
 

 

Abstract—There are several limitations of DBSCAN: 1) 

parameters have to be set; 2) the time consumption is intolerable 

in expansion; 3) the algorithm is sensitive to the density of 

starting points; 4) it is difficult to identify the adjacent clusters 

with different densities. In this paper, an enhanced and efficient 

density clustering algorithm for datasets with complex 

structures is proposed, named GISN-DBSCAN. Firstly, we 

propose an extended range query algorithm based on fixed-grids 

to reduce the time cost of searching the nearest neighborhood. 

Then the nearest neighbors (NNk) and reverse nearest neighbors 

(RNNk) are used to establish the k-influence space neighborhood 

of each point. Finally, a computational method of k-outlierness 

function is presented to distinguish the border points and noise 

points accurately. Experimental results demonstrate that 

GISN-DBSCAN can address the drawbacks of DBSCAN 

algorithm and identify the border points and noise points 

effectively. Moreover, the efficiency of GISN-DBSCAN has been 

greatly improved under the premise of guaranteeing the 

clustering quality. 

 
Index Terms—density-based clustering, extended range 

query, k-influence space neighborhood, border points detection 

 

I. INTRODUCTION 

LUSTERING is a fundamental problem and used in a 

variety of areas of computer science and related fields for 

data analysis [1], [2], such as pattern recognition, artificial 

intelligence, image segmentation, text analysis [3], [4], etc. 

The clustering algorithms can be roughly classified into 

partitional algorithms [5], hierarchical algorithms [6], 

density-based algorithms [7], grid-based algorithms [8] and 

model-based algorithms [9]. 

DBSCAN (Density-Based Spatial Clustering of 

Application with Noise) [10] is the clustering algorithm which 

implements the density-based strategy. The clusters with 

arbitrary shape and different sizes can be found by DBSCAN, 

and the noise points can be identified effectively. It does not 

require the users to specify the number of clusters. But there 

are following drawbacks: 1) parameters, Eps and 
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Minpts in which Eps represents the maximum radius of a 

neighborhood and Minpts means the minimum number of data 

points contained in such a neighborhood, are difficult to be set 

without any prior knowledge. 2) The complexity of searching 

the nearest neighborhood of each point is high when dealing 

with the large dataset. 3) It is sensitive to the density of the 

starting point. Different starting points will result in various 

consequences. And 4) it is difficult to identify the adjacent 

clusters of different densities. A single dense cluster may 

consist of two adjacent areas with significantly different 

densities (both higher than a threshold) [11]. 

To overcome the drawbacks of DBSCAN mentioned above 

and identify the border points and noise points effectively, an 

enhanced density clustering algorithm for datasets with 

complex structures is proposed in this paper, named 

GISN-DBSCAN. Moreover, an extended range query 

algorithm based on fixed-grids is firstly proposed to reduce 

the time cost of searching the nearest neighborhood of each 

point. Then the nearest neighbors (NNk) and reverse nearest 

neighbors (RNNk) are used to establish the k-influence space 

neighborhood of each point, which can reduce the amount of 

parameters effectively and identify the adjacent clusters of 

different densities. At the same time, it is not sensitive to the 

density of the starting point. Finally, a computational method 

of k-outlierness function (OLFk) is proposed to distinguish the 

border points and noise points effectively. 

The rest of this paper is organized as follows. Related work 

is discussed in Section II, some definitions and details of 

GISN-DBSCAN are described in Section III. Several 

experimental studies are analyzed in Section IV and we 

summarize our paper in Section V. 

II. RELATED WORK 

Clusters, obtained by DBSCAN algorithm, are the dense 

areas which are separated by the sparse clusters or blank areas. 

For each point p in dataset, the number of points contained in 

the ε-neighborhood needs to be compared with Minpts. And 

the points will be clustered into a cluster with density 

connected characteristic. 

To improve the efficiency, a clustering algorithm based on 

density and grid for large data bases was proposed in [12], 

named GCHL. However, it is sensitive to the order of 

inputting data and two data-dependent parameters are 

difficult to be set. A concept of local outlier factor, named 

LOF, and outlier detection algorithm were proposed in [13]. 

The proposed algorithm could provide better results than 

DBSCAN algorithm. A computational method of local outlier 

factor (INFLO) was proposed in [14]. By calculating the 
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nearest neighbors (NNk) and reverse nearest neighbors 

(RNNk), INFLO could capture the degree of the outlierness of 

each point accurately. The NNk and RNNk were successfully 

applied to DBSCAN algorithm in [15], named IS-DBSCAN. 

However, the proposed algorithm requires large time 

overhead, and the complexity is high. 

III. ALGORITHM DESCRIPTION 

A. Definition 

Let D = {p1, …, pn} denote a set of n points. Each point pi

∈D is a d-dimensional vector <pi(1), pi(2),…, pi(d)> where 

pi(η) represents the η-th dimension of the point and n is the 

total number of points in D. 

Definition 1: (grid cell) Our algorithm is parameterized by 

ε. According to the ε, each dimension of the data space is 

divided into n’ spaces, then the whole data space will be 

partitioned into grids and the length of each grid is ε. 

Definition 2: (t-extended rectangular domain) We denote 

the grid cell as Cell, and the Cell are referred to as the center 

and extended t cells along the positive direction and the 

opposite direction of each dimension. So the area, covered by 

the grid set which is formed by the Cell and extended cells, is 

named the t-extended rectangular domain. 

Example 1: Considered some of these 2-dimension data 

points in Fig 1. When t = 0, the t-extended rectangular domain 

is covered by {Cell}. When t = 1, the t-extended rectangular 

domain is covered by {Cell, Cell1, Cell2, Cell3, Cell4, Cell5, 

Cell6, Cell7, Cell8}. 

Definition 3: (kdist(p)) The k-distance of p where p∈D, 

denoted as kdist(p), is the distance dist(p,q) between p and a 

point q in D, such that: 1) at least for k points q’∈D, it holds 

that dist(p, q’) ≤ dist(p, q) and 2) at most for (k-1) points q’

∈D, it holds that dist(p, q’) < dist(p, q). 

Definition 4: (denk(p)) The density of p, denoted as denk(p), 

is the inverse of k-distance of p, i.e. denk(p) = 1/kdist(p). 

Definition 5: (NNk(p)) The k-nearest neighborhood of a 

point p, denoted as NNk(p), is a set of points o∈D with dist(p, 

o) ≤ kdist(p): NNk(p) = {o∈D \ {p}| dist(p, o) ≤ kdist(p)}, and 

|NNk(p)| is denoted as the number of points in NNk(p). 

Definition 6: (RNNk(p)) The reverse k-nearest 

neighborhood of a point p, denoted as RNNk(p), is defined as 

RNNk(p) = {q∈D | p∈NNk(q)}, and |RNNk(p)| is denoted as 

the number of points in RNNk(p). 

Definition 7: (ISNk(p)) The k-influence space 

neighborhood of a point p is defined as ISNk(p) = {q | q∈
NNk(p)∩RNNk(p)}, and |ISNk(p)| is denoted as the number of 

points in ISNk(p). 

Example 2: Considered the 2-dimension data points in Fig 

2. Suppose that we would identify the ISNk of each point with 

k = 3. Fig 2 shows that the k-distance of p is the distance dist(p, 

q3) between p and q3. The k-nearest neighborhood of p is 

NNk(p) = {q1, q2, q3}. Similarly, NNk(q1) = {p, q2, q4}, NNk(q2) 

= {p, q1, q3}, NNk(q3) = {p, q2, q5}, NNk(q4) = {p, q1, q2, q5}, 

NNk(q5) = {q2, q3, q4}. After that, the reverse k-nearest 

neighborhood of each point can be obtained. RNNk(p) = {q1, 

q2, q3, q4}, RNNk(q1) = {p, q2, q4}, RNNk(q2) = {p, q1, q3, q4, 

q5}, RNNk(q3) = {p, q2, q5}, RNNk(q4) = {q1, q5} and 

RNNk(q5) = {q3, q4}. Finally, k-influence space neighborhood 

of each point will be obtained by combining NNk and RNNk 

together. Then, ISNk(p) = {q1, q2, q3}, ISNk(q1) = {p, q2, q4}, 

ISNk(q2) = {p, q1, q3}, ISNk(q3) = {p, q2, q5}, ISNk(q4) = {q1, 

q5}, ISNk(q5) = {q3, q4}. 

Definition 8: (core point) If the number of points in ISNk(p) 

is more than 2k/3 (i.e. |ISNk(p)| > 2k/3) [15], then p is a core 

point. 

Definition 9: (directly density reachable) Point q is directly 

density reachable from p if q∈ISNk(p) and |ISNk(p)| > 2k/3. 

Definition 10: (density reachable) If there is a chain of 

points p1, p2,…, pn, where p1 = q，pn = p，pi∈D，1 ≤ i ≤ n, 

such that pi+1 is directly reachable from pi and pi is a core point 

(i.e. |ISNk(pi)| > 2k/3), then q is density reachable from p. 

Definition 11: (density connected) If there is a point o∈D 

such that p and q are density reachable from o, then a point p 

is density connected to a point q. 

Definition 12: (border point, noise point) If a point p is not 

a core point and p is directly density reachable from a core 

point, then p is a border point. If p is neither a core point nor a 

border point, then p is a noise point. 

Definition 13: (OLFk) The k-outlierness function of a point 

p, denoted as OLFk(p), is defined as: 
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OLFk(p) is the ratio of the average density of points in 

ISNk(p) to denk(p) and |RNNk(p)|. When a point p is the noise 

point, there is no points or only have noisy points in RNNk(p) 

and ISNk(p). Accordingly, when the number of points in the 

 
Fig 1.  t-extended rectangular domain 

 

 
Fig 2.  Identifying the ISNk in t-extended rectangular domain 
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k-influence space neighborhood of a point pi∈D is 0 (i.e. 

|ISNk(pi)| = 0), then pi is the noise point. When the number of 

points in the k-influence space neighborhood of pi is more 

than 0, but less than 2k/3 (i.e. 0 < |ISNk(pi)| < 2k/3), then we 

calculate the OLFk(pi). If OLFk(pi) > 1, then pi is the noise 

point, otherwise, pi is the border point. 

B. Extended Range Query Algorithm based on Fixed-grids 

In this section, the sequential version of the extended range 

query algorithm based on fixed-grids is introduced. If we 

calculate the density of each point in D, we need to execute 

range query and judgement of each point and calculate the 

distance over and over again. Therefore, the time complexity 

is O(n
2
). As the amount of data increasing, the time cost of 

DBSCAN algorithm will be enormous [16]. Accordingly, an 

extended range query algorithm based on fixed-grids is 

proposed in this section. 

The k-distance of p is always constant in the whole data 

space, and the k-nearest neighborhood of p is composed of the 

nearest k points from p. Therefore, when we calculate k’dist(p) 

and den’k(p) in the areas which is composed of different grids, 

the minimum value of k’dist(p) is the k-distance of p (i.e. kdist(p) 

= k’dist(p)min), and the maximum of den’k(p) is the density of p 

(i.e. denk(p) = den’k(p)max). If the number of points in 

t-extended rectangular domain of p is less than k+1, we set 

denk(p) = 0. The Algorithm 1 (see Table I) explains how the 

extended range query algorithm works. 

 
Table I 

PROCEDURE OF ALGORITHM 1 

Algorithm1: Extended Range Query Algorithm(ε, D) 

1: mark all points pi∈D as “UNCLASSIFIED” and t = 1 

2: for all pi∈D do 

3:   if pi is marked as “UNCLASSIFIED” then 

4:     while den(j-1)
k(pi)<den(j)

k(pi) or den(j-1)
k(pi)=den(j)

k(pi) = 0 do 

5:       obtain the t-extended rectangular domain for the t-th expansion of 

(t-1)-extended rectangular domain 

6:       calculate the den(j)
k(pi) of pi in t-extended rectangular domain 

7:       t++ 

8:     end while 

9:     calculate the NNk(pi) and mark pi as “CLASSIFIED” 

10:   end if 

11: end for 

12: for all pm∈D do 

13:   calculate the ISNk(pm) 

14: end for 

15: Output ISNk 

 

C. Procedure of GISN-DBSCAN Algorithm 

In this paper, GISN-DBSCAN algorithm only need a 

parameter k to calculate the NNk and RNNk of each point. 

Compared with DBSCAN algorithm, it not only reduces the 

number of parameters, but also ensures the sensitivity to the 

change of local density with regard to each point. So 

GISN-DBSCAN algorithm can identify the adjacent clusters 

with different densities. In essence, the reverse nearest 

neighbor RNNk(p) is composed of all the points whose 

k-nearest neighbors include p. So NNk and RNNk are 

symmetric neighborhood, and ISNk, obtained by calculation, 

is also symmetric. Therefore, GISN-DBSCAN algorithm is 

not sensitive to the densities of starting points. 

The procedure of GISN-DBSCAN algorithm can be 

divided into three steps. The first step is to scan the whole 

datasets, mark all points as “UNCLASSIFIED” and calculate 

ISNk of each point. If there is no point in ISNk(pi) (i.e. 

|ISNk(pi)| = 0), the point pi∈D will be marked as “NOISE” 

and “CLASSIFIED”. The second step is to identify whether 

the point pi is the core point successfully. If |ISNk(pi)| > 2k/3, 

then pi is the core point and marked as “CLASSIFIED” and 

current ClusterID. All the points in ISNk(pi) with 

“UNCLASSIFIED” will be inserted into SeedList. If |ISNk(pi)| 

≤ 2k/3, then pi is border point or noise point. Then we 

calculate the OLFk(pi), if OLFk(pi) > 1, then pi is noise point, 

otherwise, pi is border point and marked as “CLASSIFIED” 

and current ClusterID. If pi is border point, all the points in 

ISNk(pi) which is marked as “UNCLASSIFIED” will be 

inserted into SeedList. The last step of GISN-DBSCAN is the 

expansion of clusters on the basis of the points in SeedList. 

Taking a point pj in SeedList, and pj will be processed by the 

method of second step. A cluster is successfully completed 

until there is no points in SeedList. The second step and third 

step are repeated until all the points are marked as 

“CLASSIFIED”. The Algorithm 2 (see Table II) and 

Algorithm 3 (see Table III) explain how the GISN-DBSCAN 

algorithm works. 

 
Table II 

PROCEDURE OF ALGORITHM 2 

Algorithm2: GISN-DBSCAN(k, D) 

1: ClusterID=1, SeedList←φ  

2:  Extended Range Query Algorithm(ε , D) 

3:  mark all points pi∈D as “UNCLASSIFIED” 

4:  for all pi∈D do 

5:    while pi is marked as “UNCLASSIFIED” do 

6:      if |ISNk(pi)|>2k/3 then 

7:        mark pi as “CLASSIFIED”, pi is labeled as ClusterID 

8:        for each point pj∈ISNk(pi) do 

9:         if pj is marked as “UNCLASSIFIED” and pj ∉ SeedList then 

10:           add pj into SeedList 

11:         end if 

12:       end for 

13:     else 

14:       Noise Detecting(pi, ClusterID, SeedList) 

15:     while SeedList≠φ  do 

16:       select the head point p1 

17:       pi ←p1 

18:       remove p1 from SeedList 

19:     end while 

20:   end while 

21:   ClusterID++ 

22:  end for 

23:Output Clusters 

 
Table III 

PROCEDURE OF ALGORITHM 3 

Algorithm3: Noise Detecting(pi, ClusterID, SeedList) 

1: if |ISNk(pi)|=0 then 

2:   mark pi as “NOISE” and “CLASSIFIED” 

3: else 

4:   calculate the OLFk(pi) 

5:   if OLFk(pi)>1 then 

6:     mark pi as “NOISE” and “CLASSIFIED” 

7:   else 

8:     mark pi as “BORDER”, “CLASSIFIED” and ClusterID 

9:     for each point pj∈ISNk(pi) do 

10:      if pj is marked as “UNCLASSIFIED” and pj ∉ SeedList then 

11:         add pj into SeedList 

12:      end if 

13:    end for 

14: return pi, ClusterID, SeedList 
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D. Time Complexity 

Firstly, the data spatial is divided into grids. The maximum 

and minimum of each dimension in the space need to be 

calculated, so the time complexity is O(n*d), where n is the 

total number of points in D and d is the amount of dimensions. 

Secondly, all the points are mapped into the grid cells, so the 

time complexity is O(n). Thirdly, in terms of existing spatial 

indexing structure R tree, ISNk will be calculated in the 

extended rectangular domain of each point, so the time 

complexity is O(n*logm), where m is the total number of 

points in the extended rectangular domain of each point, and 

m is much less than n. Finally, each point in SeedList will be 

clustered and the time complexity is O(1) which has nothing 

to do with n. Thus, the time complexity of GISN-DBSCAN is 

O(n*d + n*logm). 

IV. EXPERIMENTAL SETUP 

A. Datasets 

Six datasets are used to evaluate the performance of 

GISN-DBSCAN algorithm. Synthetic Dataset (in Fig 3) 

consists of 2000 points in 2 dimensions. Aggregation Dataset 

[17] (in Fig 4) consists of 788 points in 2 dimensions. 

Aggregation* Dataset (in Fig 5) is generated by Aggregation 

Dataset which adds in random noise points. Iris Dataset, 

consists of 150 points in 4 dimensions. Harberman’s Survival 

Dataset consists of 306 points in 4 dimensions. Letter 

Recognition Dataset consists of 20,000 points in 16 

dimensions. The last three datasets are publicly available 

from the UC Irvine Machine Learning repository [18]. 

 
Fig 3.  Synthetic Dataset 

 

 
Fig 4.  Aggregation Dataset 

 
Fig 5.  Aggregation* Dataset 

 

The real cluster label of each point in the Synthetic Dataset 

and the real datasets of Iris, Harberman’s Survival, Letter 

Recognition is known, then we use the correct rate to evaluate 

the performance of DBSCAN, IS-DBSCAN [15] and 

GISN-DBSCAN in the following experiments. The correct 

rate can be defined as: Correct rate = (M / n) * 100%, where n 

is the number of points in dataset D, and M is the number of 

points which are correctly classified. 

B. Performance Comparison 

Synthetic Dataset is used in DBSCAN, IS-DBSCAN and 

GISN-DBSCAN in this subsection. The Synthetic Dataset has 

been increased by duplicating its original points, and the 

number of points is respectively 2,000, 6,000, 10,000, 14,000, 

18,000, 22,000. To prevent from generating exactly the same 

points, we add a small random noise whose range is between 

-1 and 1 with regard to each coordinate of the points. Fig 6 

and Fig 7 record the execution efficiency and correct rates of 

these algorithms respectively. Table IV indicates the correct 

rates of these algorithms in Iris, Harberman’s Survival and 

Letter Recognition. The result of each experiment is the 

average obtained from these algorithms by running 20 cycles. 

From Fig 6, the execution time of GISN-DBSCAN is 

significantly less than these of DBSCAN and IS-DBSCAN. 

When the data size is more than 10,000, the execution time of 

DBSCAN and IS-DBSCAN increases significantly, but 

GISN-DBSCAN still increases slightly. And this 

demonstrates that the extended range query algorithm can 

significantly improve the efficiency of GISN-DBSCAN, and 

substantially reduce the cost of range query. Fig 7 indicates 

that the correct rate of DBSCAN dropped significantly with 

the data size increasing, but the correct rates of IS-DBSCAN 

and GISN-DBSCAN, which are much higher than that of 

DBSCAN, dropped slightly. Table IV shows that there is no 

obvious difference between the correct rates of these 

algorithms in Iris and Harberman’s Survival. The reason is 

that the data sizes and dimensions of Iris and Harberman’s 

Survival are small. When dealing with Letter Recognition, the 

correct rate of GISN-DBSCAN is much higher than these of 

DBSCAN and IS-DBSCAN. 

C. Comparison of Clustering Quality 

Aggregation Dataset is used in this subsection. Fig 8 

indicates the comparisons in identifying adjacent clusters with 

various densities. Fig 9 shows the comparisons of the 

different starting data points.  

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_03

(Advance online publication: 24 May 2017)

 
______________________________________________________________________________________ 



 

  

Fig 6.  Comparison of execution time 

 
Fig 7.  Comparison of correct rates 

 
Table IV 

COMPARISON OF CORRECT RATES IN VARIOUS DATASETS 

Dataset DBSCAN(%) IS-DBSCAN(%) GISN-DBSCAN(%) 

Iris 99.68 99.74 99.81 

Harberman’s Survival 93.45 96.78 98.13 

Letter Recognition 80.02 87.89 95.43 

 
 

   
Fig 8.  Comparison in identifying adjacent clusters of various densities of DBSCAN, IS-DBSCAN, and GISN-DBSCAN 

 

   

   
Fig 9.  Comparison of the different starting data points of DBSCAN, IS-DBSCAN, and GISN-DBSCAN 
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Fig 10.  Comparison in detecting border points of DBSCAN, IS-DBSCAN, and GISN-DBSCAN 

 

Fig 8 shows that IS-DBSCAN and GISN-DBSCAN are 

sensitive to the adjacent clusters with various densities which 

can be detected effectively. But DBSCAN cannot detect the 

adjacent clusters and gather the adjacent clusters with various 

densities into one cluster. The reason for this is that DBSCAN 

algorithm needs two global parameters Eps and Minpts. When 

the density of cluster changes, two global parameters cannot 

be applied to the clusters whose densities have changed. Fig 9 

indicates that when the different starting points are selected 

(the black circles are the different starting points), the 

different results will be obtained by DBSCAN. However, the 

results obtained from IS-DBSCAN and GISN-DBSCAN are 

the same. The reason for this is that directly density reachable 

and density reachable are asymmetric for DBSCAN, that is if 

xi is directly density reachable (or density reachable) from a 

core point xj, maybe xj is not directly density reachable (or 

density reachable) from xi. This characteristic of DBSCAN 

can explain that different starting points will result in different 

effects. However, the points in ISNk belong to the nearest 

neighbors and the reverse nearest neighbors, and ISNk is used 

in GISN-DBSCAN. Moreover both the directly density 

reachable and density reachable have the characteristic of 

symmetric. Thus, GISN-DBSCAN always obtains the same 

clustering results even if different starting points are selected.  

D. Border Points Detecting 

Aggregation* Dataset is used in this subsection. Fig 10 

indicates the comparisons in detecting border points. 

Fig 10 shows that both DBSCAN and GISN-DBSCAN 

successfully detect border points and noise points whereas 

IS-DBSCAN fails in detecting them. The reason for this is 

that the number of points in k-influence space of pi is less than 

k (i.e. |ISk(pi) < k|), then pi is considered to be noise point. 

However, when |ISk(pi) < k|, maybe pi is border point or noise 

point. Thus, compared with IS-DBSCAN, GISN-DBSCAN 

can detect border points with OLFk successfully and improve 

the clustering quality significantly. 

V. CONCLUSIONS AND FUTURE WORKS 

In this paper, we have proposed an enhanced density 

clustering algorithm for datasets with complex structures, 

named GISN-DBSCAN. At the same time, an extended range 

query algorithm based on fixed-grids is presented firstly. In 

our work, the nearest neighbors (NNk) and reverse nearest 

neighbors (RNNk) are used to establish the k-influence space 

neighborhood of each point. Moreover, a computational 

method of k-outlierness function is proposed, named OLFk. 

Experimental results demonstrate that GISN-DBSCAN can 

reduce the time overhead of searching the nearest 

neighborhood, identify the adjacent clusters with different 

densities and detect the border points and noise points 

effectively, and it is also not sensitive to the density of the 

starting point. Future works will be devoted to the parallel 

density-based clustering algorithm using MapReduce for big 

data. 
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