
 

 
Abstract— This work describes the topology for simulating 

the floating inductance simulator circuit based on employing 
voltage differencing buffered amplifiers (VDBAs) as new active 
components.  The realized floating inductance simulator circuit 
uses two VDBAs and only one grounded capacitor.  The 
synthetic circuit is resistorless and canonical structure as well 
as attractive for integration.  The resulting equivalent 
inductance value of the proposed simulator can be adjusted 
electronically through the transconductance parameter of the 
VDBA. As illustrative application example, the proposed 
tunable floating inductance simulator is employed to realize 
the second-order RLC bandpass filter. Simulation results using 
standard 0.35-µm BiCMOS process model are included to 
verify the theoretical analysis. 
 

Index Terms— Voltage Differencing Buffered Amplifier 
(VDBA), voltage-mode circuit, floating inductance simulator  
 

I. INTRODUCTION 

loating inductance simulation circuit is one of the most 
important circuit elements widely used in many 

applications such as oscillator design, filter design and 
cancellation of parasitic elements.  However, unfortunately, 
a large-valued physical inductor is not allowed to fabricate 
in the integrated circuit technology because of a large chip 
area and high-cost requirements.  Although on chip spiral 
inductors with low quality factor (Q) can be performed to 
alleviate this restriction, their values are very small, usually 
in order of 1 nH.  Accordingly, to overcome this problem, 
many actively simulated floating inductor circuits using 
various high-performance active devices have been reported 
in literature [1]-[10].  However, all of them need a large 
number of active and passive elements for their realizations. 

Lately, the new active building block called voltage 
differencing buffered amplifier (VDBA) is introduced in 
[11], to provide the alternative possibility of electronically 
controllable voltage-mode analog signal processing circuits 
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and solutions.  Several applications based on using VDBAs 
as active elements in mainly analog signal processing have 
been developed [12]-[20].  This work presents an actively 
floating lossless inductance simulator topology using only 
two VDBAs and one grounded capacitor.  The proposed 
synthetic floating inductor is electronically tunable through 
the transconductance gains of the VDBAs.  The 
performance of the proposed floating simulator circuit is 
provided for illustrative example of the active RLC 
bandpass filter design.  PSPICE simulation results with 
standard 0.35-µm BiCMOS process parameters are obtained 
to confirm the theory. 

 

II. DESCRIPTION OF THE VDBA 

As symbolically shown in Fig.1, the VDBA is a four-
terminal versatile active building block, which consists of 
high-impedance voltage differencing input terminals p and 
n, high-impedance current output terminal z, and low-
impedance output of voltage buffer noted as w.  The 
terminal relations of the VDBA can be expressed by the 
following matrix equation : 
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In (1), the parameter gm refers to the transconductance gain 
of the VDBA, which normally is controlled by electronic 
means through the external supplied current or voltage.   
 

 
 

Fig. 1.  Circuit representation of the VDBA.   
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Fig.2  BiCMOS implementation of the VDBA. 

 
 
Fig.2 shows the schematic BiCMOS realization of the 

VDBA [21], which mainly consists of the input stage 
consists of input transistors M1-M2, Q1-Q4, and current 
mirror transistors Q5-Q6, M3.  Transistors M4-M5 andM6-M7 
represents the output stage, which constitute the terminal w.  
In this structure, the effective small-signal transconductance 
(gm) can be derived as :   
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where VT 26 mV at 27C is the thermal voltage.  It may be 
easily visualized that the gm-value is tunable linearly and 
electronically by an external DC bias current IB.  

Moreover, if we assume that the transistors M4-M7 are 
biased to operate in the active region.  As a result, the small-
signal voltage gain between vw and vz is approximated to : 
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where gi denotes the conductance of transistor Mi (i = 4, 5, 
6, 7).  Also assume that g4  g5 and g6  g7, thus vw  vz as 
expected.     

 

III.   PROPOSED FLOATING INDUCTANCE SIMULATOR 

Fig.3 shows the proposed floating inductance simulator 
circuit constructing only two VDBAs and one grounded 
capacitor without needing any external passive resistors.  
The synthetic inductor is, therefore, canonical number of 
active and passive components and also preferable for 
further integration point of view.  Circuit analysis yields the 
input impedance for the proposed floating inductor in Fig.3 
as : 
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where gmi is the transconductance value of i-th VDBA (i = 
1, 2).  Thus, it can be realized that the circuit of Fig.3 
simulates a floating inductor with an equivalent inductance 
(Leq) :  
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It is clearly seen from (5) that the Leq–value can be 

adjusted electronically by controlling the values of gm1 
and/or gm2.     

 

 
 

Fig. 3.  Proposed lossless floating inductance simulator using VDBAs.   

 

IV.   NON-IDEAL EFFECTS OF THE VDBA 

A.  Non-Ideal Transfer Gain Effects 

Considering the non-ideal transfer gains of the VDBA, 
the port relationship from (1) can be re-expressed by the 
following matrix equation :  
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where  and  are the transconductance inaccuracy and the 
non-ideal voltage gain of the VDBA, respectively.  The 
simulator of Fig.3 is re-analyzed using (6), and the non-idel 
input impedance function is modified to be : 
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Normalized various sensitivities of Zin with respect to 

active and passive components calculated from (7) are given 
by : 
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which are all no more than unity in absolute value.   
Therefore, it can be realized that the proposed inductor in 
Fig.3 exhibits low sensitivity performance.     

 

 
 

Fig. 4.  Non-ideal model of the VDBA including its parasitic elements.   

 

B.  Parasitic Impedance Effects 

The effects of various parasitic impedances of the VDBA 
used in the proposed inductor is taken into consideration.  In 
practice, the behavior model of the VDBA consisting 
various non-ideal parasitic elements can be shown in Fig.4.  
Let Rp, Rn, Rz and Rw represent the parasitic resistances and 
Cp, Cn and Cz denote the parasitic capacitances of the 
corresponding terminals of the VDBA.  The proposed 
inductor of Fig.3 is re-analyzed taking into consider the 
above parasitic effects.  In this case, it can be seen that, at 
the terminal z of the VDBA1, the parasitic impedances 
Rz//Cz appearing in parallel with the external grounded 
capacitor C1 bring an extra parasitic pole (p) to the 
synthetic inductor circuit.  Assuming C1 >> Cz, the extra 
pole p can be defined as :  
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It should be noted from (11) that the high-frequency 

performance of the proposed floating inductor would be 
affected because of this parasitic pole.  However, to prevent 
this effect, the following condition should satisfy such that :  
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V.   PERFORMANCE SIMULATIONS AND DISCUSSIONS  

To verify the theoretical prediction, the proposed circuit 
in Fig.3 was simulated with PSPICE program.  To 
implement the VDBA device in the following simulation 
purpose, the BiCMOS technology structure depicted in 
Fig.2 has been employed using 0.35-µm BiCMOS 
technology [21].  Transistor aspect ratios (W/L in µm/µm) 
were set as : 14/0.7 and 28/0.7 for all NMOS and PMOS 
transistors respectively.  The DC supply voltages and bias 
currents were respectively chosen as : +V = -V = 1 V and  IA 
= 25 µA.  

The proposed floating inductor in Fig.3 was simulated 
with the following active and passive component values : C1 
= 10 nF and gm = gm1 = gm2  0.98 mA/V, 1.92 mA/V, 2.88 
mA/V, (IB = IB1 = IB2  25 µA, 50 µA and 75 µA), which 
results in : Leq = 12.3 mH, 2.7 mH and 1.2 mH, respectively.  
Fig.5 shows simulated time-domain responses for vin and iin 
of the input impedance of the proposed inductor.  The 
results obtained from the simulation show that the current iin 
lags the voltage vin by 89.  Fig.6 shows the simulated 
frequency characteristics for the input impedance of the 
proposed inductor, which demonstrate that the useful 
frequency range is approximately from 10 kHz to 800 kHz. 
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Fig. 5.  Simulated time-domain responses for vin and iin of the proposed 
floating inductor of Fig.3.    

 

VI.   APPLICATION TO FILTER REALIZATION   

As an application example of the synthetic floating 
inductance simulator of Fig.3, it is applied in the RLC 
bandpass filter as shown in Fig.7.  The Leq is simulated with: 
C1 = 10 nF and gm = gm1 = gm2  1.92 mA/V (IB = IB1 = IB2  

50 µA), yielding  Leq  2.7 mH.  Fig.8 shows the idea and 

simulated frequency responses of the bandpass filter in 
Fig.7, which appear that the simulated values are in good 
agreement with the ideal values.  Furthermore, in order to 
demonstrate the electronic controllability of the proposed 
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floating inductor, the simulated gain responses of the 
bandpass filter in Fig.7 with tuning Leq-value are shown in 
Fig.9.  The value of Leq in Fig.7 was respectively adjusted to 
12.3 mH, 2.7 mH and 1.2 mH, by changing gm = 0.98 
mA/V, 1.92 mA/V, 2.88 mA/V (IB = 25 µA, 50 µA  and 75 
µA).  This adjusting leads to obtain the center frequency fc  
45.3 kHz, 96.7 kHz and 145.1 kHz, respectively.   
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Fig. 7.  RLC bandpass filter realized with the synthetic floating inductor of 
Fig.3.    

 

VII.   CONCLUSION   

The synthetic lossless floating inductance simulator has 
been presented in this paper. The simulator contains only 
two VDBAs and one grounded capacitor, which is desired 
for further integrated circuit implementation.  The 
equivalent inductance values can be adjusted electronically 
through the gm-values of the VDBAs.  The usefulness of the 
proposed circuit is demonstrated on the RLC bandpass filter 
design example.  The workability of the proposed structure 
has been supported by PSPICE simulations using standard 
0.35-m BiCMOS technology. 

 

 

Fig. 8.  Simulated frequency responses of the bandpass filter in Fig.7 at fc  
96.7 kHz.    
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Fig. 9.  Gain responses of Fig.7 with electronically variable Leq. 
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