag)” to predict fault in high assurance

software. It employed the bagging concepts into two choices

of classifiers: Naïve Bayes and C4.5. The result showed that

RBBag model outperformed the classical models without the

bagging concept. Moreover, RBBag is more effective when

it was applied to Naïve Bayes than C4.5. However, all of

these studies discard the imbalanced issue, so their

prediction accuracy was limited.

[6] was aware of the imbalanced issue in the software

defect prediction. There was an investigation on various

approaches to handle the imbalanced issue including

threshold moving, ensemble algorithms, and sampling

techniques. The result showed that AdaBoost.NC is the

winner, and it also outperformed other traditional

approaches: NB and Random Forest (RF). Furthermore, a

dynamic version of AdaBoost.NC was proposed and proved

that it was better than the original one.

Recently, support vector machine (SVM) has been

applied in the area of software defect prediction. It is one of

the most popular classification techniques and demonstrates

a good prediction performance. [3] employed SVM to detect

bugs in the MDP data set. The analysis from the SVM

results revealed that if a module has a large average of the

decision values (SVM scores), there is high chance to found

defects in it. [4] compared SVM to eight conventional

classifiers, such as Neural Networks, Naïve Bayes, etc., on

the MDP data set. The experiment demonstrated that SVM

is the winner method. Thus, this is our motivation to apply a

method built around SVM called “R-SVM” to detect the

software errors.

B. Related Works in Defect Severity Categorization

There are many trials that applying text mining and

machine learning techniques in the area of software defect

severity prediction. In 2008, [7] proposed a method named

SEVERIS (SEVERITY Issue assessment) based on a rule

learning algorithm which also utilize the textual descriptions

from issue reports. It was experimented on five nameless

PITS projects consisting of 775 issue reports with about

79,000 words. By considering the top 100 terms, result

showed that the method proposed is a good predictor for

issue severity levels. The F-measure values is in the range of

65% - 98% for cases with more than 30 issue reports only.

In 2010, [8] applied Naïve Bayes algorithm to predict

severity levels based on textual description of bug reports in

binary classes. There was an investigation on the three open-

source projects from Bugzilla. The result showed that it

obtained a promising performance with precision and recall

vary between 0.65-0.75 (Mozilla and Eclipse) and 0.70-0.85

(GNOME). Furthermore, this study has been extended to

compare with four traditional classifier such as Naïve Bayes

(NB), Naïve Bayes Multinomial (NBM), K-Nearest

Neighbor (K-NN) and Support Vector Machines (SVM) [9].

The experiment revealed that Multinomial Naïve Bayes does

not only show the highest accuracy, but it is also faster and

requires a smaller training set than other classifiers.

In 2012, [11] was aware of the problem of how to find the

potential indicators to improve the performance of severity

prediction task. There was an investigation on three

selection schemes namely Information Gain (IG), Chi-

Square (CHI), and Correlation Coefficient (CC) based on the

Naïve Bayes classifier. The experiment was conducted on

four open-source components from Eclipse and Mozilla. The

experimental results showed that the advantage of feature

IAENG International Journal of Computer Science, 43:3, IJCS_43_3_10

(Advance online publication: 27 August 2016)

__

selection can extract potential indicators and improve the

performance of severity prediction. In 2014, [12] introduced

an application of bi-grams and feature selection strategy for

bug severity classification based on NB classifier. The result

demonstrated that bi-grams and Chi-Square feature selection

can help to enhance an accuracy of the severity

categorization task.

As mentioned above, none of previous studies have ever

applied semi-supervised learning approaches to improve a

prediction performance by utilizing unlabeled data.

Moreover, all of them ignored an imbalanced issue resulting

in a prohibited accuracy.

III. BACKGROUND KNOWLEDGE

A. Software Metrics

Measurement is considered as a key element in the

software development process. It can helps to estimate the

cost, effort, and timing of software development. In addition,

It can help developers to know that software development is

on target and schedule or not. For building a software, we

use numerous software metrics to evaluate quality of

software and also define the attribute of software. These

software metrics reflect the benefits and one of the main

benefits is to provide it provides information for software

defect prediction.

Currently, there are many software metrics used for defect

prediction in software. In this study, our intention is to point

out that size and structure of software are reflect the defect

prone in the software. We have studied and collected metrics

from many researches [20-24] and use the software size and

structure metrics by extracting from the source code with

CKJM tool [25]. The details of software metrics used in the

experiments as shown in Table 1.

B. Semi-Supervised Learning

Semi-supervised learning (SSL) is a class of machine

learning that combines between supervised learning and

unsupervised learning. Semi-supervised learning algorithm

use both labeled data and unlabeled data for training. This

algorithm can improve prediction accuracy by utilizing

unlabeled data. In the literature survey [26], traditional semi-

supervised learning algorithms are divided into four groups:

Self-training

Self-training is a method commonly used for semi-

supervised learning. In this method, a classifier uses a small

amount of labeled data for training and generate the

prediction model. This model is used to label the unlabeled

data. Typically the most confident unlabeled data from the

new labeled one are added to the training set. The classifier

is retrained and procedure repeated until convergence. This

process is also called self-teaching or bootstrapping.

Co-Training

Co-training is a semi-supervised learning algorithm that

needs two views of the data. Features are split into two sets

and each classifier is trained with one of these sets. Each

classifier predicts the labels of unlabeled data and teaches

the other classifier with the most confident unlabeled data.

After this step, classifiers are retrained and the procedure

repeated.

Transductive Support Vector Machines (TSVMs)

Transductive Support Vector Machines (TSVMs) is an

extension of traditional support vector machines with

unlabeled data. In this method, the unlabeled data is also

used. The aim is to label unlabeled data, so that maximum

margin is reached on both labeled data and unlabeled data.

Graph-based methods

Graph-based methods define a graph where the nodes are

the labeled and unlabeled data in the data set, and the edges

represented as the similarity of examples. These methods are

non-parametric, discriminative, and also transductive in

nature.

As mentioned above, the success of semi-supervised

learning depends on underlying assumptions in each model.

In this paper, we use the self-training approach which is the

most popular semi-supervised learning technique, since it is

simple and can be easily applied to almost all existing

classifiers.

C. Strategies to Handle Imbalanced Data Sets

To tackle imbalanced issue, a sampling technique has

received the most attention and is reported to be the best

strategy. These techniques are mainly dividing into two

approaches as follows.

Undersampling (US)

Undersampling approach tries to balance between two

classes by removing examples in the majority class until the

desired class ratio has been achieved. Unfortunately, it is not

suitable for small training data and it cannot guarantee to

keep all important examples.

Oversampling (OS)

Oversampling approach is an opposite of the

undersampling strategy. It helps to improve a balance

between classes by replicating examples in the minority

class; thus, it is suitable when there is a scarcity issue in the

training data. However, a duplication of minority data can

cause an overfitting issue, so it is common to generate new

TABLE I

CLASS LEVEL SOFTWARE METRICS.

Metrics Reference

WMC Weight Method per Class

C&K [20]

NOC Number of Children

CBO Coupling Between Object classes

RFC Response for a class

LCOM Lack of Cohesion in Methods

Ca Afferent couplings
Martin [21]

Ce Efferent couplings

NPM Number of Public Methods

QMOOD [22]
DAM Data Access Metric

MOA Measure of Aggregation

MFA Measure of Functional Abstraction

CAM Cohesion Among Methods of Class

CBM Coupling Between Methods Tang [23]

IAENG International Journal of Computer Science, 43:3, IJCS_43_3_10

(Advance online publication: 27 August 2016)

__

minority examples instead. SMOTE (Synthetic Minority

Over-sampling TEchnique) is chosen to use in this work and

its details will be shown in Section IV.

D. Prediction Performance Metrics

In the domain of binary classification problem (defect and

non-defect), it is necessary to construct a confusion matrix,

which comprises of four based quantities: True Positive

(TP), False Positive (FP), True Negative (TN), and False

Negative (FN) as shown in Table II.

 These four values are used to compute Precision (Pr),

Probability of Detection (PD), Probability of False Alarm

(PF), True Negative Rate (TNR), F-measure [20], and G-

mean [27] as shown in Table III.

As mentioned earlier, there are two ways to combine those

common measures [28]: macro-averaging and micro-

averaging as shown in Table IV. Macro-averaging gives an

equal weight to each class, whereas micro-averaging gives

an equal weights to each class based on a number of

examples. In an imbalanced situation, it is appropriate to use

macro-averaging over micro-averaging in order to avoid a

dominance of majority classes.

IV. A PROPOSED METHOD

In this section, we demonstrate the details of our proposed

which is Two Stage Model. Fig. 1 shows an overview of our

model consisting of two stages: (i) Defect Prediction and (ii)

Defect Ranking

 In the first stage, the R-SVM model is constructed based

on the code features of the data. Then, the model predicts the

class with a defect. In the second stage, we used the

prediction result with only defective classes as an input to

construct a ranking model. It builds around OS-YATSI to

prioritize the defects according to their severity levels.

A. Support Vector Machines

Support Vector Machine (SVM) [29] is a standout among

the most well-known classification techniques which was

introduced by Vapnik. It was shown to be more precise than

other classification techniques, especially in the domain of

text categorization. It builds a classification model by

finding an optimal separating hyperplane as shown in Fig. 2

that maximizes the margin between the two classes. The

training samples that lie at the margin of the class

distributions in feature space called support vectors.

+

+

+
+

Positive class (y = +1)

Negative class (y = -1)

+

+

+ +

+

+ +

hyperplane

hyperplane

Maximum

Margin

Support Vectors

Optimal

Hyperplane

Fig. 2. Optimal separating hyperplane of SVM.

Data sets Defect Prediction
Result

Defective Class

First Stage: Defect Prediction

Second Stage: Defect Ranking

Defective
Class

Do not use

Non-Defective Class

Defect Ranking
Result

OS-YATSI

R-SVM

Fig. 1. Overview of our Two Stage Model.

TABLE IV

MACRO-AVERAGING AND MICRO-AVERAGING OF PRECISION, RECALL, AND

FΒ, I IS A CLASS INDEX.

Metrics Macro-averaging Micro-averaging

Precision
1

1
i

L

i
MaPr Pr

L
 1

1
()

L

ii

L

i ii

tp
MiPr

tp fp

Recall
1

1
i

L

i
MaRe Re

L
 1

1
()

L

ii

L

i ii

tp
MiRe

tp fn

Fβ-

measure
,1

1
i

L

i
MaF F

L

2

2

(1) MiPr MiRe
MiF

MiPr MiRe

TABLE III

PREDICTION PERFORMANCE METRICS.

Metrics Definition Formula

Precision

a proportion of examples predicted

as defective against all of the

predicted defective
FNTP

TP

Probability of

Detection (PD),

Recall, TPR

a proportion of examples correctly

predicted as defective against all of

the actually defective
FNTP

TP

Probability of

False Alarm

(PF), FPR

a proportion of examples correctly

predicted as non-defective against

all of the actually non-defective
FPTN

FP

True Negative

Rate (TNR)

a proportion of examples correctly

predicted as non-defective against

all of the actually non-defective
FPTN

TN

G-mean
the square root of the product of

TPR (PD) and TNR
 TNRTPR

Fβ -measure
a weighted harmonic mean of

precision and recall RePr

(Pr)(Re)2

TABLE II

A CONFUSION METRIX.

 Predicted Positive Predicted Negative

Actual Positive TP FN

Actual Negative FP TN

IAENG International Journal of Computer Science, 43:3, IJCS_43_3_10

(Advance online publication: 27 August 2016)

__

http://dict.longdo.com/search/appropriate

The purpose of SVM is to induce a hyperplane function

(Equation 1), where w

 is a weight vector referring to

“orientation” and b is a bias.

 bxwbwh

, (1)

Equation (2) shows the optimization function to construct

SVM hyperplane, where C is a penalty parameter of error

due to misclassifications.

n

i i

T

bw

CwwMinimize 1
,, 2

1

 0,1
iii

T

i
bxwytosubject (2)

In a non-linear separable problem, SVM handles this by

using a kernel function (non-linear) to map the data into a

higher space, where a linear hyperplane cannot be used to do

the separation. A kernel function is shown in (3).

 jiji xxxxK , (3)

Unfortunately, although SVM has shown an impressive

result, it still suffers from the imbalanced issue like other

conventional classification techniques.

B. Threshold Adjustment (R-SVM)

Although SVM has shown a good classification

performance in many real-world data sets, it often gives low

prediction accuracy in an imbalanced scenario. R-SVM [14]

is an our earlier attempt that focuses to tackle this issue by

applying the threshold adjustment strategy. To minimize a

bias of the majority class, it translates a separation

hyperplane in (1) without changing the orientation w

 by

only adjusting b. After the SVM hyperplane has been

induced from the set of training data mapped to SVM scores,

L. The task is to find a new threshold, , that selected from

the set of candidates thresholds, , which gives the highest

value of a user-defined criterion, perf (e.g., the
1

F metric):

 ,max Lperf (4)

To avoid overfitting issue, the output is an average of

the thresholds obtained from different training subsets.

Finally, the SVM function is corrected as below:

ii

xhxh* (5)

Fig. 3 shows how “shifting” the hyperplane’s bias

downward in the bottom graph corrects the way SVM labels

the three positive examples misclassified by the original

hyperplane in the bottom graph (note that the hyperplane’s

orientation is unchanged).

C. OS-YATSI

In this section, we demonstrate the details of our proposed

defect severity classification called “OS-YATSI”. The

process of our method consisting of three main modules: (i)

Oversampling, (ii) Semi-supervised Learning, and (iii)

Unlabeled Selection Criteria as shown in Fig. 4.

1) Oversampling (OS)

This module aims to alleviate a bias from the majority

severity level. SMOTE, an oversampling strategy, is chosen

since the scarcity of defects. It generates synthetic examples

from the minority class following the equation below:

))(ˆ(rxxxx
iinew
 (6)

First, i-th minority example (xi) is randomly selected

along with its nearest neighbor in the minority class (
i

x̂).

Second, a new synthetic example (xnew) is calculated from

the equation (6), where r is a random number between 0-1.

Finally, this process repeats until all minority examples

are processed and generated their synthetic examples.

Fig. 4. A process diagram of the proposed method.

+

+ +

+

Positive class (y = +1)

Negative class (y = -1)

+ +
+

x1

x2

(a) SVM hyperplanes before threshold adjustment.

+

+ +

+

h*=h-θ

Positive class (y = +1)

Negative class (y = -1)

+ +
+

x1

x2

(b) SVM hyperplanes after threshold adjustment.

Fig. 3. SVM hyperplanes before (a) and after (b) threshold adjustment.

The classification of three examples is thus corrected [14].

IAENG International Journal of Computer Science, 43:3, IJCS_43_3_10

(Advance online publication: 27 August 2016)

__

2) Semi-Supervised Learning

In the bug repositories, some defects have severity levels

reported (labeled data), while most of them do not have it

(unlabeled data). This process focuses on utilizing unlabeled

defects by employing a semi-supervised learning classifier

called “Yet Another Two Stage Idea (YATSI),” which

consists of two stages as shown in Fig. 5.

In the first stage, an initial classifier is constructed only

from the oversampling labeled data from Module 1

(Oversampling). Then, it is used to predict a severity level

for each unlabeled data. The output unlabeled data with

predicted severity are called “pre-labeled data.”

In the second stage, the nearest neighbor algorithm is

applied on a merged data set between the labeled and pre-

labeled data to determine a predicted severity level of the

unlabeled data. A weighting strategy is referred to as the

amount of trust. It is applied to a distance during the process

of finding a neighbor. As a default value, the weight of the

labeled data is set to 1, while the weight of the unlabeled

data is equal to F × (N/M), where N and M denote the

number of labeled and unlabeled data, consecutively, and F

denotes a user-defined parameter between 0 and 1 showing a

trust on the unlabeled data.

For the last stage, all unlabeled data are assigned to their

actual severity level. The k-nearest neighbor is employed. It

predicts the level that gives the largest total weighting score.

3) Unlabeled Selection Criteria (USC)

After Module 2 (SSL), all unlabeled defects are already

annotated and have their severity level, so an enhanced

training data can be created by combining between the

labeled and unlabeled data.

For the labeled data, we choose the oversampling data

from Module 1 (Oversampling) to avoid the imbalanced

issue. For the unlabeled data, the traditional semi-supervised

classifier usually uses all of them without concerning the

imbalanced issue. However, the preliminary experiment

showed that there is still an imbalanced issue in the

unlabeled data.

Therefore, this module called “USC” is proposed as a

criteria to select examples in the unlabeled data set to

include in the training data set while maintaining the balance

of data for each severity level as summarized below:

1. Find the class with the smallest amount of example

(also called minority class) and add all examples in
that class to the training data.

2. Select examples for each severity level equally to
those in the minority class by their prediction score
from module 2 (Semi-supervised Learning)

From Fig. 6, we illustrate examples of using the USC.

First, we founded that the low severity level with 5 examples

are minority class. Then, we add all examples of these

classes to the training data. Finally, we select examples for

each remaining classes (medium and high) equally to those

minority class by their confidence value and add all

examples of them to the training data.

Fig. 6. A process of the Unlabeled Selection Criteria.

Fig. 5. A procedures of YATSI algorithm.

IAENG International Journal of Computer Science, 43:3, IJCS_43_3_10

(Advance online publication: 27 August 2016)

__

The pseudo code for OS-YATSI is shown below.

V. EXPERIMENTS AND RESULTS

A. Data Sets

We use the public benchmark presented in [13, 19], which

contains a metrics that describe software artifacts from 15

open-source java projects. The data set statistics is shown in

Table V. From the statistics, it has shown that the public

benchmark suffers from the imbalanced issue and scarcity of

the data. An average percentage of the severity class is

28.51%, and the lowest percentage is only 10.19% in

Synapse.

In addition, we select the three java projects to use in the

ranking model. There are enough training examples to

predict the defect severity, which comprises of three severity

levels: Low, Medium, and High. The severity statistics is

shown in Table VI.

B. Experimental Setup

In this section, show how to conduct the experiments in

this paper. We divided the experiments into two parts: (i)

software defect prediction and (ii) software defect severity

ranking. It starts from the data preprocessing including

numeric-to-nominal conversion and scaling [30] all values

into a range of [0, 1]. Then, we compare the prediction

performance among different approaches, which can

explained the details of each experiment as the following

steps. Note that all experiments are based on 10-fold cross

validation.

1) Software Defect Prediction

 Step1: find the baseline method which is the

winner of the traditional classifiers: Decision Tree

(DT), Naïve Bayes (NB), k-NN and SVM

 Step2: compare R-SVM to the baseline method

(Step1) along with a significance test using

unpaired t-test at a confidence level of 95%

2) Software Defect Severity Ranking
 Step1: find the best setting of the winner method

from the first experiment (software defect

prediction) whether or not the oversampling is

necessary to construct an initial model.

 Step2: find the best setting for OS-YATSI whether

or not USC is necessary. Then, compare OS-

YATSI to the baselines (Step1) and Original

YATSI along with a significance test using

unpaired t-test at a confidence level of 95%

Algorithm Pseudo code for OS-YATSI algorithm

Input: A set of label L= {l1, l2, l3}, classifier C, labeled data Dl ,
unlabeled data Du, oversampling ratio Ros,
oversampling labeled data Dosl , number of nearest
neighbors K, N = |Dosl|, M = |Du| , unlabeled data
example du

Step1: Find the majority class lM with |DM| examples in the
labeled data Dl
Create a set of minority classes Lm that excludes the
majority class lM
While(Lm is not empty)
 Find the class lM in Lm with the least number of
examples, |Dm|
 Compute the number of examples |D’m| if
oversampling using SMOTE with Ros
 If (Diff(|D’m| , |DM|) < Diff(|Dm| , |DM|)) Then

 Oversampling the class using SMOTE with Ros
 Add the new oversampled example into Dosl
 Else
 Remove class lM from a set of classes Lm

Step2: Use the classifier C to construct the initial model M1 by
using Dosl
Use the M1 to “pre-label” all the examples of Du
For(i=1 to N)
 Weight = 1.0
For(j=1 to M)
 Weight = (N/M) * WeightFactor F
Combine Dosl and Du to generate D
For every example in Du

Find the K-nearest neighbors to the example from
D to produce set DkNN

For i=1 to K
 If(class of DkNN = 1) sum weight1 of DkNN
 If(class of DkNN = 2) sum weight2 of DkNN
 If(class of DkNN = 3) sum weight 3of DkNN

Predict the actual class with the largest total
weighting score

Step3: For unlabeled data Du
Find the class with smallest amount of example and

produce set Csmall
For another class

Select examples equally to Csmall with their
prediction score and produce set Cbalance

Merge Csmall and Cbalance to produce balance
unlabeled data D’u

TABLE VI

SEVERITY STATISTICS FOR EACH DATA SET.

Data #classes
Severity (Sev.) levels

%Sev.
lv. 1 lv. 2 lv. 3 N/A

Eclipse

JDT Core
206 12 19 10 165 19.90%

Eclipse

PDE UI
209 7 46 6 150 28.23%

Mylyn 245 127 15 3 100 59.18%

Average 220 48.67 26.67 6.33 138.33 35.77%

TABLE V

DEFECT STATISTICS FOR EACH DATA SET.

Data #classes
Defect

Class

Non-Defect

Class
%Defect

Ant 125 20 105 16.00%

Camel 608 216 392 35.53%

Ivy 352 40 312 11.36%

Jedit 272 90 182 33.09%

Log4j 135 34 101 25.19%

Lucene 195 91 104 46.67%

Pbeans 26 20 6 76.92%

Poi 237 141 96 59.49%

Synapse 157 16 141 10.19%

Velocity 229 78 151 34.06%

Xalan 723 110 613 15.21%

Xerces 440 71 369 16.14%

Eclipse JDT Core 997 206 791 20.66%

Eclipse PDE UI 1,497 209 1,288 13.96%

Mylyn 1,862 245 1,617 13.16%

Average 7,855 1,587 6,268 28.51%

IAENG International Journal of Computer Science, 43:3, IJCS_43_3_10

(Advance online publication: 27 August 2016)

__

C. Results and Discussion

In this section, we first compare the performance of the

software defect prediction model and the two existing

software defect severity ranking models. The result will

demonstrate that our method can give the best performance.

In addition, we summarized the data characteristics for

each methods in the experiments to make it more

understandable as shown in Table VII.

1) Results of Software Defect Prediction

The comparison of the baseline methods. In order to get

the baseline for each data set, four classifiers: Decision Tree,

Naïve Bayes, k-NN, and SVM, were tested and compared in

terms of PD, PF, F1, and G-Mean (Tables VIII – XI). For

each row in the tables, the boldface method is a winner on

that data set. From the result, DT and k-NN showed the best

performance in almost all data sets, while others gave the

moderate and low performance on some data set, especially

for the Velocity, NB gave the worst performance for 35.30%

For Table X – XI, it is interesting that F1 and G-mean

unanimously showed the same winners. Since F1 and G-

mean are suitable metrics for imbalanced data, we selected

the winner as a baseline using F1 and G-mean as

summarized in Table XII.

TABLE VII

DATA CHARACTERISTICS OF EACH METHODS IN THE EXPERIMENTS.

Method

Name

Data Characteristics

Training Data Unlabeled Data

Original
Over

sampling

Without

USC
With USC

Baseline

Original (OG)

Oversampling

(OS)

YATSI

OS-YATSI

w/o USC

OS-YATSI

w/ USC

TABLE XI

PREDICTION PERFORMANCE: G-MEAN

Data
Prediction model

DT k-NN NB SVM

Ant 0.814 0.905 0.881 0.893

Camel 0.776 0.783 0.616 0.714

Ivy 0.931 0.914 0.788 0.847

Jedit 0.806 0.832 0.817 0.827

Log4j 0.855 0.857 0.850 0.827

Lucene 0.580 0.783 0.705 0.718

Pbeans 0.785 0.951 0.858 0.867

Poi 0.819 0.851 0.749 0.827

Synapse 0.897 0.900 0.819 0.898

Velocity 0.856 0.873 0.867 0.816

Xalan 0.913 0.907 0.743 0.851

Xerces 0.927 0.882 0.797 0.762

Eclipse JDT Core 0.812 0.892 0.733 0.848

Eclipse PDE UI 0.828 0.806 0.702 0.801

Mylyn 0.730 0.713 0.725 0.720

Avg. 0.822 0.857 0.777 0.814

SD 0.089 0.063 0.075 0.060

TABLE X

PREDICTION PERFORMANCE: F1

Data
Prediction model

DT k-NN NB SVM

Ant 0.790 0.816 0.784 0.799

Camel 0.608 0.642 0.629 0.619

Ivy 0.870 0.846 0.596 0.703

Jedit 0.798 0.814 0.748 0.795

Log4j 0.756 0.807 0.793 0.793

Lucene 0.623 0.742 0.725 0.719

Pbeans 0.583 0.837 0.767 0.827

Poi 0.706 0.704 0.405 0.710

Synapse 0.816 0.826 0.725 0.820

Velocity 0.682 0.720 0.355 0.699

Xalan 0.734 0.726 0.702 0.734

Xerces 0.856 0.771 0.639 0.602

Eclipse JDT Core 0.833 0.851 0.731 0.772

Eclipse PDE UI 0.862 0.813 0.698 0.711

Mylyn 0.742 0.729 0.704 0.730

Avg. 0.751 0.776 0.667 0.736

SD 0.094 0.062 0.129 0.067

TABLE IX

PREDICTION PERFORMANCE: PF

Data
Prediction model

DT k-NN NB SVM

Ant 0.161 0.066 0.181 0.134

Camel 0.321 0.365 0.755 0.646

Ivy 0.154 0.195 0.150 0.138

Jedit 0.210 0.243 0.448 0.232

Log4j 0.228 0.138 0.406 0.286

Lucene 0.301 0.344 0.541 0.313

Pbeans 0.050 0.300 0.000 0.200

Poi 0.270 0.164 0.086 0.363

Synapse 0.114 0.100 0.200 0.157

Velocity 0.238 0.272 0.112 0.318

Xalan 0.152 0.180 0.618 0.277

Xerces 0.100 0.144 0.575 0.348

Eclipse JDT Core 0.169 0.154 0.643 0.402

Eclipse PDE UI 0.143 0.120 0.725 0.492

Mylyn 0.135 0.129 0.676 0.449

Avg. 0.183 0.194 0.408 0.317

SD 0.077 0.091 0.262 0.142

TABLE VIII

PREDICTION PERFORMANCE: PD

Data
Prediction model

DT k-NN NB SVM

Ant 0.857 0.747 0.774 0.765

Camel 0.684 0.646 0.749 0.749

Ivy 0.891 0.878 0.492 0.621

Jedit 0.803 0.853 0.863 0.814

Log4j 0.751 0.773 0.922 0.843

Lucene 0.601 0.786 0.875 0.731

Pbeans 0.900 0.900 0.700 0.850

Poi 0.702 0.680 0.283 0.794

Synapse 0.809 0.780 0.687 0.808

Velocity 0.735 0.740 0.252 0.714

Xalan 0.825 0.829 0.876 0.744

Xerces 0.824 0.718 0.743 0.582

Eclipse JDT Core 0.836 0.855 0.946 0.881

Eclipse PDE UI 0.866 0.768 0.925 0.823

Mylyn 0.866 0.799 0.911 0.832

Avg. 0.797 0.783 0.733 0.770

SD 0.085 0.072 0.224 0.084

IAENG International Journal of Computer Science, 43:3, IJCS_43_3_10

(Advance online publication: 27 August 2016)

__

The comparison of R-SVM and the baseline methods. In

this section, we compare R-SVM to the baseline methods,

which are obtain from the previous experiment as shown in

Tables VIII-XI. In Table XIII shows a comparison in terms

of PD, PF, F1, and G-mean. All of the performance metrics

give the same conclusion that R-SVM outperforms the

baseline methods in almost all of the data sets. From 15 data

sets, R-SVM significantly won 5, 6, and 5 on PD, F1, and G-

mean, respectively.

For more details about the overall performance, Fig. 7

shows the number of data sets that each method is the

winner. R-SVM outperformed the baseline methods on 10

data sets. Furthermore, R-SVM on both F1 and G-mean

outperformed others on 8 data sets and achieved an average

F1 at 0.750. Thus, this demonstrates that it is effective to

apply R-SVM as a core module for early detect imperfect

software system.

5 5

3 3

0

9

4 4

5

0

2

3

5

1

6

5

0

1

2

3

4

5

6

7

8

9

10

PD PF F1 G-mean

T
h

e
n

u
m

b
er

 o
f

p
ro

g
ra

m
s

Prediction performance metrics

Baseline Method Baseline Method (significantly)

R-SVM Method R-SVM Method (significantly)

Fig. 7. The number of wom data sets on R-SVM and the baseline methods in terms of PD, PF, F1 and G-mean.

TABLE XIII

COMPARISON PREDICTION PERFORMANCE MEASURES BETWEEN R-SVM AND THE BASELINE METHOD FROM TABLE XII.

THE BOLDFACE METHOD IS A WINNER ON THAT DATA SET.

Project
 PD PF F1 G-mean

 Baseline R-SVM Baseline R-SVM Baseline R-SVM Baseline R-SVM

Ant 0.857 0.902 0.066** 0.275 0.816 0.832** 0.905 0.886

Camel 0.749 0.905* 0.321 0.471 0.642 0.650 0.783 0.804**

Ivy 0.891 0.831 0.138** 0.313 0.870** 0.796 0.931 0.864

Jedit 0.863 0.840 0.210 0.224 0.814 0.785 0.832 0.878**

Log4j 0.922 0.983* 0.138* 0.297 0.807 0.775 0.857 0.860

Lucene 0.875 0.941 0.301 0.334 0.742 0.692 0.783 0.806*

Pbeans 0.900 1.000 0.000 0.003 0.837 0.893 0.951 0.952

Poi 0.794 0.811 0.086* 0.279 0.710 0.714* 0.827 0.943**

Synapse 0.809 0.875 0.100** 0.211 0.826 0.836** 0.900 0.906

Velocity 0.740 0.784 0.112 0.041* 0.720 0.731** 0.873 0.837

Xalan 0.876 0.843 0.152** 0.385 0.734 0.757** 0.913** 0.845

Xerces 0.824 0.858* 0.100 0.121 0.856** 0.703 0.927* 0.874

Eclipse JDT Core 0.946 0.990** 0.154** 0.372 0.851** 0.744 0.892* 0.840

Eclipse PDE UI 0.925 0.914 0.120** 0.627 0.862** 0.716 0.828* 0.744

Mylyn 0.911 0.954** 0.129** 0.535 0.742 0.767** 0.730 0.805**

Avg. 0.859 0.874 0.174 0.318 0.733 0.750 0.852 0.861

SD 0.063 0.066 0.125 0.161 0.061 0.072 0.069 0.054

* and ** represent a significant difference at a confidence level of 95% and 99%, respectively.

TABLE XII

THE WINNER OF THE BASELINE METHOD FOR EACH DATA SET

IN TERMS OF F1 AND G-MEAN.

Project Winner Method F1 G-mean

Ant k-NN 0.816 0.905

Camel k-NN 0.642 0.783

Ivy DT 0.870 0.931

Jedit k-NN 0.814 0.832

Log4j k-NN 0.807 0.857

Lucene k-NN 0.742 0.783

Pbeans k-NN 0.837 0.951

Poi SVM 0.710 0.827

Synapse k-NN 0.826 0.900

Velocity k-NN 0.720 0.873

Xalan DT 0.734 0.913

Xerces DT 0.856 0.927

Eclipse JDT Core k-NN 0.851 0.892

Eclipse PDE UI DT 0.862 0.828

Mylyn DT 0.742 0.730

Avg. - 0.789 0.862

SD - 0.068 0.064

IAENG International Journal of Computer Science, 43:3, IJCS_43_3_10

(Advance online publication: 27 August 2016)

__

2) Results of Software Defect Severity Ranking

The comparison of the baseline. In order to get the

baseline methods for each data set, four classifiers: DT, NB,

k-NN, and SVM were tested and compared in terms of Pr,

Re, and F1 (Table XIV). For each row in the table, the

boldface method is a winner on that data set. From the result,

R-SVM showed the best performance in terms of macro and

micro-average on JDT Core and PDE UI, while the Mylyn

data has been effective from k-NN method, which are not

significantly better than R-SVM. Hence, we selected the R-

SVM on both macro and micro-average as a baseline

methods in terms of F1 as summarized in Table XV to

construct an initial model.
The comparison of an initial model with and without

oversampling. In this section, we aim to give the best setting

of an initial model by testing whether or not the

oversampling training data can deal with the imbalanced

issue and improve the prediction performance. We use R-

SVM as a predictor to build an initial model. For each row

in the tables, the boldface method is a winner on that data

set. The results in Table XVI demonstrate that the R-SVM

with OS (oversampling) performs better than without OS

(original) all data sets both macro and micro-average. The

results imply that the oversampling strategy is suitable when

there is a scarcity in the training data since it can helps to

improve the prediction performance.

The comparison of OS-YATSI, YATSI and baseline

methods. In this section, we compare OS-YATSI to the R-

SVM with the oversampling training data (OS) which are

obtain from the Table XVI. Furthermore, we also compare

to the original YATSI as well. In addition, we aim to give

the best setting of OS-YATSI by testing whether or not the

Unlabeled Selection Criteria can handle the imbalanced

issue and improve the prediction performance.

In Table XVII shows a comparison in terms of Pr, Re, and

F1 for both macro and micro-average. All of the measures

give the same conclusion that OS-YATSI both with and

without USC outperforms the other method in almost all of

the data sets. Moreover, OS-YATSI with USC is the best

setting since it performs better than without USC all data

sets, which indicate that all the unlabeled data is not always

enhance the performance and it may be reduced as well.
In macro-average, OS-YATSI with USC significantly won

3, 2, and 3 on Pr, Re, and F1, respectively. On average,

macro F1 of OS-YATSI with USC outperforms that of the

OS for 23.75%, especially for the JDT Core data set

showing 50.57% improvement. Furthermore, it also

outperforms the original YATSI for 55.60% on JDT Core

data set. Consequently, this demonstrates that it is effective

to apply OS-YATSI with USC as a main mechanism of

software defect severity categorization.

TABLE XV

THE WINNER OF THE BASELINE METHOD FOR EACH DATA SET

IN TERMS OF F1-MEASURE.

Data Winner
F1

Macro Micro

JDT Core R-SVM 0.336 0.488

PDE UI R-SVM 0.296 0.761

Mylyn R-SVM, k-NN 0.341 0.759

Avg. - 0.324 0.669

SD - 0.025 0.157

TABLE XVI

A COMPARISON OF AN INITIAL MODEL BETWEEN WITH AND WITHOUT

OVERSAMPLING IN TERMS OF F1-MEASURE.

Data

OG

(original)

OS

(oversampling)

Macro Micro Macro Micro

JDT Core 0.459 0.491 0.484 0.513

PDE UI 0.290 0.629 0.430 0.746

Mylyn 0.349 0.800 0.361 0.807

Avg. 0.366 0.640 0.425 0.689

SD 0.086 0.155 0.062 0.155

TABLE XIV

COMPARISON PREDICTION PERFORMANCE MEASURES OF THE CLASSICAL CLASSIFIERS.

THE BOLDFACE METHOD IS A WINNER ON THAT DATA SET.

Precision

Data
 DT k-NN NB SVM R-SVM

 Macro Macro Macro Macro Macro Macro Macro Macro Macro Micro

JDT Core 0.330 0.445 0.302 0.317 0.419 0.419 0.186 0.186 0.377 0.488

PDE UI 0.263 0.630 0.261 0.679 0.255 0.255 0.258 0.258 0.323 0.761

Mylyn 0.291 0.855 0.361 0.758 0.318 0.318 0.292 0.292 0.338 0.759

Avg. 0.295 0.643 0.308 0.585 0.331 0.331 0.245 0.245 0.346 0.669

SD 0.034 0.205 0.050 0.235 0.083 0.083 0.054 0.054 0.028 0.157

Recall

Data
 DT k-NN NB SVM R-SVM

 Macro Macro Macro Macro Macro Macro Macro Macro Macro Micro

JDT Core 0.393 0.445 0.272 0.317 0.356 0.356 0.329 0.329 0.355 0.488

PDE UI 0.318 0.630 0.290 0.679 0.233 0.233 0.326 0.326 0.299 0.761

Mylyn 0.325 0.855 0.347 0.758 0.323 0.323 0.333 0.333 0.348 0.759

Avg. 0.345 0.643 0.303 0.585 0.304 0.304 0.329 0.329 0.334 0.669

SD 0.041 0.205 0.039 0.235 0.064 0.064 0.004 0.004 0.031 0.157

F1-measure

Data
 DT k-NN NB SVM R-SVM

 Macro Macro Macro Macro Macro Macro Macro Macro Macro Micro

JDT Core 0.349 0.445 0.280 0.317 0.350 0.350 0.230 0.230 0.336 0.488

PDE UI 0.275 0.630 0.275 0.679 0.241 0.241 0.288 0.288 0.296 0.761

Mylyn 0.307 0.855 0.351 0.758 0.315 0.315 0.311 0.311 0.341 0.759

Avg. 0.310 0.643 0.302 0.585 0.302 0.302 0.276 0.276 0.324 0.669

SD 0.037 0.205 0.043 0.235 0.056 0.056 0.042 0.042 0.025 0.157

IAENG International Journal of Computer Science, 43:3, IJCS_43_3_10

(Advance online publication: 27 August 2016)

__

VI. CONCLUSION

Software defect prediction is a vital part of software

development. It is crucial to identify the severity levels after

bugs are detected. Unfortunately, the overall performance of

the existing techniques are still not satisfied due to two

major problems. First, the scarcity of defects that have a

small number of labeled data, while the remaining are left

unlabeled. Second, some severity levels have defects much

larger than others causing an imbalanced issue.

In this paper, we presented the two stage models by

incorporating R-SVM, semi-supervised learning, and

oversampling strategy. There are two modules in the system:

(i) defect prediction and (ii) defect severity ranking. First,

the R-SVM classifier, our version of SVM tailored to

domains with imbalanced classes, is created to predict the

defective class in the software system. It reduces a bias of

the majority class by using threshold adjustment concept to

adjust the separation hyperplane. Second, the defected

classes are identified severity levels by using our algorithm

called “OS-YATSI.” It employs semi-supervised learning to

fully utilize both labeled and unlabeled data and

oversampling defects in the minority class to alleviate the

imbalanced issue.

In the experiment, we divided the experiments into two

parts: (i) software defect prediction and (ii) software defect

severity ranking. The experiment was conducted on 15 java

projects. In the software defect prediction, R-SVM was

compared to four conventional classifiers: Decision Tree,

Naïve Bayes, k-NN, and SVM. The result showed that R-

SVM enhanced the correct classification of the minority

class and overcame the imbalanced issue. In the software

defect severity ranking, we compared OS-YATSI to the

same four conventional classifiers in the first experiment and

also compared to original YATSI as well. Experimental

results revealed that OS-YATSI with USC significantly

surpassed all baselines on all data sets in terms of macro F1.

In the future, we plan to study other software defect

repositories. In addition, it is necessary to investigate further

algorithms to deal with the imbalanced and scarcity data.

REFERENCE

[1] S. Bo, L. Haifeng, L. Mengjun, Z. Quan, and T. Chaojing, "Software

defect prediction using dynamic support vector machine," presented

at the In Proceeding of the 9th International Conference on

Computational Intelligence and Security, 2013.

[2] N. Seliya, T. M. Khoshgoftaar, and J. Van Hulse, "Predicting Faults

in High Assurance Software," in High-Assurance Systems

Engineering (HASE), 2010 IEEE 12th International Symposium on,

2010, pp. 26-34.

[3] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson,

"Software defect prediction using static code metrics underestimates

defect-proneness," in Neural Networks (IJCNN), The 2010

International Joint Conference on, 2010, pp. 1-7.

[4] K. O. Elish and M. O. Elish, "Predicting defect-prone software

modules using support vector machines," J. Syst. Softw., vol. 81, pp.

649-660, 2008.

[5] T. Menzies, J. Greenwald, and A. Frank, "Data mining static code

attributes to learn defect predictors," presented at the IEEE

Transactions on Software Engineering, 2007.

[6] W. Shuo and Y. Xin, "Using Class Imbalance Learning for Software

Defect Prediction," Reliability, IEEE Transactions on, vol. 62, pp.

434-443, 2013.

[7] T. Menzies and A. Marcus, "Automated severity assessment of

software defect reports," in Software Maintenance, 2008. ICSM

2008. IEEE International Conference on, 2008, pp. 346-355.

[8] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, "Predicting the

severity of a reported bug," in Mining Software Repositories (MSR),

2010 7th IEEE Working Conference on, 2010, pp. 1-10.

TABLE XVII

COMPARISON PREDICTION PERFORMANCE MEASURES OF OS, OS-YATSI WITH AND WITHOUT USC, AND YATSI.

THE BOLDFACE METHOD IS A WINNER ON THAT DATASET.

Precision

Data

OS YATSI

OS-YATSI

w/o USC

OS-YATSI

w/ USC

 Macro Macro Macro Macro Macro Macro Macro Macro

JDT Core 0.530 0.526 0.510 0.509 0.759 0.777 0.794** 0.791

PDE UI 0.763 0.761 0.759 0.725 0.737 0.813 0.853* 0.853*

Mylyn 0.769 0.764 0.693 0.693 0.776 0.820 0.880** 0.873**

Avg. 0.687 0.684 0.654 0.642 0.757 0.803 0.842 0.839

SD 0.136 0.137 0.129 0.117 0.020 0.023 0.044 0.043

Recall

Data

OS YATSI

OS-YATSI

w/o USC

OS-YATSI

w/ USC

 Macro Macro Macro Macro Macro Macro Macro Macro

JDT Core 0.526 0.526 0.509 0.509 0.763 0.777 0.791 0.791

PDE UI 0.761 0.761 0.725 0.725 0.716 0.813 0.853* 0.853*

Mylyn 0.764 0.764 0.693 0.693 0.772 0.820 0.873** 0.873**

Avg. 0.684 0.684 0.642 0.642 0.750 0.803 0.839 0.839

SD 0.137 0.137 0.117 0.117 0.030 0.023 0.043 0.043

F1-measure

Data

OS YATSI

OS-YATSI

w/o USC

OS-YATSI

w/ USC

 Macro Macro Macro Macro Macro Macro Macro Macro

JDT Core 0.526 0.526 0.509 0.509 0.761 0.777 0.792** 0.791

PDE UI 0.758 0.761 0.718 0.725 0.724 0.813 0.853* 0.853*

Mylyn 0.749 0.764 0.681 0.693 0.774 0.820 0.871** 0.873**

Avg. 0.678 0.684 0.636 0.642 0.753 0.803 0.839 0.839

SD 0.131 0.137 0.112 0.117 0.026 0.023 0.041 0.043

* and ** represent a significant difference at a confidence level of 95% and 99%, respectively.

IAENG International Journal of Computer Science, 43:3, IJCS_43_3_10

(Advance online publication: 27 August 2016)

__

[9] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck,

"Comparing Mining Algorithms for Predicting the Severity of a

Reported Bug," in Software Maintenance and Reengineering

(CSMR), 2011 15th European Conference on, 2011, pp. 249-258.

[10] K. K. Chaturvedi and V. B. Singh, "Determining Bug severity using

machine learning techniques," in Software Engineering (CONSEG),

2012 CSI Sixth International Conference on, 2012, pp. 1-6.

[11] Y. Cheng-Zen, H. Chun-Chi, K. Wei-Chen, and C. Ing-Xiang, "An

Empirical Study on Improving Severity Prediction of Defect Reports

Using Feature Selection," in Software Engineering Conference

(APSEC), 2012 19th Asia-Pacific, 2012, pp. 240-249.

[12] N. K. Singha Roy and B. Rossi, "Towards an Improvement of Bug

Severity Classification," in Software Engineering and Advanced

Applications (SEAA), 2014 40th EUROMICRO Conference on, 2014,

pp. 269-276.

[13] M. D'Ambros, M. Lanza, and R. Robbes, "An extensive comparison

of bug prediction approaches," in Mining Software Repositories

(MSR), 2010 7th IEEE Working Conference on, 2010, pp. 31-41.

[14] P. Vateekul, S. Dendamrongvit, and M. Kubat, "Improving SVM

Performance in Multi-Label Domains: Threshold Adjustment,"

International Journal on Artificial Intelligence Tools, 2013.

[15] T. Choeikiwong and P. Vateekul, "Software Defect Prediction in

Imbalanced Data Sets Using Unbiased Support Vector Machine," in

Information Science and Applications, J. K. Kim, Ed., ed Berlin,

Heidelberg: Springer Berlin Heidelberg, 2015, pp. 923-931.

[16] T. Choeikiwong and P. Vateekul, "Improve Accuracy of Defect

Severity Categorization Using Semi-Supervised Approach on

Imbalanced Data Sets," Lecture Notes in Engineering and Computer

Science: Proceedings of The International MultiConference of

Engineers and Computer Scientists 2016, IMECS 2016, 16-18

March, 2016, Hong Kong, pp. 434-438.

[17] K. Driessens, P. Reutemann, B. Pfahringer, and C. Leschi, "Using

Weighted Nearest Neighbor to Benefit from Unlabeled Data," in

Advances in Knowledge Discovery and Data Mining. vol. 3918, W.-

K. Ng, M. Kitsuregawa, J. Li, and K. Chang, Eds., ed: Springer

Berlin Heidelberg, 2006, pp. 60-69.

[18] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,

"SMOTE: synthetic minority over-sampling technique," J. Artif. Int.

Res., vol. 16, pp. 321-357, 2002.

[19] T. Menzies, Krishna, R., Pryor, D., "The Promise Repository of

Empirical Software Engineering Data," ed, 2015.

[20] S. R. Chidamber and C. F. Kemerer, "A metrics suit for object

oriented design," presented at the IEEE Transactions on Software

Engineering, 1994.

[21] R. Martin, "OO Design Quality Metrics - An Analysis of

Dependencies," presented at the Proc. of Workshop Pragmatic and

Theoretical Directions in Object-Oriented Software Metrics,

OOPSLA'94, 1994.

[22] J. Bansiya and C. G. Davis, "A hierarchical model for object-oriented

design quality assessment," IEEE Transactions on Software

Engineering, vol. 28, pp. 4-17, 2002.

[23] T. Mei-Huei, K. Ming-Hung, and C. Mei-Hwa, "An empirical study

on object-oriented metrics," in Software Metrics Symposium, 1999.

Proceedings. Sixth International, 1999, pp. 242-249.

[24] T. J. McCabe, "A complexity measure," presented at the IEEE

Transactions on Software Engineering, 1976.

[25] M. Jureczko and D. Spinellis, "Using Object-Oriented Design Metrics

to Predict Software Defects," in Models and Methodology of System

Dependability. Proceedings of 2010: Fifth International Conference

on Dependability of Computer Systems, Poland, 2010, pp. 69-81.

[26] X. Zhu, "SemiSupervised classification learning survey," Computer

Sciences TR 1530 , University of Wisconsin-Madison 1530, Dec.

2005 2005.

[27] M. Kubat and S. Matwin, "Addressing the curse of imbalanced

training sets: one-sided selection," presented at the Proc. 14th

International Conference on Machine Learning, 1997.

[28] Y. Yang, "An Evaluation of Statistical Approaches to Text

Categorization," Inf. Retr., vol. 1, pp. 69-90, 1999.

[29] J. Han and M. Kamber, Data Mining: Concepts and Techniques, 2

ed. s.l.: Morgan Kaufmann, 2006.

[30] H. Chih-Wei, C. Chih-Chung, and L. Chih-Jen, A Practical Guide to

Support Vector Classification. National Taiwan University:

Department of Computer Science, 2003.

IAENG International Journal of Computer Science, 43:3, IJCS_43_3_10

(Advance online publication: 27 August 2016)

__

	I. INTRODUCTION
	II. Related Works
	A. Related Works in Defect Prediction
	B. Related Works in Defect Severity Categorization

	III. Background Knowledge
	A. Software Metrics
	B. Semi-Supervised Learning
	C. Strategies to Handle Imbalanced Data Sets
	D. Prediction Performance Metrics

	IV. A Proposed Method
	A. Support Vector Machines
	B. Threshold Adjustment (R-SVM)
	C. OS-YATSI

	V. Experiments and Results
	A. Data Sets
	B. Experimental Setup
	C. Results and Discussion

	VI. Conclusion
	Reference

