
 

  

Abstract— Advances in data acquisition technology have 

made it possible to obtain high-density samples from the surface 

of an object. Such samples produce thousands or even millions 

of data points. Processing such large amounts of data is 

computationally expensive. This study presents a novel method 

for point cloud simplification using an estimated local density of 

the point cloud. The proposed approach is robust to noise and 

outliers. The method is comprised of three stages. The first stage 

uses the expectation maximization algorithm to cluster the point 

cloud according to the local distribution of the points. The 

second stage identifies the points with a high curvature. These 

are feature points that will not be removed. In the final stage, a 

linear programming model is applied to reduce the cloud. Each 

cluster is a graph where the nodes have a cost defined by the 

inverse of its distance to the centroid. The results show that the 

reduced cloud is a good approximation of the original. 

 
Index Terms— Expectation maximization, Linear 

programming, Point cloud simplification, 3D objects. 

 

I. INTRODUCTION 

hree-dimensional (3D) reconstruction constitutes an 

active research area due to its wide range of 

computational applications including robotic vision [1], 

cultural heritage restoration, archeology, medical imaging 

processing, reverse engineering and graphical computation. 

3D object reconstruction is based on a digital computational 

model obtained from a data set of discrete samples that hold 

their geometric characteristics, such as volume and shape. It 

is a non-trivial task that includes five stages, namely, 3D 

image acquisition, registration, integration, segmentation and 

surface fitting. 

3D image acquisition allows us to obtain partial spatial 

information from real objects. By merging the different 

images, we can form a cloud of points that describe the 

geometry of the object surface.  

Due to the technological progress in laser scanning 

devices, it is possible to densely sample real objects. Such 

dense samples may contain thousands or even millions of 3D 

points. Point set simplification, without accuracy loss, is of 

interest to the scientific community because of the 

computational cost and memory requirements to process 

large data sets. The reduction of samples is an important 

aspect of the design of scalable algorithms for visualization 

and modeling [2].  

The 3D laser scanning process can generate redundant 

information mainly in planar regions. Therefore, point 

simplification or surface simplification allows us to produce 

a mathematical approximation of a given surface using a 

reduced data set. Such approximations should be as near as 

possible to the original surface [2].   

Several different approaches have been proposed for 

point cloud simplification [2]–[7]. The typical disadvantages 

of these methods are: 

• The local and global distributions of the original 

data set are altered. 

• Parameter dependency. 

• The need for additional procedures such as 

polygonal mesh estimation. 

 

This work describes a new method for point cloud 

simplification. In contrast to previous methods, it requires no 

additional mesh estimation procedure and is robust to the 

presence of noise and outliers.  

The proposed methodology has three stages. The first 

stage subdivides or clusters the point cloud according to local 

distribution and it consecutively estimates a curvature 

approximation for each one of the points. Thus, the selection 

of feature points uses the curvature measurements, selecting 

those that lie on edges or corners. This allows sharp 

geometrical characteristics to be maintained. Therefore, the 

reduction stage does not consider feature points. Finally, a 

linear programming model is established. The objective 

function maintains the proportion of the density of the 

original points and reduces the data set.  

Section II describes the related work on point cloud 

simplification. Section III explains the proposed 

simplification method. In Section IV, we give the results and 

discussion. Finally, we conclude our study in Section V. 

 

II. RELATED WORK 

After the acquisition procedure, thousands or millions of 

data points can be obtained. Increasingly complex models are 

becoming more frequent because of the ease with which 

modern acquisition systems, such as range scanners, acquire 

these models. However, because the amount of data often 

exceeds the hardware performance, it is necessary to apply 

some procedure to reduce the original data that holds the 

accurate measurements. These approaches depend on the data 

representation. 

The capturing of partial information from a fixed point 

of view is the basis of the traditional acquisition process. This 

type of representation is called range imaging. Multiple range 

images have to be acquired from views from different angles 

to obtain a complete object representation [8]. If the local 

coordinate systems of all images from an object are aligned 
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with a global coordinate system [9], [10], and the data is 

unified, we formed a point cloud. Due to the disadvantages of 

points used for visualization, they are transformed into an 

intermediate representation using polygons known as 

polygonal meshes. These meshes constitute the industry 

standard for visualization. Triangular and tetrahedral meshes 

are the most popular representations. For triangular meshes, 

there are many graphics library resources available, which is 

why triangles meshes are the most popular drawing primitive 

[11]. Consequently, data reduction procedures can be 

grouped into two main categories, mesh-based simplification 

and point-based simplification. 

Mesh-based simplification methods have been widely 

studied and can be classified into four approaches, namely, 

sampling, adaptive subdivision, decimation and vertex 

merging [12]. A more extended taxonomy was previously 

reported [11] that includes methods based on energy function 

optimization [13], [14] and sub-classification of the four 

methods mentioned previously. In many cases, a defined 

metric was used to regulate the simplification process. 

Simplification metrics can be divided into two classes, local 

or global, according to the feature that is measured. However, 

local properties are the basis of most of the proposed metrics, 

which guarantee the preservation of local features [15]. 

 Regardless of the types of methods used in mesh 

simplification, a mesh must be initially constructed. The 

mesh represents the connectivity of points through vertices 

and edges. The main advantage of meshes is that they can be 

used to easily estimate point neighborhoods and to define 

local continuous surface patches. In contrast, mesh estimation 

constitutes their main disadvantage due to the computational 

cost of mesh generation [16].  

Point simplification methods avoid this computational 

cost. In [17], the point reduction assumes that the original 

point set is redundant. A decimation approach applied to the 

point set minimizes the redundancy. The point selection for 

reduction takes into account the point contribution to a 

moving least squares (MLS) surface representation. The 

contribution of a point is dictated by the definition of the 

shape. 

In [6] presented different strategies for surface 

simplification from an unstructured point cloud. The 

implemented techniques cover incremental and hierarchical 

clustering, iterative simplification and particle simulation 

algorithms. The methods used local variation estimation and 

quadric error metrics to guide the simplification process, 

concentrating more points in regions of high curvature. The 

quadric error based technique and particle simulation 

methods generate approximations with low average errors but 

at high computational costs. The hierarchical clustering 

algorithm and uniform incremental clustering are 

computationally efficient but have higher average errors.  

In [2] presented a method for point simplification using 

intrinsic farthest point sampling. This constitutes an 

approximation of geodesic Voronoi diagrams. The method 

uses the extended fast marching concept for discrete Voronoi 

diagram estimation. The sampling from farthest point places 

the next sample in the middle of the least-known area of the 

sample domain. The method permits sampling with user 

defined density levels to maintain geometrical features. 

In [7] reported point simplification based on sample 

points using global distribution lines. The method uses star 

discrepancy as a sample quality measure. The reduced data 

set holds the spatial distribution of the original data set, but it 

needs an intermediate mesh representation. 

In [18] showed an approach for minimizing the standard 

deviation of original and reduced data sets. This reduction is 

based on local analyzes of the clusterization of the initial data 

set and the Voronoi diagram concept. The amount of 

reduction is controlled by a user specified data reduction 

ratio. Other approaches that used some user parameter 

specification include [2], [19]. 

In [9] proposed an adaptive recursive subdivision scheme 

for point cloud simplification. It uses k-means clustering 

using the maximum normal vector deviation as a scatter 

measurement. Each one of the formed clusters is recursively 

decomposed into smaller sub-clusters until a similarity 

threshold is reached. Then, the centroid is selected. The 

method initially applies a boundary cluster identification 

procedure to avoid boundary shrinkage and a loss in 

accuracy. 

In [20] introduced an algorithm for incremental planar 

simplification of dense cloud maps. The data used was a 

dense open scene point cloud from LIDAR (Light Detection 

and Ranging) scanners. The curvature estimation is the basis 

of the simplification procedure. Curvature estimation allows 

us to distinguish planar and non-planar surfaces. For a planar 

surface, it applies a region-growing scheme, fusing points 

with a similar tangent plane. Despite the fact that curvature 

based simplification methods have been widely studied, the 

methods are only suitable for real-time online operation. The 

reduction rate achieved is near to 90% of the planar input 

points.  

In [16] presented an algorithm for point cloud simplification 

with edge preservation. The local surface topology is 

approximated using an octree data structure. Using the octree 

structure, a point neighborhood is selected and a projection 

plane is estimated. It permits differentiation between the edge 

and non-edge points. The procedure does not remove edge 

points. For the remaining points, it calculates an importance 

measure based on the normal vector. 

III. POINT CLOUD SIMPLIFICATION METHOD 

Our method simplifies point cloud simplification into three 

stages. The first stage performs cloud clusterization of the 

points based on their local distribution using the expectation 

maximization (EM) algorithm. The second phase identifies 

points in high curvature areas and marks them as feature 

points. Finally, to reduce the cloud of points, we apply a linear 

programming model adapting points in each cluster to node 

net (graph). Figure 1 shows the proposed methodology. 

A. Local distribution based clustering 

Cluster approaches aim to determine the set of points in 

small uniform regions. The main idea for determining the 

homogeneous cluster is to remove points without a significant 

loss of geometrical information. The clustering process uses 

the EM algorithms that consider the local distributions of the 

point set. 

The EM algorithm is a general iterative technique for 

computing the maximum likelihood or maximum posterior 

parameter estimation of an incomplete data problem. The EM 

algorithm is similar to k-mean approaches, which are 

relatively straightforward. For a given fixed number of k 

groups, they assign samples to the groups in a way to be as 

different as possible. The EM algorithm extends this basic 
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approach. Thus, despite assigning samples to clusters for 

maximizing the mean differences, it calculates the ownership 

probabilities based on one or more probability distributions. 

Therefore, the objective of the procedure is to maximize the 

overall likelihood of data given in the final set. 

 

 
 
Fig. 1. Block diagram of proposed method. 

 

In general, EM algorithms have two steps in each 

iteration, expectation and maximization. In the expectation 

step, the algorithm estimates the expectation of the 

likelihood, assuming that the latent variables were observed. 

Then, the maximization step computes the maximum 

likelihood, maximizing the expected likelihood previously 

estimated. New parameter values are used in subsequent 

interactions until convergence is reached [21]. 

Given an observed variable data set, ���, ��, … , ���, and 

initial parameter values for a mixture model in iteration 0, 	
�, ��,
 and Σ�,
, where c is each of k initial cluster, the basic 

iterative grouping algorithms proceed via a few steps: 

 

1. Compute the membership probability of each 

point in each cluster in iteration j. 

2. Update the mixture model parameters. 

3. Verify if convergence is reached, if not continue 

to iteration j+1 in step 1. 

 

For iteration j, for a point, ��, the membership 

probability in cluster c is given by [22]: 

 

�(�/��) = 	
���(��/�)��(��)  (1)

The new parameter values are thus estimated using: 

	
��� =  1� � �(�/��)�
���  

(2)

����,
 = ∑ �� ∙ �(�/��)����∑ �(�/��)����  (3)
 

For convergence verification, it uses the difference 

between the log likelihood of the mixture model at iterations 

j and j+1. The log likelihood in iteration j is given by: 

 

 � = � log $��(��)% =
�

���
� log &� 	
��� ∙ ��(��/�)

'


��
(

�

���
 (5)

Therefore, if ) � −  ���) ≤ ,, convergence is reached, 

otherwise a new iteration is computed. 

Due to the grouping of point clouds with data in 3D 

space, each �� corresponds to the distinguishing features that 

consider only the spatial locations along the three axes. 

 

B. Curvature estimation 

The curvature is an invariant measure of surfaces, it 

indicates how much they differ from being planar. 

Geometrically, it is the rate at which the tangent vector 

changes. Curvature estimation is called invariant because it 

remains constant under geometrical transformations, such as 

translations and rotations. This measurement is estimated at a 

particular point.  

Formally, the curvature can be defined by considering -(., /), a regular 0� continuous parametric surface in ℝ2 and 

the principal curvatures, 3�(.�, /�) and 3�(.�, /�), of - in -(.�, /�), which are defined as maxima and minimal normal 

curvatures, respectively. According to Euler’s theorem, the 

normal curvature of surface - in the tangent plane direction 

is (do Carmo, 1976):  

 3�(4) = 3� cos� 4 + 3� sen� 4 (6)

where 4 is the angle between the first principal direction and 

the tangent vector. 

From the 3� and 3� curves, we can derive two widely 

used curvature definitions known as the Gaussian and 

average curvatures. They are denoted as : and ;, 

respectively, and are defined as [23]: 

 12= > 3�(4)?4 = 3� + 3�2 = ;�@
�  (7)

12= > 3�(4)�?4 = 32 ;� −�@
�

32 : (8)

; = 12 (3� + 3�) (9)

: = 3� ∙ 3� (10)

The main limitation of the Gaussian curvature is that it 

equals zero when any of the principal curvature is zero. The 

problem with the average curvature is that the minimal 

surface always has H = 0. Another advantageous measure is 

the absolute curvature, A, given by: 

 A = |3�| + |3�| (11)

Regardless of the curvature type, to estimate it we can 

use any of the numerical algorithms for surface fitting. Fitting 

the surface at a given point permits us to calculate the 

curvatures K, H and A. We use the least-squares regression 

algorithm for local surface fitting. 

Σ�,
 = ∑ �(�/��)(�� − ����,
)(�� − ����,
)C���� ∑ �(�/��)����  (4)
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The curvature is an intrinsic surface feature that can 

describe the local geometrical variations. Therefore, to avoid 

points elimination which representing sharp geometrical 

variation, we estimate the curvature over each one of the 

points in the cloud and mark those which the estimated 

curvature exceeding a fixed threshold. For the threshold set, 

we calculate the local average mean curvature inside the 

cluster to which that point belongs. Specifically, we estimate 

the mean curvature, A�, for all points in a given cluster. The 

average mean curvature, AD�, is computed and the following 

rules are applied: 

 

a. If A� > AD �, the curvature indicates that a significant 

change of the surface has occurred at point i. This 

point is marked as a feature point. 

b. If A� < AD �, point i corresponds to a smooth area 

without sharp features. This point can be reduced in 

the next stage. 

 

C. Linear programming model 

 For each of the clusters, we adopt a linear programming 

model that selects the points by minimizing a cost function. 

The general procedure consists of two stages, density 

assessment cost function estimation and linear programming 

model solution.  

 

Cluster density estimation 

The density of the cluster uses the average of the 

inverse distance. The distance is measured from each of 

points to its centroid: 

 

G' = 1
∑ 1?�

����
 

(12)

where G' is the cluster k density, n is the number of points of 

the cluster and ?� is the distance from the ith point to the 

cluster centroid.   

 

Cost function calculation 

The inverse distance from the points to the centroid is the 

basis of the cost function (see Figure 2). Therefore, the cost 

value of the ith point is given by: 

 

0� = 1?� (13)

where 0� is the cost value of the ith node and ?� is the distance 

from node to centroid. 
 

 
Fig. 2. Cluster representation as a graph where the node cost is the inverse 

distance to the centroid. 

 

Linear programming model solution 

The main objective of the linear programming model is 

to select a reduced set, which has a density equivalent to the 

original data set. Mathematically, it is impossible to obtain 

the same density measure if the points of reduced set are 

scattered over the same area of the original data set. As a 

result, we search for an equivalent or proportional density. 

Therefore, G
 = 3G
H, where G
 is the original cluster 

density, G
H is the reduced cluster density and k is a 

proportionality constant given by 
�

IJ, where �K is the 

simplification percentage. Therefore, the objective function 

is defined as: 

 L = |3G
H − G
| (14)

where, 

  

G
H = 1�. � 1?�
�H

���
 (15)

where nr is the amount of points of the reduced cluster, 

defined as �. = M� ∙ �KN, and n is the number of points of the 

original cluster. Due to the nonlinearity of the absolute value 

function, we transform it as: 

 OP� L = |CTx| (16)

Subject to: 

 Ax = b (17)

Therefore, 

 OP� L = V (18)

Subject to: Ax = b 0Wx  ≤  V −0Wx ≤ V V ≥ 0 

(19)

The complete model with all variables is established as: 

 

L = Z30��. �� + 30��. �� + ⋯ + 30�
�. ��
 − G
��
��Z (20)

Substitute,  

OP� L = y (21) 

Subject to: 

�� + �� + �2 + �\ + ⋯ + ��
 = �H (22)

��
�� = 1 (23)

30��. �� + 30��. �� + ⋯ + 30�
�. ��
 − G
��
�� ≤ V (24)

− 30��. �� − 30��. �� − ⋯ − 30�
�. ��
 + G
��
�� ≤ V (25)

�� ∈ �0,1� (26)
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Eq. 22 limits the number of points in the cluster to �. 

according to a simplification percentage. The assignment, ��
�� = 1 (Eq. 23), guarantees that the minimization 

procedure selects the point set for minimizing Eq. 21. Eqs. 24 

and 25 are used to linearize the absolute function. Finally, Eq. 

26 ensures that the �� decision variables are binaries. 

 

Error measurement 

Frequently, error measurement on reduced surfaces is 

based on the visual evaluation of the surface generated from 

reduced point clouds. However, in order to improve the error 

analysis, we consider both visual and numeric error 

estimation. In a similar way to [6], the numeric error 

estimation is based on the measured distance between 

original and reduced point cloud. 

We measure the average of Euclidean distances between 

the original point cloud, �, and the surface generated by the 

reduced point cloud, �^. Since our method is mesh-free, we 

estimated the distance from each point in �to the closest local 

planar approximation in �^, i.e. we compute the distance d(pa, S^), where -^ the local planar approximation in �^ 
closest to pa. 

Given a point pa ∈ P, in order to get its corresponding S^,  
we select the set of points NHa (neighborhood) in P′ closest 

to pa. The NHa point set is selected using a kd-tree data 

structure and is used for estimating the least squares plane Lhij using Principal Analysis Component (PCA) [24], which 

represents the local approximation  S′ (see Fig. 3). 

Fig. 3. Error computed as distance  from �� to klmn. 
 

Thus, we compute the difference between original point 

cloud and reduced point cloud, as the mean of distances 

between each point ��  to its closest plane klmn . 
 

 = 1o � ?(�� , kpq� )
l

���
 (27)

 

IV. RESULTS AND DISCUSSION 

The proposed method has been implemented using 

Matlab R2014a software on an 8 GB memory PC with an 

Intel Core i7 processor running at 2.2 GHz. 
 

A. Clustering 

Figure 4 show the results of the clustering stage applied 

to the Stanford bunny and Max Planck models using 20 

clusters. 

  

a) 

  

b) 

 
Fig. 4. Clusters formed by the EM algorithm using the a) Stanford bunny and 

b) Max Planck models. 

 

B. Feature point selection 

We test the curvature-based approach on the selection of 

feature points in different models. Figure 5 shows the original 

model and its estimated curvature maps. Points not in green 

points correspond to feature points. Conserving these points 

in the reduced version allows for the preservation of boundary 

and geometrical characteristics. Thus, the next stage applies 

the reduction procedure using only the non-feature points. 

 

C. Linear programming model reduction 

Figures 6 and 7 show the results obtained using the 

proposed method. In Fig. 6, we used the Stanford bunny 

model with 35.947 points and applied the method to reduce it 

by 70%, 80% and 90%, respectively. The model reduced 

versions had 20.130, 10.784, 7.189 and 3.594 points, 

respectively. After the reduction stage, we join the feature 

point set and the reduced data set to form the resulting 

reduced point cloud. For graphical analysis, we triangulate 

and render it. The reduced model preserves the geometrical 

characteristics of the original models, even for the 90% 

reduced models.  

The Fig. 7 shows the results obtained using the Max 

Planck model. The original data set has 49.132 points and the 

reduced models have 24.566, 9.826 and 4.913 points, 

corresponding to reduction rates of 70%, 80% and 90%, 

respectively. In the same way as the above model, the reduced 

version held the geometrical features from the original model. 

For high reduction rates of 80% and 90%, some surface 

discontinuities appear. These discontinuities or holes are over 

planar regions.  
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D. Computational Effort 

The Fig. 8 shows average computation times for different 

point cloud simplification executions setting the number of 

clusters to 15, 20, 25 and two 3D model. Due to initially the 

point simplification algorithm use only 3d points information, 

curvature calculation depends on the correct normal 

estimation. We report the averages times for the normal 

estimation, clustering and simplification stage on Table I. 

Consider the curvature calculation time as a factor of the 

normal estimation depending on point cloud size. Note that 

for clustering the time increases in a no linear way with the 

cluster size, in fact, clustering constitutes the most expensive 

stage. The simplification step is the least expensive stage with 

a variance of approximately 0,2 seconds for the multiples 

configurations. 

The Fig. 9 shows the behavior of the error varying the 

number of the clusters from 10 to 35 with reduction rate of 

70%, 80% and 90%. The error tends to decrease when the 

number of clusters increased and the reduction rate decreased. 

That behavior is predictable because there are more points 

when less reduction rate is applied. Using more clusters allow 

a best geometric representation of the surface. However, the 

more increase the number of clusters more expensive the 

computational cost of the process. 
 

 
 

a) b) 

  
c) d) 

Fig. 5. Curvature-based selection of feature and non-feature points by 

curvature estimation. 

 

  

a) 

  
b) 

  

c) 

 
 

d) 

 
Fig. 6. Stanford model simplification, surface and mesh structure. a) Original 

model, reduced model using reduction rates of b) 70%, c) 80% and d) 90%.  

 

  
a) b) 

  
c) d) 
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e) f) 

  
g) h) 

 
Fig. 7. Max Planck model simplification, solid and wireframe images. a-b) 

Original model, b-h) reduced model using 70%, 80% and 90% reduction rate, 

respectively. 

 

a) 

b) 

Fig. 8. Average time of normal estimation, clustering and simplification for 

used model varying the number of clusters from 15 to 25 clusters, a) bunny 

model and b) Max Planck model.   

 

a) 

b) 
Fig. 9. Error behavior depending on the number of clusters, varying from 15 

to 35 for reduction rates of 70%, 80% and 90% using the bunny model (a) 

and the Plank model (b).   

V. CONCLUSIONS 

We have presented a new approach for point cloud 

simplification. The method removes points that hold the local 

and global geometric features.  

The principal advantage of using an EM based method 

for clustering of the point cloud is that it allows for more 

homogeneous cluster generation. However, the disadvantage 

is that increasing the amount of clusters generates poorly 

dense clusters when the original data set has a low density.  

The mean curvature is used for feature point selection 

and it allows the main geometrical characteristics of the 

models to be retained. Even for high reduction rates of 80% 

and 90%, the models preserved the local and global geometric 

features. The method guarantees geometric feature 

preservation because the reduction algorithm does not 

remove high curvature points. 

A linear programming model was applied to the point 

cloud reduction, addressing the problem from an optimization 

perspective. 

Future works must address the automatic estimation of 

the amount of clusters. In the actual state, it is a user-defined 

parameter. 

We believe, however, that using a faster technique for 

clusters generation made more suitable the whole algorithm. 

The linear programming method should include multiple 

objectives to avoid hole generation. Thus, an additional 

objective in the optimization problem should guarantee 

uniformly distributed cluster generation. 
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TABLE I 

 POINTS REDUCTIONS AND COMPUTATIONAL TIME AVERAGE. 

  Reduction rate and number of clusters 

  90% 80% 70% 

Model Stage 15 20 25 15 20 25 15 20 25 

P
la

n
ck

 Normal Estimation 15,656 18,817 19,780 21,728 24,266 21,855 21,028 21,111 21,965 

Clustering 44,690 84,424 179,546 114,362 127,193 172,894 69,542 77,910 227,683 

Simplification 6,028 4,946 5,324 6,464 5,441 5,620 6,429 5,748 5,337 

B
u

n
n

y
 Normal Estimation 16,494 19,963 22,083 21,925 22,067 23,118 21,056 21,984 21,890 

Clustering 68,171 49,935 68,561 39,288 91,916 97,635 32,665 36,966 96,907 

Simplification 3,521 3,593 3,578 4,853 4,111 3,568 3,634 3,797 3,826 
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