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Abstract—In order to accord with the actual scheduling
problems, this paper presents a new single machine scheduling
problem. The main contribution in the paper is that a novel
deterioration model is proposed firstly and integrated into the
scheduling problem, and three algorithms are presented to solve
the problems. Firstly, according to the characteristics of steel
production, a new deterioration model depending on piece-wise
function for the problem is presented. Secondly, according to
characteristics of the problem, dominance properties and lower
bounds are proposed and integrated into the Branch and Bound
algorithm to solve the small-medium scale problems. Thirdly,
for solving a large-scale problem, the Improved Guided Nested
Partitions method and heuristic algorithm based on minimum
completion time are proposed. The numerical experiments show
that for the medium-small scale problem, the Branch and Bound
algorithm can obtain the optimal solutions in a reasonable
time. Heuristic algorithm can also obtain good near-optimal
solutions. The Improved Guided Nested Partitions method is
prior to heuristic algorithm since it can obtain the average
error percentage of near-optimal solutions less than 0.036 within
0.2s. The analysis shows the efficiency of the Improved Guided
Nested Partitions method. Therefore, the Improved Guided
Nested Partitions method and heuristic algorithm can be used
for solving large size problems.

Index Terms—Single machine, Piece-wise function, Branch
and Bound algorithm, Improved Guided Nested Partitions.

I. INTRODUCTION

In recent literatures on scheduling problems with deterio-
ration, the actual processing times of jobs are assumed to be
dependent on the job starting time. However, this assumption
is not appropriate for many realistic problems. For example,
in steel production, heating the ingots is necessary to soften
the ingots for rolling and in providing a sufficiently high
initial temperature to ensure that the rolling processing is
completed in the required temperature region. The temperate
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of the ingots, however, while waiting to enter the rolling
machine, drops below a certain level. This phenomenon
is known as deterioration(Gupta and Gupta[1]). In such a
case, the ingots will require reheating, and thus increases
the processing time. And in the process of deteriorating, the
temperature of ingots will not change when it drops to normal
temperature. Moreover, ingots will not start deteriorating
before the release time. Clearly, if the deterioration model
depends on the starting time, it is not reasonable. Therefore,
in this paper, the deterioration model of jobs is defined as
apiece-wise function.

The deterioration job scheduling problem was first intro-
duced independently by Gupta and Gupta[1] and by Browne
and Yechiali[2]. Since then, related models have been exten-
sively studied from a variety of perspectives and seen from
Cheng et al.[3], Lai and Lee[4], Shen et al.[5], Ruiz-Toreset
al.[6], Qian and Steiner[7], Wang et al.[8] and Yin et al.[9].

The literature mentioned above focuses on the fact that
the jobs are always available. Since some practical problems
need to consider different release times, for example, in steel
production, different ingots have different release times. In
this paper, we propose a novel single machine scheduling
problem with a deterioration model according to the realistic
case.

The main contribution of this paper is that a novel single
machine scheduling problem with deterioration depending
on a piece-wise function is presented. In order to solve the
problem, a Branch and Bound algorithm (B&B) integrating
with dominance properties and lower bounds is proposed
for solving small-medium scale problems; for solving larger
scale problems, the Rules Guided Nested Partitions method
(IGNP) and heuristic algorithm based on minimum comple-
tion time (HAMC) are proposed. The results of numerical
experiments show that for a size of no more than 15 jobs,
the B&B algorithm can obtain the optimal solution in a
reasonable time. The IGNP is prior to HAMC since it can
obtain the average error percentage of near-optimal solutions
less than 0.036 within 0.2s, and HAMC can also obtain good
near-optimal solutions. The analysis indicates the efficiency
of IGNP, such that it can be used for solving large scale
problems.

The rest of this paper is organized as follows. In Section
2, the problem is formulated. The branch and bound with
dominance properties and low bounds, the Improved Guided
Nested Partitions method and the heuristic algorithm based
on minimum completion time are proposed for solving the
problem studied in Section 3. The numerical experimentation
is described in Section 4, followed by the conclusions in the
last section.
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II. PROBLEM FORMULATION

In the existed literatures, the actual processing times of
ingots in steel production are assumed to be dependent
on the job starting time. However, this assumption is not
appropriate for many realistic problems. In steel production,
heating the ingots is necessary to soften the ingots for rolling
and in providing a sufficiently high initial temperature to
ensure that the rolling processing is completed in the required
temperature region. The temperate of the ingots, however,
while waiting to enter the rolling machine, drops below a
certain level. In such a case, the ingots will require reheating,
and thus increases the processing time. And in the process
of deteriorating, the temperature of ingots will not change
when it drops to normal temperature. Moreover, ingots will
not start deteriorating before the release time. Clearly, if
the deterioration model depends on the starting time, it is
not reasonable. Therefore, in this paper, the deterioration
model of jobs is defined as a piece-wise function which
depends on the waiting time or the period from ingots out
of heating furnace to the temperature of them dropping to
normal temperature.

Based on the above problems, this paper considers the
single machine scheduling problem with deterioration de-
pending on a piece-wise function to minimize the makespan.
This problem can be described as follows.

Assume that there are n jobs required to be scheduled.
The normal processing time and release time for job j(j =
1, 2, . . . , n) are aj and rj , respectively. All jobs own common
deterioration rate b(b > 0). The actual processing time pj of
job j is a piece-wise linear function of aj , b and the waiting
time, i.e.,

pj =
{
aj+bwj ,sj−rj<W ;
aj+bW ,sj−rj≥W. (1)

where wj = sj − rj , sj is the starting time of job j
and W a constant. If the waiting time of a job is larger
than or equal to W , the actual processing time of the job is
aj + bW . The objective is to obtain an optimal schedule to
minimize the makespan Cmax. This problem can be denoted
as 1

∣∣∣pj = {
aj+bwj ;
aj+bW. , rj |Cmax by using the three-field nota-

tion scheme α |β |γ introduced by Graham et al.[10]. Since
Cheng and Ding[11] have proved that the makespan problem
with identical deteriorating jobs 1 |pj = aj + bsj , rj |Cmax

is strongly NP-complete. Clearly, the problem
1
∣∣∣pj = {

aj+bwj ;
aj+bW. , rj |Cmax is also strongly NP-complete.

III. THE B&B, IGNP METHOD AND HAMC

The main contribution of the section is that dominance
properties and lower bounds are proposed, the rule of
searching of B&B is designed, IGNP and HAMC are p-
resented to solve the single machine scheduling problem
with arbitrary deterioration rates and release times. Firstly,
dominance properties and lower bounds are proposed in
subsection 3.1 and 3.2, respectively. Then, the branch and
bound algorithm integrating with the dominance properties
and lower bounds is given in subsection 3.3. Finally, the
Improved Guided Nested Partitions method and heuristic
algorithm based on minimum completion time are described
in detail in subsection 3.4 and 3.5, respectively.

A. Dominance Properties

Assume that schedules S = (π, i, j, π′) and S′ =
(π, j, i, π′), where π with job i in the kth position and π′ are
partial sequences. Let t be the completion time of the last
job in π. Several properties are given as follows.

Property 1 If the release times of all jobs are identical,
then there is an optimal schedule by ordering jobs with non-
decreasing of aj .

Property 2 If t < ri < rj and ri + ai < rj , then there is
an optimal schedule with job i before job j.

Property 3 If rj < ri < t and t− ri < W < t− rj , then
there is an optimal schedule with job i before job j.

Property 4 If t ≤ min{ri, rj} and 2ri + ai < 2rj + aj
, then there is an optimal schedule with job i before job j.
Specially, when W < (ri − rj) + ai , then job i and j has
an identical rank.

Property 5 If t ≥ max{ri, rj}, t− rj > W and t+ aj −
ri < (1− b)W , then there is an optimal schedule with job i
before job j.

All above properties can be proved by the internal adjacent
exchange method. Here, they are omitted.

B. Lower Bounds

In this subsection, three lower bounds are developed for
minimizing the makespan problem with arbitrary deteriora-
tion rates and release times.

Assume that S denotes the set of scheduled jobs which
includes k jobs, C[k] the completion time of the kth job
in S, US the set of unscheduled jobs, and f∗ the optimal
makespan. Specially, C[0] = 0.

Proposition 1 LB1 = max
j∈US

(rj + aj) is a lower bound.

Proof. In an optimal schedule, each job j of US will
not start before its release time rj and will complete its
processing no later than f∗. So:

f∗ ≥ max
j∈US

(rj + aj)

i.e., LB1 = max
j∈US

(rj + aj).

Proposition 2 LB2 = rj + aj , j ∈ {j
∣∣∣∣rj = max

j∈US
rj } is a

lower bound.
Proof. In an optimal schedule, each job j of US will

not start before its release time rȷ and will complete its
processing no later than f∗. So:

f∗ ≥ rj + aj , j ∈ {j
∣∣∣∣rj = max

j∈US
rj }

i.e., LB2 = rj + aj , j ∈ {j
∣∣∣∣rj = max

j∈US
rj }.

Proposition 3 LB3 = min
j∈US

rj+
∑

j∈US

aj is a lower bound.

Proof. In an optimal schedule, each job j of US will
not start before its release time rmin and will complete its
processing no later than f∗, so it is processed during the
interval of time [rmin, f

∗] . In this interval of time, all jobs
of US are processed on the machine. So:

f∗ ≥ min
j∈US

rj +
∑
j∈US

pj ≥ min
j∈US

rj +
∑
j∈US

aj

i.e., LB3 = min
j∈US

rj +
∑

j∈US

aj .
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Proposition 3 LB4 = C[k] +
∑

j∈US

aj is a lower bound.

Proof. In an optimal schedule, each job j of US will
not start before its release time rmin and will complete its
processing no later than f∗, so it is processed during the
interval of time [C[k], f

∗]. In this interval of time, all jobs
of US are processed on the machine. The actual processing
times of jobs is larger than or equal to min(C[k] − rj ,W )
when the release times of jobs is less than C[k], So:
f∗ ≥ C[k] +

∑
j∈{rj|C[k]>rj }

bmin(C[k] − rj ,W )+
∑

j∈US

pj

≥ C[k] +
∑

j∈US

aj i.e., LB4 = C[k] +
∑

j∈US

aj .

In summary, in order to obtain a tight lower bound, select
the largest value among LB1, LB2, LB3 and LB4 as a lower
bound, i.e., LB = max

b=1,2,3,4
LBb.

C. The Branch and Bound Algorithm

In this paper, the branch and bound algorithm mainly uses
the backtracking method. It is described in more detail.

The branch and bound algorithm includes several follow-
ing elements.

Node
A search tree consists of many nodes, each of which

denotes a partial schedule.
Branch
To branch is to generate all children nodes by the current

active node. Each child node denotes a branch.
Search strategy with eliminate nodes
Search strategy is designed according to the depth first

search.
Step 1. Generate all children nodes of the current expan-

sion node.
Step 2. In all children nodes, eliminate the nodes which

cannot obtain the optimal schedule according to Properties
1-5.

Step 3. Add the remaining nodes in all children nodes into
a list of active nodes.

Step 4. Select a node from a list of active nodes as the
next expansion node, which is expanded until the maximum
depth is reached.

Repeat the above steps until no more active nodes can be
expanded.

Upper bound and lower bound
At the beginning of the algorithm, calculate the makespan

of sequences obtained according to the short processing time
and early release time rules, and select the smallest one as the
initial upper bound, which will be replaced with the better
solution that is generated in the search procedure.

Lower bound, LB, is used for eliminating the nodes which
cannot develop the optimal solution. If the new node cannot
be eliminated by the Properties 1-5, its LB will be calculated.

Backtracking
When all child nodes of the current node have been

searched, the algorithm will backtrack to the father node of
the current node and continue to search other nodes of the
father node.

The procedure of B&B algorithm can be summarized as
follows.

Procedure of B&B algorithm
Step1. Initialization

Calculate the initial upper bound, go to Step 2.
Step 2. Branching
All child nodes are generated by the current active node,

go to Step 3.
Step 3. Search strategy
The recently generated node is selected as an active

node, which is firstly expanded. Apply the Properties 1-5
to eliminate child nodes of the expanded node which cannot
develop the optimal solution, go to Step 4.

Step 4. Lower bound
Calculate the lower bound for each remaining node. If it is

less than the current optimal solution, continue to search its
branches. If it is equal to the current optimal solution, go to
Step 6. Otherwise, eliminate it, continue to search other child
nodes of the current active node. When a whole sequence is
obtained, its makespan replaces the current optimal solution.
Go to Step 5.

Step 5. Backtracking
Backtrack the father node of the current node and continue

to search other children nodes of the father node. If no more
nodes can be searched, go to Step 6. Otherwise, Go to Step
2.

Step 6. Stopping
Output an optimal solution.

D. Improved Guided Nested Partitions Method
The scheduling problems have been solved using oth-

er algorithms[12][13][14], in the section, we also use the
another proper algorithm to solve the scheduling problem.
Shi and Olafsson[15] first developed original nested par-
titions method for solving discrete problems. It has been
applied to many fields(Olafsson and Yang[16], Pi et al.[17],
Shi et al.[18], Shihabi and Olafsson[19]). Motivated by
its success in other applications, and the problem con-
sidered in this study being atypical discrete problem, the
improved guided nested partition method (IGNP) is pro-
posed for solving the single machine scheduling problem
1
∣∣∣pj = {

aj+bwj ;
aj+bW. , rj |Cmax .

The main idea is that the feasible region will be continu-
ously partitioned until the most promising region includes a
singleton solution, i.e., at the beginning of the method. The
whole solution space is then considered as the most promis-
ing region σ(0) and partitioned into several sub-regions and
the depth of the method d is 0. Then, through sampling,
select a sub-region with the best promising index as the most
promising region in the next step. Generally, the promising
index is defined as the value of the objective. At each
iteration, other than the first step, if a sub-region is selected
as the most promising region σ(d), then other regions except
the most promising region are aggregated into one region
which is called surrounding region or complementary region
φ. Generally, the method mainly comprises four elements,
i.e., partitioning, sampling, selection and backtracking(Shi
and Olafsson[15]).

In this subsection, we propose the improved guided nest-
ed partition method for solving the NP-hard problem of
a single machine with deterioration depending on waiting
times, where its objective is to minimize the makespan. It
also has four important elements, partitioning and stopping,
sampling, selection and backtracking, which are described in
the following.
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Partitioning and stopping
Give a set N = {1, 2, ..., n}, all permutations of

{1, 2, ..., n} constitute the whole solution space. In depth 0,
the whole solution space is considered as the most promising
region σ(0). It is divided into n sub-regions by fixing the first
job on the machine to be one of 1, 2, ..., andn. The current
most promising region can be divided into n−d sub-regions
when the depth is d . The algorithm wont stop until the
most promising region contains only a singleton solution.
Moreover, if the algorithm always backtracks, the algorithm
will stop when the times of the algorithm backtracks to the
whole region are more than 100.

Sampling
To find the most promising region for the next depth, four

related sampling methods are given and used for each sub-
region.

M1. Obtain randomly a partial sequence from the unsched-
uled jobs.

M2. Obtain a partial sequence by ordering jobs in non-
decreasing order of the smallest (1+b)max(rj , t)+aj−brj
from the unscheduled jobs, where t is the completion time
of the last jobs scheduled, especially, t = 0 when the depth
is 0.

M3. Obtain a partial sequence according to the short
normal processing time from unscheduled jobs.

M4. Obtain a partial sequence according to the early
release time from unscheduled jobs.

The above partial sequences combining with the scheduled
partial sequence constitute three samples. These four samples
are solutions of the problem in the sub-regions.

For the surrounding region, randomly sampling is used to
ensure the diversities of solutions and avoids trapping into
the local optimal solutions.

Selection
First, the makespan of each sample from the sampling

procedure is calculated and the best makespan is chosen as
the promising index of each sub-region. The best makespan
in all sub-regions and the surrounding region is defined as
R∗. Then, the most promising region corresponding to R∗

for the next step is determined by the following situation:
S1. If R∗ corresponds to the sub-region of the current most

promising region, then it will be partitioned in the next step.
S2. If R∗ corresponds to more than one sub-region of the

current most promising region, then one of them is selected
randomly and partitioned in the next step.

S3. If R∗ accords with the surrounding region, then we
adopt backtracking, the procedure of which will be intro-
duced in later.

S4. If R∗ corresponds to the surrounding region and one
or more than one of the current most promising region, then
one of them is selected randomly with identical probability.
In this case, if one of the current most promising regions
is selected, it will be the most promising region to be
partitioned in the next step. On the contrary, backtracking
will be used when the surrounding region is selected.

Backtracking
If the surrounding region accords with the current most

promising region, then the method backtracks to the adjacent
super-region of the current most promising region. If the
method always backtracks to the adjacent super-region of the
same current most promising region, then it will backtrack

to the whole solutions region when the times are more than
100.

The procedure of the the improved guided nested partition
method can be summarized as follows.

Step 1. Initialization
Set the overall solution space as the initial most promising

region and the initial surrounding region as ϕ. Go to Step 2.
Step 2. Partition & Stopping
If the current most promising region is a singleton solution

region, then the method will stop and the best solution
obtained is returned. Otherwise, the current most promising
region is partitioned into several sub-region. Go to Step 3.

Step 3. Sampling
Obtain samples from each sub-region according to three

sampling methods and a random sample from the surround-
ing region. Calculate the promise indices for both the several
sub-regions and the surrounding region. Go to Step 4.

Step 4. Selection
Select the most promising region among sub-regions and

the surrounding region. If the surrounding region is selected,
go to Step 5. Otherwise, go to Step 2.

Step 5. Backtracking
The method backtracks to the adjacent super-region. If

the times of backtracking to the adjacent super-region of the
same current most promising region are more than 100, then
the method will backtrack to the whole region. Go to Step
1. If the times of backtracking to the whole region for the
same current most promising region are more than 100, then
the method will stop, and the best solution obtained from the
sample of the surrounding region is returned.

E. Heuristic Algorithm based on Minimum Completion Time

According to the characteristics of the problem, the heuris-
tic algorithm based on minimum completion time (HAMC)
is presented in this section. The procedure of it is as follows.

Step 1: Parameter Initialization. Assume that k = 1, i = 1,
rmax =

n
max rj

j=1

and J = {1, 2, . . . , n}. C[k] is the completion

time of the kth job. Specially, C[0] = 0;
Step 2: If C[k−1] < rmax, then select the job

Jj form J with the smallest max(rj , C[k−1]) + aj +
bmin(W,max(rj , C[k−1]) − rj), and assign it in the
kth position, let C[k] = max(rj , C[k−1]) + aj +
bmin(W,max(rj , C[k−1]) − rj), and delete Jj form J , go
to Step 4; otherwise, go to Step 3.

Step 3: Select the job from J with the smallest aj and
assign it in the kth position, and delete Jj form J , let C[k] =
max(rj , C[k−1]) + aj + bmin(W,max(rj , C[k−1])− rj), go
to Step 4;

Step 4: If k < n, let k = k + 1, go to Step 2;
Step 5: The algorithm ends. And output a current optimal

solution.

IV. NUMERICAL EXPERIMENTATION

In this section, the numerical experimentation is used
to evaluate the performance of the three algorithms. The
experimental design follows the framework used by Chu[20].
All programming is run on the same personal computer with
Intel (R) Core (TM) 2 processors. The normal processing
times of the jobs are generated from a uniform distribution
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Fig. 2. The effect of λ on average CPU time based on b = 0.05

on (1,100). The release times are generated from a uniform
distribution on (0, 50.5nλ) where n is the size of jobs and
λ is a control variable, which decides the scatter range of

the release dates. The maximum waiting time W =
n∑

j=1

aj .

The B&B, IGNP, HAMC and ONP are used for solving the
problem. The following experiments are tested.

Firstly, the performance of the B&B, IGNP, HAMC and
ONP with respect to a parameter λ is tested.

The size of jobs is fixed at 6, the deterioration rate b =
0.05, 0.1, and the control variable λ takes values from 0.2 to
3.0 with an increment of 0.2 each time. For each b and λ, ,
100 replications are randomly generated. When b = 0.05, the
average error rates of IGNP, HAMC and ONP are recorded in
Figure 1, and the average CPU time of algorithms is recorded
in Figure 2. Likewise, when b = 0.1, the average error rates
of IGNP, HAMC and ONP are recorded as in Figure 3, and
the average CPU times of the algorithms are recorded as in
Figure 4.

From Figures 1 and 3, when the deterioration rate b =
0.05, 0.1 and the control variable λ takes the values from
0.2 to 3.0 with an increment of 0.2 each time, the average
error rate of IGNP is near or even 0 in most cases. Compared
with IGNP, the average error rate of ONP is not stable, and
that of HAMC is between of them.

From Figure 2 and 4, when the deterioration rate b =
0.05, 0.1 and the control variable λ takes the values from
0.2 to 3.0 with an increment of 0.2 each time, the average
CPU time of IGNP, HAMC and ONP is less than 1s. The
average CPU time of the B&B is increasing when λ becomes
larger or smaller. The average CPU time of the B&B is less
than 10s when λ takes the values from 0.4 to 2.0.
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Secondly, the performance of the B&B, IGNP, HAMC and
ONP with respect to a parameter b is tested.

The size of jobs is fixed at 6, the control variable λ =
0.2, 3.0, and the deterioration rate b takes the values from
0.025 to 0.5 with an increment of 0.025 each time. For each
λ and b, 100 replications are randomly generated. When
b = 0.05, average error rates of IGNP, HAMC and ONP
are recorded as shown in Figure 5, and the average CPU
times of the algorithms are recorded in Figure 6. Likewise,
when b = 0.1, average error rates of IGNP, HAMC and ONP
are as shown in Figure 7, and the average CPU time of the
algorithms is shown in Figure 8.

From Figures 5 and 7, when the control variable λ =
0.2, 3.0 and the deterioration rate b takes values from 0.025
to 0.5 in steps of 0.025 each time, the average error rate
of IGNP is 0 in most cases. The average error rate of ONP
is also not stable. And the average error rate of HAMC is
between of them. From Figures 6 and 8, the average CPU
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times of IGNP, HAMC, ONP are less than 1s. For B&B, it is
seen from Figure 6 that the average CPU time of the B&B is
stable and no more than 25s when λ = 0.2. But from Figure
8, the average CPU time of the B&B is increasing with the
value of b decreasing when λ = 3.0. For example, it will
need more than 40s when b = 0.025 and λ = 3.0.

Therefore, by testing λ and b, a few of conclusions are as
follows:

1) when the release times are more scattered and the
deterioration rate is less, the B&B will need much time to
obtain the optimal solution;

2) the performance of IGNP is hardly affected by λ and
b;

3) the performance of HAMC is between IGNP and ONP,
and it is hardly affected by λ and b;
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Fig. 10. The effect of b on average CPU time based on λ = 3.0

4) the time performance of ONP is affected by λ and b,
But the average error rate of it is not stable because of the
change of λ and b.

Finally, in order to further verify the B&B, IGNP, HAMC
and ONP validity, the following experiments are tested.

(1) The performance of the B&B, IGNP, HAMC and ONP
for solving the small scale problem is tested.

The control variable λ takes values of takes values of
0.2, 1.0 and 3.0, and the deterioration rate b takes 0.05 and
0.1. Four different sizes of jobs (n = 5, 7, 9, 11, 13, 15) are
adopted. The average error rate of IGNP, HAMC and ONP,
respectively, relative to the optimal solution, are provided in
Table 1. The error rate is var = (H − H∗)/H∗ × 100%,
where H is a solution from IGNP, HAMC or ONP, and H∗

is an optimal solution from the B&B. The average CPU time
of the B&B, IGNP, HAMC and ONP are recorded. And the
average number of nodes of the B&B is also recorded.

Moreover, the average CPU time of algorithms with re-
spect to the job size n is shown in Figure 9. It is seen
that: the average CPU times of ONP, HAMC and IGNP are
slowly increasing with the size increase, but the time of B&B
increases sharply when the job size increases.
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TABLE I
COMPARISON OF ALGORITHMS BASED ON OPTIMAL SOLUTIONS

Average error rate Average CPU time(s)
n b λ nodes IGNP HAMC ONP B&B IGNP HAMC ONP

5 0.05 0.2 80 0.030 0.039 0.031 1.143 0.003 0.004 0.001
1.0 46 0.000 0.001 0.254 0.348 0.004 0.001 0.002
3.0 69 0.000 0.000 0.000 0.421 0.003 0.003 0.002

0.10 0.2 131 0.012 0.022 0.013 1.921 0.003 0.001 0.002
1.0 55 0.000 0.000 0.033 0.602 0.003 0.003 0.002
3.0 37 0.000 0.010 0.041 0.067 0.003 0.004 0.002

Average 0.007 0.012 0.062 0.750 0.003 0.002 0.002
7 0.05 0.2 2250 0.002 0.012 0.015 6.215 0.014 0.002 0.002

1.0 121 0.000 0.007 0.075 0.208 0.012 0.005 0.003
3.0 1490 0.000 0.000 0.013 6.415 0.013 0.003 0.003

0.10 0.2 3695 0.008 0.047 0.012 6.706 0.009 0.005 0.008
1.0 70 0.000 0.000 0.291 0.027 0.011 0.005 0.003
3.0 763 0.000 0.009 0.106 3.190 0.008 0.006 0.008

Average 0.001 0.012 0.085 3.358 0.011 0.004 0.004
9 0.05 0.2 164701 0.006 0.023 0.008 180.447 0.028 0.006 0.003

1.0 1356 0.000 0.000 0.175 1.090 0.031 0.006 0.003
3.0 4313 0.000 0.002 0.127 3.082 0.031 0.006 0.003

0.10 0.2 9682 0.000 0.059 0.004 8.802 0.031 0.006 0.003
1.0 399 0.004 0.012 0.187 2.068 0.016 0.016 0.015
3.0 169557 0.000 0.000 0.037 160.362 0.016 0.015 0.015

Average 0.002 0.016 0.089 59.308 0.025 0.009 0.007
11 0.05 0.2 370784 0.000 0.022 0.027 1309.532 0.032 0.015 0.013

1.0 65210 0.011 0.062 0.189 290.845 0.044 0.016 0.013
3.0 254639 0.006 0.011 0.046 318.612 0.045 0.015 0.016

0.10 0.2 63471 0.016 0.073 0.036 185.452 0.047 0.016 0.015
1.0 409939 0.021 0.093 0.373 159.736 0.044 0.015 0.016
3.0 88025 0.000 0.000 0.000 1116.147 0.047 0.016 0.16

Average 0.009 0.043 0.111 713.387 0.043 0.015 0.038
13 0.05 0.2 3956334 0.033 0.039 0.044 4330.128 0.047 0.016 0.015

1.0 175396 0.007 0.084 0.141 300.670 0.078 0.015 0.032
3.0 2372912 0.002 0.071 0.132 1100.308 0.078 0.015 0.015

0.10 0.2 787922 0.007 0.083 0.035 1463.735 0.078 0.031 0.016
1.0 6590 0.044 0.091 0.124 210.570 0.078 0.016 0.031
3.0 258226 0.003 0.053 0.143 3780.062 0.078 0.016 0.015

Average 0.016 0.070 0.103 1864.246 0.072 0.018 0.020
15 0.05 0.2 53250447 0.003 0.052 0.322 19272.428 0.125 0.035 0.031

1.0 32685 0.012 0.131 0.600 1620.129 0.130 0.046 0.031
3.0 10988782 0.021 0.089 0.704 9377.331 0.125 0.032 0.030

0.10 0.2 10258684 0.008 0.091 0.891 90089.424 0.125 0.032 0.031
1.0 252483 0.036 0.021 0.483 2680.127 0.130 0.046 0.047
3.0 31243455 0.002 0.021 0.178 13535.881 0.125 0.046 0.032

Average 0.014 0.067 0.529 22762.55 0.126 0.039 0.033
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TABLE II
COMPARISON OF ALGORITHMS BASED ON NEAR-OPTIMAL SOLUTIONS

Average error rate Average CPU time(s)
n b λ IGNP HAMC ONP IGNP HAMC ONP

30 0.05 0.2 0.009 0.049 0.091 1.755 0.297 0.319
1.0 0.000 0.092 0.674 1.872 0.299 0.323
3.0 0.000 0.000 0.209 1.877 0.297 0.331

0.10 0.2 0.092 0.040 0.092 1.806 0.305 0.328
1.0 0.000 0.092 0.277 1.862 0.297 0.338
3.0 0.003 0.000 0.662 1.881 0.286 0.323

Average 0.017 0.045 0.334 1.842 0.296 0.327
40 0.05 0.2 0.042 0.016 0.112 5.325 0.686 0.883

1.0 0.000 0.117 0.301 5.741 0.684 0.872
3.0 0.000 0.001 0.461 5.702 0.661 0.845

0.10 0.2 0.035 0.144 0.379 5.381 0.694 0.891
1.0 0.048 0.063 0.697 5.627 0.664 0.862
3.0 0.002 0.000 0.401 5.661 0.642 0.878

Average 0.021 0.056 0.391 5.572 0.671 0.871
50 0.05 0.2 0.015 0.114 0.199 12.272 1.286 1.767

1.0 0.004 0.096 0.684 13.720 1.331 1.941
3.0 0.000 0.000 0.596 13.597 1.281 1.966

0.10 0.2 0.011 0.149 0.324 12.806 1.313 1.900
1.0 0.087 0.079 0.192 13.822 1.294 2.059
3.0 0.000 0.001 0.421 14.850 1.364 2.191

Average 0.019 0.073 0.402 13.511 1.311 1.970

The average error rate of algorithms with respect to the
job size n is shown in Figure 10. It can be seen that: the
average error rate of IGNP is stable, it is hardly affected by
the job size n; that of ONP increases with the job size n
increase; that of HAMC is between of them.

(2) The performance of the IGNP, HAMC and ONP for
solving the medium-larger scale problem is tested.

The control variable λ takes values of 0.2, 1.0 and 3.0,
and the deterioration rate b takes 0.05 and 0.1. Four different
sizes of jobs (n = 30, 40, 50) are adopted. The average error
rate of IGNP, HAMC and ONP, respectively, relative to the
optimal solution, are provided in Table 2. The error rate is
var = (H −H∗)/H∗ × 100%, where H is a solution from
IGNP, HAMC or ONP, and H∗ is a best solution among
IGNP, HAMC or ONP. The average CPU time of the IGNP,
HAMC and ONP are recorded.

From Table 2, the performance of IGNP is far better
than that of HAMC and ONP. ONP obtains solutions which
become inferior over the job size increase. The performance
of HAMC is little lower than that of IGNP, but far prior to
that of ONP.

In summary, the B&B can be used for obtaining the
optimal solution when the job size is equal to or smaller
than 15. It is a good choice for solving medium-small scale
problem. However, for solving the large scale problem, IGNP
and HAMC are good methods.

V. CONCLUSIONS

In this paper, a novel single machine scheduling problem
with deterioration depending on piece-wise function is pre-
sented. Firstly, a new piece-wise deterioration model corre-
sponding to the problem is proposed. Then, the branch and
bound algorithm integrating with the dominance properties
and lower bounds is proposed to obtain optimal solutions

of small-medium scale problems. Since the branch and
bound has a limit when applied to large scale problems, the
IGNP method and HAMC are proposed. The results of the
numerical examples with a job size smaller than 15 jobs show
that, the B&B algorithm can obtain the optimal solutions
in a reasonable time. And HAMC can also obtain good
near-optimal solutions. The IGNP is prior to HAMC since
it can obtain the average error percentage of near-optimal
solutions less than 0.036 within 0.2s. According to the results
of the analysis, it shows the efficiency of IGNP. Therefore,
they can be used for solving large size problems. In the
future, we focus on the following aspects: (1) since some
uncertainties exist in the real scheduling problem, risk should
be integrated into it; (2) in order to satisfy decision makers
demand, multi-objective will be considered; (3) moreover,
rescheduling problems will be also discussed when the initial
scheduling is interrupted.
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