
Stacked Residual Recurrent Neural Network with
Word Weight for Text Classification

Wei Cao, Anping Song, Jinglu Hu,

Abstract—Neural networks, and in particular recurrent neu-
ral networks (RNNs) have recently been shown to give a state-of-
the-art performance on some text classification tasks. However,
most existing methods assume that each word in a sentence
contributes the same importance, it is different from the real
world. For example, if we do sentiment analysis, the word
”awesome” is much more important than any other words
in the sentence ”This movie is awesome”. Motivated by this
deficiency and in order to achieve a further performance,
in this paper, a Stacked Residual RNN with Word Weight
method is proposed, we extend the stacked RNN to a deep
one with residual network architecture and introduce a word
weight based network to consider the weight of each word. Our
proposed method is able to learn high the hierarchical meaning
of each word in a sentence and consider the weight of each
word for text classification task. Experimental result indicates
that our method achieves high performance compared with the
state-of-the-art approaches.

Index Terms—Recurrent Neural Networks, Word Weight,
Text Classification, Residual Networks, Long Short-Term Mem-
ory

I. INTRODUCTION

TEXT classification is one of the main research areas
in natural language processing, in which one needs to

assign a label to each sentence. It has been widely used
in some applications including sentiment analysis [1] [2],
question type classification [3] [4] and topic type labeling
[5] [6]. Sentence modeling is an important step in natural
language processing for representing phrases and sentences
into meaningful feature vectors which can be used for the
classification task. Machine learning related methods have
been widely used in text classification area.

The traditional methods for sentence modeling are based
on bag-of-words (BOW) models, these methods concentrate
on constructing hand-crafted features [1] such as representing
words by one-hot vectors, and then use a linear model or
kernel methods to classify text data [7]. But BOW models do
not consider the order of words. For example, the sentence
”Michael loves Jane” is different from the sentence ”Jane
loves Michael” while they have the same representations
by using BOW model. Distributed representations were pro-
posed by [8] and has become popular for been developed
in the context of statistical language modeling by [9] which
tried to represent each word in a dense and low dimensional
vector. Moreover, [10] introduced an unsupervised method

Wei Cao is with the School of Computer Engineering and Science, Shang-
hai University, Shanghai, 200444 China and is also with the Graduate School
of Information, Production and Systems, Waseda University, Fukuoka, 808-
0135 Japan (e-mail: caowei@i.shu.edu.cn / caowei@toki.waseda.jp).

Anping Song is associate professor with the School of Computer
Engineering and Science, Shanghai University, Shanghai, 200444 China
(corresponding author, e-mail: apsong@shu.edu.cn).

Jinglu Hu is professor with the Graduate School of Information, Produc-
tion and Systems, Waseda University, Fukuoka, 808-0135 Japan (e-mail:
jinglu@waseda.jp).

to learn representations from variable-length pieces of texts.
Recently, neural networks, and in particular Recurrent Neural
Networks (RNNs) [11] have been found successfully in
learning text representations and been shown to give a state-
of-the-art performance on some text classification tasks.
RNNs are effective tools for sequence modeling tasks which
are able to process a sequence of arbitrary length of sentence.
RNNs with Long Short-Term Memory networks (LSTMs)
structure [12] have a modified hidden state update which
can more effectively capture long-term dependencies than
standard RNNs. LSTMs have been widely used in many
sequence modeling and prediction tasks, especially speech
recognition [13], handwriting recognition [14] and machine
translation [15].

Although recurrent neural networks based classifiers can
get high performance in many text classification tasks [16]
[17], one shortcoming of these neural text classification
models is that they do not consider the different importance
of each word in a sentence. For example, in the sentence
”Today is so great”, the word ”great” is much more important
than any other words for deciding polarity in sentiment
analysis task.

In this paper, we propose a power of deep neural network
approach for text classification. The method has a special
architecture called Word Weight Network which can consider
the contribution of different words in a sentence. Word
Weight Network has the ability to learn the weight of word
during the training procedure. Specifically, the output of the
previous layer will not input to next layer directly in stacked
RNN, the input of the previous layer will be trained in
another network as word weight, and then it will multiply
back to be the input of next layer. Besides, inspired by
the high performance of Residual Networks (ResNets) [18]
for training deep neural networks, we introduce a residual
mechanism to improve the performance of stacked RNN.
The Residual Network is an intriguing network which can
overcome the disadvantage of vanishing gradients, exploding
gradients and difficulties during the training process due to
the increasing network depth in image recognition task.

The entire model is trained end-to-end with cross-entropy
loss. The experiment results show that our model can achieve
competitive accuracy. The main contributions of this work
are as follows:

• We present a neural network approach which is able to
learn the high hierarchical meaning of each word. It can learn
different word weight from sentence during the training in
text classification task.

• We demonstrate results on several text classification
tasks. The empirical results show that our model can improve
the accuracy of classification and outperforms state-of-the-art
methods on three tasks.

• Our model can be trained end-to-end from input-output



pairs which mean that there is no additional artificial inter-
vention required.

II. RELATED WORKS

A. Neural Networks

In recent years, deep learning has become famous in a
wide variety of domains. It tries to simulate the human brain
with artificial neural networks (ANNs) which can create
a hierarchy of representations from data with its complex
structures and multiple-layer models [19]. Convolutional
Neural Networks (CNNs) [20] are a category of Neural
Networks that have been proven to be able to achieve
the best performance in computer vision [21] [22]. The
convolution operation of CNNs can automatically capture
the local dependencies from temporal or spatial data [23].
Recent research shows that CNNs can also be applied to NLP
field, it can extract n-gram features at different positions of
a sentence through convolutional filters and can learn short
and long-range relations through pooling operations [24].
Recurrent Neural Networks (RNNs) [11] are a kind of neural
networks which have the ability to map vectors of a sequence
of arbitrary length to a fixed-length vector. RNNs use hidden
state to save the memory of all the previous information from
the sequence. RNNs are well suited to processing sequential
data.

B. Text Classification

Classification task is the basic research in NLP area. A
supervised classification algorithm allows us to access the
data labels during the training and testing steps.

Deep learning based methods have achieved great results
on text classification tasks. [10] proposed the Paragraph Vec-
tor method for representations of sentences and documents.
[25] constructed a Character-level Convolutional Networks
for doing text classification. [26] proposed a Convolutional
Neural Networks for Sentence Classification which consider
each word as n-gram to do embedding operation. [27] pro-
posed a scheme for embedding learning of small text regions
which is based on the idea of two-view semi-supervised
learning. RNN models can achieve high performance on
text related tasks. [28] first used RNNs for sequence text
task. [29] propose Bidirectional Long Short-Term Memory
with word embedding for text which contains richer syn-
tactic and has a strong intrinsic dependency between words
and phrases. [30] introduced a model to learn vector-based
document representation in a unified, bottom-up fashion for
sentiment classification. [31] utilized a Recurrent Convo-
lutional Neural Networks method which use Convolutional
and Recurrent Networks to capture the feature of contextual
information to learn word representations. [32] proposed an
intuitive approach to learn distributed word representations
with Bi-LSTM.

We also mentioned that there are some novel methods for
the related classification task. [33] introduced a method to
expand short texts based on word embedding clustering and
convolutional neural network. [34] used Multi-Task Learning
methods to construct the model.

III. A STACKED RESIDUAL RNN MODEL

Our model assumes that each word in a sentence doesn’t
have the same importance, which means the output of the
previous LSTM will not be the input of the next LSTM
directly in stacked network.

In this model, it can consider the output weight of each
word during the training, and inspired by the architecture of
ResNets, we combine the idea of ResNets into our model
for the sake of gradient vanish problem when the network is
very deep.

The overall architecture of the Stacked Residual Recurrent
Neural Network with Word Weight model (SRWW-RNN)
is shown in Figure 1. As we can see, the left part of the
model is called Word Weight Network part. This part takes
responsibility for training the weight of each word. Utilizing
the idea of Residual Networks, in the right part of model, we
can see the input of the previous layer can add with the input
of next layer directly, this is called short connections (The
input and output are of the same dimensions). Therefore, the
right part of this model is called Word Residual Network
part.

A. Word Weight Network

Word Weight Network has the ability to learn the weight
of each word. We believe that the word weight is very
important in text categorization task, the label of the sentence
is often determined by several key words. We focus on
constructing this network by using fully-connected highway
network [35] and Bidirectional LSTM (Bi-LSTM) [36]. The
standard LSTM is updated as follows:

i
t

= �(W
i

x
t

+ U
i

h
t�1 + b

i

) (1)
f
t

= �(W
f

x
t

+ U
f

h
t�1 + b

f

) (2)
c̃
t

= tanh(W
c

x
t

+ U
c

h
t�1 + b

c

) (3)
c
t

= f
t

� c
t�1 + i

t

� c̃
t

(4)
o
t

= �(W
o

x
t

+ U
o

h
t�1 + b

o

) (5)
h
t

(LSTM) = o
t

� tanh(c
t

) (6)

where x
t

are the input of each time step t, W
j

, U
j

are
the weight matrices and b

j

are the bias vectors, for j 2
{i, f, c, o}. � denotes the sigmoid activation function and �
denotes element-wise multiplication. The forget gate controls
how much of the previous state is going to be thrown away,
the input gate controls how much of newly state will be
updated, and the output gate controls how much of the
internal memory state will be output.

The Bi-LSTM is a variant of LSTM. It contains not only
the forward

����!
LSTM which reads the word from the beginning

of a sentence to the end of a sentence but also the backward ����
LSTM which reads the word from the end of a sentence to
the beginning of a sentence:

�!
h
t

=
�������!
h
t

(LSTM) (7)
 �
h
t

=
 �������
h
t

(LSTM) (8)

h
t,Bi�LSTMW = [

�!
h
t

,
 �
h
t

] (9)

where h
t,Bi�LSTMW is the hidden state of the Bi-LSTM

in word weight module which combines the forward and
backward hidden states at each time step. Conventional
standard LSTMs only utilize the previous context with no



Fig. 1. The instance of Stacked Residual Bi-LSTM with Word Weight Networks. (The left part is the word weight training module and the right part is
the word residual module.)

exploitation of future context, Bi-LSTMs utilize both the
previous and future context.

The output of Bi-LSTM will be trained in fully-connected
highway network as the word weight:

G
t

= �(Wh
t,Bi�LSTMW + b) (10)

H
t

= ReLU(W̃h
t,Bi�LSTMW + b̃) (11)

C
t

= 1�G
t

(12)
O

t

= H
t

G
t

+ h
t,Bi�LSTMWC

t

(13)

where W and W̃ are the weight matrices, b and b̃ are the
bias vectors. ReLU [37] denotes the activation function. G

t

is the transform gate, it can be used to control how much
transformation of output is applied. C

t

is the carry gate, this
gate controls how much of the output can just be carried. O

t

is the output of Word Weight Network.

Fig. 2. An illustration of Bidirectional LSTM network.

B. Word Residual Network

The right part of Figure 1 shows the Word Residual
Network of this model. As we can see, at each layer, the input
of Bi-LSTM and the output of Bi-LSTM can be summed
directly. The notion of Residual Networks (ResNets) was first
introduced by [18] in image recognition area. The main idea
of ResNets is to connect some of the layers with shortcuts,
which can avoid vanishing gradients and exploding gradients
problems, these problems may happen in very deep networks.
With the increasing depth of networks, ResNets can improve
the accuracy of deep networks.

The shortcut connections have the ability to explicitly let
these layers fit a residual mapping with the help of identity
transformation. The residual block defined as:

F (x
i�1,t) = O

t

(14)
x
i,t

= ReLU(F (x
i�1,t) + id(x

i�1,t)) (15)

where F (·) function represents the Bi-LSTM transformation
from x

i�1,t layer to x
i,t

at each time step t, id(·) is an
identity mapping function. ReLU is the activation function
for output of Word Residual block.

Although the derivation of Residual Networks is from
image recognition area, inspired by its special architecture,
we introduce it in our Stacked Bidirectional LSTM when
the layers of Stacked Bi-LSTM are deep. The gradients and
features which were learned in lower layers can pass through
by the identity transformations id(·) in Word Residual Net-
works.



Fig. 3. The left image is a residual block in Word Residual Networks. The
right image is an illustration of Word Residual Networks.

C. Stacked Residual Bi-LSTM with Word Weight Network
We extend our model to stacked one. Stacked based Bi-

LSTM is the vertical multi-layer structure, the output of the
lower layer will be the input of the upper layer. By using
the stacked based structure, it is possible to achieve different
levels of deep abstraction. There are some researches show
that the deep hierarchical LSTM based model can be more
efficient in representing some functions than a shallow one
[38] [39].

The max-pooling vector of the output of Bi-LSTM can be
used as the representation of the sentence. We add a linear
transformation layer to transform vector to another vector
which dimension is label number C. Then, we add softmax
layer to achieve conditional probabilities:

P
i

=
exp(x

i

)
P

C

i

0=1 exp(xi

0)
(16)

The target of the model is to predict label ŷ(i)
j

for each
sentence. We train the model over the training examples by
minimizing the cross-entropy:

L(w) =
mX

i=1

KX

k=1

1{y(i) = k}log(ŷ(i)
j

) (17)

where 1{·} is indicator function so that 1{true}=1, and
1{false}=0. m is the number of training examples. y(i) 2
{1, 2, . . .K} is true label of each sentence and K is the num-
ber of possible labels. ŷ(i)

j

2 [0, 1] is estimated probabilities
of each sentence of each label.

We use Adam[40] stochastic gradient descent optimizer to
update the parameters and use accuracy metric to evaluate
the performance of our model:

accuracy =
TN + TP

TN + TP + FN + FP
(18)

where:
TP: correctly predicted positive samples.
TN: correctly predicted negative samples.
FP: positive samples that incorrectly predicted.
FN: negative samples that incorrectly predicted.

IV. EXPERIMENTAL SETUP

A. Datasets

To show the effectiveness of our model, we choose four
different text classification tasks to evaluate our Stacked
Residual with Word Weight architecture.

SST-1: The movie reviews consist of 11855 movie reviews
with five labels: very negative, negative, neutral, positive,
and very positive in Stanford Sentiment Treebank[41]. The
dataset is split into train (8544), dev (1101), and test (2210)
for the fine-grained classification task.

SST-2: The movie reviews with binary labels by removing
neural labels from the Stanford Sentiment Treebank. The
dataset is split into train (6920), dev (872), and test (1821)
for the binary classification task.

TREC: We choose the TREC [4] which is a question
type classification benchmark. TREC consists of 6 classes,
including location, human, entity, abbreviation, description
and numeric. The training dataset contains train (5452) and
test (500) questions.

SUBJ: Subjectivity dataset where the goal of task is to
classify each sentence as being subjective or objective [42].

B. BaseLines

We compare our model with several models as follow:
SVM: SVM with unigram and bigram features [41] [43].
NBOW: NBoW averages word vectors and applies a

softmax classification layer [44].
Paragraph Vector: Paragraph Vector learns fixed-length

feature representations from variable-length pieces of texts
[10] [45].

CNN-non-static: Convolutional Neural Network based
model with fine-tuned word vectors [26].

CNN-multichannel: Convolutional Neural Network
based model with multi-channels [26].

DCNN: Dynamic Convolutional Neural Network with
dynamic k-max pooling [44].

RAE: Recursive autoencoder learns vector space repre-
sentations for multi-word phrases [41].

MV-RNN: Matrix-Vector Recursive Neural Network with
parse trees which can represent every word and longer phrase
in a parse tree as both a vector and a matrix [41].

RNTN: Recursive Neural Tensor Network is able to use
the same, tensor-based composition function for all nodes
[41].

DRNN: Multi-layer stacked Recursive Neural Network
[46].

Multi-Task: A multi-task learning framework to jointly
learn across multiple related tasks. This model can share
information among these tasks. [34].

Tree-LSTM: A generalization of LSTMs to tree struc-
tured network topologies [47].

C-LSTM: C-LSTM extract a sequence of higher-level
phrase representations from CNN and fed them into LSTM
to obtain the sentence representations [24].

Gaussian: A method which models each document as a
Gaussian distribution based on the embeddings of its words
[48].

COMB: A linguistically-motivated approach that corrupts
training examples with linguistic noise [49].



TABLE I
THE STATISTICAL DETAIL OF FOUR DATASETS IN OUR EVALUATION

Dataset Class Train Size Valid Size Test Size Average Length Max Length Vocabulary Size

SST-1 5 8544 1101 2210 19.1 56 19.5k

SST-2 2 6920 872 1821 19.3 56 17.5k

TREC 6 5452 - 500 9.9 37 8.9k

SUBJ 2 9000 - 1000 22.0 113 21k

TABLE II
SOME OTHER HYPERPARAMETERS SETTINGS AMONG FOUR DATASETS

Hyperparameters SST-1 / SST-2 TREC SUBJ

Memory dimension (Bi-LSTM) 150 300 200

Stacked blocks 8 3 4

Hidden layers (Fully-connected highway network) 5 5 5

Hidden units (Fully-connected highway network) 50 50 50

C. Hyperparameters and Training

In our experiments, we initialize word embeddings with
the publicly available 300-dimensional word vectors. The
vectors are pre-trained with word2vec on Google News
Dataset which contains about 100B words [50] [51]. We
also initialize the vector with the uniform distribution [-0.25,
0.25] for words which are not in word2vec vectors.

We train our model with Adam stochastic gradient descent
optimizer with a learning rate of 0.001 and we use a mini-
batch size of 50. The parameters are initialized from the
uniform distribution in [-0.1, 0.1]. The parameters were
regularized with L2 regularization with the factor of 10�4.
We also apply dropout[52] with a probability of 0.5 on both
Word Weight Network and Word Residual Network during
the training to prevent overfitting.

Other hyperparameters settings are shown in Table II, for
SST, we set the hidden layer size of LSTM is 150, so the
combination of forward and backward network gives us 300-

dimension vectors in Bi-LSTM. The same as TREC.

D. Results and Analysis

The experimental results are showed in Table III. We
compare our model with a variety of models, the Stacked
Residual with Word Weight structure model has high per-
formance on text classification task without any additional
feature engineering.

For SST and SUBJ dataset, our proposed method outper-
forms existing models and achieves state-of-art prediction ac-
curacy. In particular, our model obtains 52.7% classification
accuracy on fine-grained classification task which is a very
substantial improvement. For TREC, our result is close to the
best accuracy. Although we did not beat the state-of-the-art
one, comparing with SST and SUBJ, we find that not only
the average sentences length of SST and SUBJ are longer
than TREC, but also the semantic complexity of them are
much more complicated than TREC. Through the analysis,

Algorithm 1 The pseudo-code of our model
Input: Sentences
Output: Label of sentences

1: Pre-train sentences with word2vec to generate word vectors.
2: for n = 1! N (N represents the number of sentences) do
3: for m = 1!M (M represents the number of words in current sentence) do
4: Do word embedding to obtain the vector of each word.
5: Employ Bi-LSTM to obtain the sequence representations.
6: for k = 1! K (K represents the number of layers of Stacked Bi-LSTM) do
7: The output of the previous layer would input to next Bi-LSTM to obtain the hierarchical sequence

representations.
8: The output of the previous layer would input to Word Weight Network to obtain the weight information

(Word Weight Network).
9: The output of step 7 would calculate the element-wise product with the output of step 8.

10: The output of step 9 would add with the input of step 7 as new sequence representations (Word Residual
Network).

11: end for
12: end for
13: Employ Softmax classifier to get the label of each sentence.
14: Update parameters by using the stochastic gradient descent algorithm.
15: end for



TABLE III
CLASSIFICATION ACCURACY (%) OF OUR METHOD COMPARED WITH OTHER MODELS ON FOUR DATASETS

Methods SST-1 SST-2 TREC SUBJ

SVM 40.7% 79.4% 95% -

NBOW 42.4% 80.5% - -

Paragraph Vector 48.7% 87.8% 91.8% -

CNN-non-static 48.0% 87.2% 93.6% 93.4%

CNN-multichannel 47.4% 88.1% 92.2% 93.2%

DCNN 48.5% 86.8% 93.0% -

RAE 43.2% 82.4% - -

MV-RNN 44.4% 82.9% - -

RNTN 45.7% 85.4% - -

DRNN 49.8% 86.6% - -

Multi-Task 49.6% 87.9% - 94.1%

Tree-LSTM 51.0% 88.0% - -

C-LSTM 49.2% 87.8% 94.6% -

Gaussian - - 98.2% 93.1%

COMB - 84.8% - 93.6%

SRWW-RNN 52.7% 88.2% 95.6% 95.0%

we think that our model is more applicable to the sentence
which has complex semantics. The Stacked Residual with
Word Weight structure has the ability to learn the weight of
different words, it is very useful for sentence representation
that can increase the prediction accuracy. The results mean
that our model can extract more information and learn high
hierarchical features from the text than other approaches on
the dataset which has complex semantics.

As we can see from Figure 4(a), comparing with the
standard stacked Bi-LSTM. During the training step, the
convergence speed of our model is faster. The inputs of a
lower layer in stacked Bi-LSTM are made available to a node
in a higher layer because of the shortcut connections which
can lead the network easy trained. The Figure 4(b) shows the
test accuracy between two models. this figure indicates that
the Word Residual Network is able to achieve high accuracy
and the gradients can easily back propagate through them,

which results in a faster converging.
In order to show the comprehensive performance, we do

another experiment on SUBJ dataset to compare our model
with the standard recurrent models and the bidirectional
recurrent models. Table IV shows the comparison results
on precision, recall and f1-score metrics. According to the
results, we find that LSTM based models have better per-
formance than RNN based models. The gate mechanism
can control the flow of information and cell state. Besides,
the bidirectional structures which combine both forward and
backward layers have higher accuracy than standard struc-
tures. We also compare our model initialized with random
word embedding and pre-trained word2vec. Figure 5 illus-
trates the comparison results which indicate that pre-trained
word embedding method can learn meaningful information
from context well.

Benefiting from the word weight structure, our model has

(a)

(b)

Fig. 4. The (a) shows the batch training loss on SST-1 with our method and standard stacked Bi-LSTM. The (b) shows the test accuracy on SST-1
compared with two methods.



TABLE IV
COMPREHENSIVE EVALUATION COMPARISON RESULTS (%) ON SUBJ

DATASET

Methods Precision Recall F1-score

RNN 86.25% 91.52% 88.80%

Bi-RNN 89.94% 93.49% 91.68%

LSTM 94.29% 94.47% 94.38%

Bi-LSTM 94.83% 94.08% 94.46%

SRWW-RNN 94.89% 95.27% 95.08%

Fig. 5. Precision, Recall and F1-score (%) comparison by impact of
initialized word embedding on SUBJ dataset.

the ability to learn the importance of different words. We
select two sentences from the SST-2 dataset and visualize
the probability change of output layer at different time steps.
In Figure 6, for the sentence ”As a singular character study,
it ’s perfect.”, which has a positive label. We find that our
model has high sensitivity on keywords such as ”singular”
and ”perfect”. Most of the time, the label of each sentence
is determined by these keywords.

V. CONCLUSIONS

In this paper, we introduce a novel text classification
model called Stacked Residual Recurrent Neural Network
with Word Weight. The Word Weight Network can identify
the contribution of different words due to its special structure.
The Word Residual Network makes the model more expres-
sive when stacked layers are deep. The new architecture
has the ability to extract more features and learn the high
hierarchical meaning of each word from a sentence. This
model can be applied to some natural language processing
tasks such as analyzing the implicit semantic information
of words. We tried to demonstrate the effectiveness of our
model by applying it to text classification task. Experimental
results show that our model can achieve better performance
than previous methods. This suggests our model can capture
more potential features in sentences.

ACKNOWLEDGMENT

This research is supported by the Major Research plan of
the National Natural Science Foundation of China (Grant No.
91630206)

(a)

(b)

Fig. 6. The (a) shows the probability change of positive label at different
time steps. The (b) shows the probability change of negative label at different
time steps.

REFERENCES

[1] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies-Volume 1. Association for Compu-
tational Linguistics, 2011, pp. 142–150.

[2] M. Ghiassi, J. Skinner, and D. Zimbra, “Twitter brand sentiment
analysis: A hybrid system using n-gram analysis and dynamic artificial
neural network,” Expert Systems with applications, vol. 40, no. 16, pp.
6266–6282, 2013.

[3] D. Zhang and W. S. Lee, “Question classification using support
vector machines,” in Proceedings of the 26th annual international
ACM SIGIR conference on Research and development in informaion
retrieval. ACM, 2003, pp. 26–32.

[4] X. Li and D. Roth, “Learning question classifiers,” in Proceedings of
the 19th international conference on Computational linguistics-Volume
1. Association for Computational Linguistics, 2002, pp. 1–7.

[5] S. Wang and C. D. Manning, “Baselines and bigrams: Simple, good
sentiment and topic classification,” in Proceedings of the 50th Annual
Meeting of the Association for Computational Linguistics: Short
Papers-Volume 2. Association for Computational Linguistics, 2012,
pp. 90–94.

[6] J.-M. Yang, Z.-Y. Liu, and Z.-Y. Qu, “Clustering of words based
on relative contribution for text categorization,” IAENG International
Journal of Computer Science, vol. 40, no. 3, pp. 207–219, 2013.

[7] T. Mullen and N. Collier, “Sentiment analysis using support vector
machines with diverse information sources.” in EMNLP, vol. 4, 2004,
pp. 412–418.

[8] G. E. Hinton, “Learning distributed representations of concepts,” in
Proceedings of the eighth annual conference of the cognitive science
society, vol. 1. Amherst, MA, 1986, p. 12.

[9] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural
probabilistic language model,” Journal of machine learning research,
vol. 3, no. Feb, pp. 1137–1155, 2003.

[10] Q. V. Le and T. Mikolov, “Distributed representations of sentences and
documents.” in ICML, vol. 14, 2014, pp. 1188–1196.

[11] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14,
no. 2, pp. 179–211, 1990.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[13] X. Li and X. Wu, “Constructing long short-term memory based deep
recurrent neural networks for large vocabulary speech recognition,” in
2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2015, pp. 4520–4524.

[14] T. M. Breuel, A. Ul-Hasan, M. A. Al-Azawi, and F. Shafait, “High-
performance ocr for printed english and fraktur using lstm networks,”
in 2013 12th International Conference on Document Analysis and
Recognition. IEEE, 2013, pp. 683–687.

[15] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[16] J. Y. Lee and F. Dernoncourt, “Sequential short-text classification
with recurrent and convolutional neural networks,” in Proceedings of
NAACL-HLT, 2016, pp. 515–520.



[17] J. Zhou and W. Xu, “End-to-end learning of semantic role labeling us-
ing recurrent neural networks,” in Proceedings of the Annual Meeting
of the Association for Computational Linguistics, 2015.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[19] R. Bustami, N. Bessaih, C. Bong, and S. Suhaili, “Artificial neural
network for precipitation and water level predictions of bedup river,”
IAENG International Journal of computer science, vol. 34, no. 2, pp.
228–233, 2007.

[20] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[21] K. Tang, M. Paluri, L. Fei-Fei, R. Fergus, and L. Bourdev, “Improving
image classification with location context,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 1008–1016.

[22] S. Zhang, J. Wang, X. Tao, Y. Gong, and N. Zheng, “Constructing deep
sparse coding network for image classification,” Pattern Recognition,
vol. 64, pp. 130–140, 2017.

[23] T. L. Li, A. B. Chan, and A. H. Chun, “Automatic musical pattern
feature extraction using convolutional neural network,” in Proceedings
of the International MultiConference of Engineers and Computer
Scientists, vol. 1, 2010.

[24] C. Zhou, C. Sun, Z. Liu, and F. Lau, “A c-lstm neural network for
text classification,” arXiv preprint arXiv:1511.08630, 2015.

[25] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification,” in Advances in Neural Information
Processing Systems, 2015, pp. 649–657.

[26] Y. Kim, “Convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1408.5882, 2014.

[27] R. Johnson and T. Zhang, “Semi-supervised convolutional neural
networks for text categorization via region embedding,” in Advances
in neural information processing systems, 2015, pp. 919–927.

[28] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur,
“Recurrent neural network based language model.” in Interspeech,
vol. 2, 2010, p. 3.

[29] Z. Xiao and P. Liang, “Chinese sentiment analysis using bidirectional
lstm with word embedding,” in International Conference on Cloud
Computing and Security. Springer, 2016, pp. 601–610.

[30] D. Tang, B. Qin, and T. Liu, “Document modeling with gated
recurrent neural network for sentiment classification,” in Proceedings
of the 2015 Conference on Empirical Methods in Natural Language
Processing, 2015, pp. 1422–1432.

[31] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neural
networks for text classification.” in AAAI, 2015, pp. 2267–2273.

[32] P. Wang, Y. Qian, F. K. Soong, L. He, and H. Zhao, “Learning
distributed word representations for bidirectional lstm recurrent neural
network,” in Proc. of ICASSP, 2016.

[33] P. Wang, B. Xu, J. Xu, G. Tian, C.-L. Liu, and H. Hao, “Semantic
expansion using word embedding clustering and convolutional neural
network for improving short text classification,” Neurocomputing, vol.
174, pp. 806–814, 2016.

[34] P. Liu, X. Qiu, and X. Huang, “Recurrent neural network for text clas-
sification with multi-task learning,” arXiv preprint arXiv:1605.05101,
2016.

[35] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Training very deep
networks,” in Advances in neural information processing systems,
2015, pp. 2377–2385.

[36] A. Graves and J. Schmidhuber, “Framewise phoneme classification
with bidirectional lstm and other neural network architectures,” Neural
Networks, vol. 18, no. 5, pp. 602–610, 2005.

[37] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International Con-
ference on Machine Learning (ICML-10), 2010, pp. 807–814.

[38] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in 2013 IEEE international
conference on acoustics, speech and signal processing. IEEE, 2013,
pp. 6645–6649.

[39] J. Chung, C. Gülçehre, K. Cho, and Y. Bengio, “Gated feedback
recurrent neural networks,” CoRR, abs/1502.02367, 2015.

[40] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[41] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng,
and C. Potts, “Recursive deep models for semantic compositionality
over a sentiment treebank,” in Proceedings of the conference on
empirical methods in natural language processing (EMNLP), vol.
1631. Citeseer, 2013, p. 1642.

[42] B. Pang and L. Lee, “A sentimental education: Sentiment analysis
using subjectivity summarization based on minimum cuts,” in Pro-
ceedings of the 42nd annual meeting on Association for Computational
Linguistics. Association for Computational Linguistics, 2004, p. 271.

[43] J. Silva, L. Coheur, A. C. Mendes, and A. Wichert, “From symbolic
to sub-symbolic information in question classification,” Artificial In-
telligence Review, vol. 35, no. 2, pp. 137–154, 2011.

[44] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convo-
lutional neural network for modelling sentences,” arXiv preprint
arXiv:1404.2188, 2014.

[45] H. Zhao, Z. Lu, and P. Poupart, “Self-adaptive hierarchical sentence
model,” arXiv preprint arXiv:1504.05070, 2015.

[46] O. Irsoy and C. Cardie, “Deep recursive neural networks for composi-
tionality in language,” in Advances in Neural Information Processing
Systems, 2014, pp. 2096–2104.

[47] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic rep-
resentations from tree-structured long short-term memory networks,”
arXiv preprint arXiv:1503.00075, 2015.

[48] G. Nikolentzos, P. Meladianos, F. Rousseau, M. Vazirgiannis, and
Y. Stavrakas, “Multivariate gaussian document representation from
word embeddings for text categorization,” EACL 2017, p. 450, 2017.

[49] Y. Li, T. Cohn, and T. Baldwin, “Robust training under linguistic
adversity,” EACL 2017, p. 21, 2017.

[50] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[51] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[52] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.


