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Abstract—There have been many researches that were 
developed to reduce multiplication operations in polynomial 
multiplier in GF(2n). This is important because of its 
connection with the efficient implementation in restricted 
devices, such as in elliptic curve cryptography. Two of them 
are the researches conducted by Paar for n=4 and Montgomery 
for n=5,6,7. Their researches are better than previous 
researches, but they do not explain their methods, how they 
can find the multipliers. This is the knowledge gap and in this 
research sought to find a method is better than what they have 
done in finding the multipliers. The first step is to develop a 
formula that is better than Generalizations of The Karatsuba 
Algorithm, after then develop an exhaustive search algorithm 
for all possible existing products. Then, combine both of these 
formulas and algorithm, which we refer to as the NAYK 
algorithm. This algorithm can explain how to reduce the 
multiplications significantly, that is by identifying some 
multiplications or products included in the solution and some 
products which is not included in the solution. So the rest of 
products is reduced significantly. Then we use the products 
have been identified are included in the solution, and with 
reference to the upper bound of the function of O(n), then the 
lack of products is added from a combination of existing 
residual products. This causes the search space becomes much 
smaller significanly than the Montgomery algorithm. Further, 
the NAYK algorithm allows to search multiplier for n>7. 
NAYK algorithm is suitable for use in composite field because 
it can improve efficiency significantly. 

Index Terms— Exhaustive Search Algorithm, Improving of 
Generalizations of The Karatsuba Algoritm, NAYK Algorithm, 
Generalizations of n-Term Karatsuba Like Formulae, 
polynomial multiplication in GF(2n), Composite Field 

I. INTRODUCTION 

HE efficiency of multiplying two polynomials is a 
crucial matter in fields such as cryptography and signal 

processing. The high resource requirements polynomial 
multiplication in the Galois Field GF(2n) leads to the high 
number of point multiplications up to the curve level in 
Elliptic Curve Cryptography (ECC) [13-14][21] resulting in 
very large processing times. This can not be separated from 
the process of polynomial multiplication in the arithmetic 
level in GF(2n), which consumes a lot of resources and 
causes the process to not only be time consuming, but also 
require a large area, especially if a large bit size is used 
[3 5] . 
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 This large number of multiplications cause difficulties in 
the hardware implementation phase, especially if the 
algorithm is implemented in restricted devices [15-17][20]. 
To solve this problem, the number of multiplications 
performed in polynomial multiplication in GF(2n) must be 
reduced. However, reducing the number of multiplications 
is not an easy task, in the research conducted by Paar in 
which a formula for the multiplication in the multiplier in 
GF(2n) for n = 4 was developed [6-7], the process of 
reducing the multiplications was not described in detail. 
Similarly, Montgomery used so-called division-free 
formulas in finding multipliers in GF(2n) for 5,n  6, and 7, 

[18] and thus no detailed description of the algorithm used 
was given. 
 The main problem in this research is how to reduce the 
number of multiplication processes in the multiplier in 
GF(2n) using a more uncomplicated method or algorithm 
compared to that used in in the two previous research 
carried out [6-7][18], even with limited computer resources. 
To solve this problem, we developed an alternative formula 
that is more efficient than Generalizations of The Karatsuba 
Algorithm (GKA) in reducing the number of multiplications 
in the multiplier in GF(2n) [16], and also developed an 
exhaustive search algorithm to find the solution to the 
equations of mathematics that appear in polynomial 
multiplications in GF(2n). 

II. POLYNOMIAL MULTIPLIERS IN GALOIS FIELD 

A. Simple and General Karatsuba Multiplier 

Starting from ordinary polynomial multiplication as 
follows [9]. 
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Then Karatsuba divide A and B in (1) into two parts as 
follows. 
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Then Karatsuba manipulate the equation (2) in the brackets 
as follows. 
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Then (3) substitute into (2) as follows. 
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Previously (2), there are four products that must be 
processed, 
 

H HA B , H LA B , L HA B , and L LA B . 
 

But, after using a simple algorithm Karatsuba above, the 
products are reduced by one, so only three products are 
processed in (4) [2][10][17], these are  
 

H HA B ,   H L H LA A B B   and L LA B . 
 

If we divide A and B to be more than two products and we 
use the Karatsuba multiplication properties, then the method 
is called as a General Karatsuba Multiplier [3-5]. 

B. Generalizations of The Karatsuba Algorithm (GKA) 

Then if we divide A and B into the smallest form, where 
an product has only two coefficients (if n is odd, then there 
is one product contains only a single coefficient), then this 
method of multiplication between A and B is called as 
generalizations of The Karatsuba Algorithm [1][22]. Then 
the form will be as follows. 
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C. Polynomial Multiplier for Galois Field GF((2n)4) 

Furthermore, for n = 4 in the equation GKA, Paar 
modifies it as follows [6-7][19][24]. 

Suppose 
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If the same multiplication count one, then the number of 
multiplication operations is nine, where previously the 
number was ten, it means the number of multiplication 
process is reduced by one. In this research did not examine 
the modulo process, but more toward reducing the number 
of arithmetic multiplication process in polynomial 
multiplication between A and B. For modulo process itself 
has been researched and discussed in [11-12], where the 
methods use the results of the multiplier which already 
exists [7][18] to construct a multiplier for a value of n, 
which is greater than 7, and then look for modulo function 
which is suitable for the constructors of a multiplier.  

D. 5,6,7-Term Karatsuba Like Formulae 

After Paar has developed multiplication for n = 4, then 
Montgomery developed multiplication for n = 5, 6, and 7, 
by utilizing and manipulating properties of Karatsuba 
Multiplications as follows [18]. 

Suppose 
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Then for n = 3, the formula is 
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If K = X2, then the number of multiplication changed 
from nine to six, this is more efficient. Then, Montgomery 
utilize this pattern to form the multipliers for n = 5, 6, and 7, 
where the complexity of those formulas can be found in 
[18]. The multipliers are better than the multipliers that have 
been developed previously. But even so, it was very difficult 
to obtain for each multiplier, especially for n = 7, even 
Montgomery himself called it the divison-free formulas. 

E. Knowledge Gap 

In research conducted by Paar and Montgomery, the 
process of developing formulas and algorithms to obtain 
multipliers was not described. In polynomial multiplication 
in the Galois Field GF(2n), for n = 7, Montgomery stated 
that obtaining the multipliers requires a resource-intensive 
calculation process, while computer resources limited. 
Therefore, in this research developed an improved method 
and algorithm for easy determination of multipliers in a 
polynomial multiplication in GF(2n). 

III. RESEARCH METHODOLGY 

Figure 1 illustrates previous researches carried out by 
several researchers regarding GKA, as well as how the 
current study relates to those researches. 

 

 
 
Fig. 1.  Position and focus of the research of the Generalizations of n-Term 
Karatsuba Like Formulae with NAYK algorithm in Multiplier Researches 

Roadmap 

 
There are three main steps to solve the problems 

mentioned above, the development of an improved formula 
compared to GKA, the development of an exhaustive search 
algorithm, and the combination of both methods, 
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subsequently named the Nursalman, Arif, Yusuf and 
Kuspriyanto (NAYK) algorithm. Previous researches on 
improving the modulo functions of karatsuba multiplications 
have been carried out by [11][12], including the 
determination of the best modulo functions that result in a 
reduced number of multiplications in polynomial 
multiplications in GF(2n). In this study, we did not focus on 
these modulo functions, but they can be integrated in further 
research for developing further improved algorithms for 
polynomial multiplications in GF(2n) for n=8, and for larger 
values of n. 

A. The Development of a Better Formula Than GKA 

An improved formula was obtained by comparing the 
original equation C' produced by GKA with the equation C' 
produced by the Paar [7] and Montgomery [18] Multipliers 
(Figure 2). The Improved GKA formula combines at least 
two products into one new product, thus reducing the 
number of multiplications in the process. 

 

 
 

Fig. 2.  Improving of the Generalizations of the Karatsuba Algorithm 
 

In its application, the Improved GKA reduced the 
complexity of the polynomial multiplication process better 
than the original GKA. However, there are constraints in the 
algorithm for combining products for large values of n, 
resulting in difficulties for the algorithm to find a 
combination of combined products that are solutions to 
equation C'. 

Therefore, we developed an exhaustive search algorithm 
that can find the combination of combined products that are 
solutions to equation C'. 

B. Exhaustive Search Algorithm 

The algorithm developed is illustrated in Figure 3, and 
have the following steps:  
1.  Creating a matrix C' with GKA formula 
2. Creating a matrix D for all combinations of existing 

values, 0,1,2, ..., n 
3.  Searching for all combinations of all rows in the matrix 

D 
4.  Summing up for each combination of line matrix D 
5.  Looking for a solution to the equation C' from the sum 

of each combination 
 

 
 

Fig. 3.  The steps of the Exhaustive Search Algorithm 
 

The algorithm was implemented in MATLAB and was 
then tested for a value of n. The results show that this 
algorithm can only run for n = 4. For values of n larger than 
4, the amount of data processed was very large, requiring a 
very large amount of computer memory, and a very long 
processing time to find the solution. 

C. Nursalman, Arif and Yusuf Algorithm (NAYK     
  Algorithm) 

The Improved GKA algorithm was able to solve 
polynomial multiplications in GF(2n) for values of n up to 4 
with much less complexity compared to the original GKA, 
but failed to sufficiently reduce the complexity (determine 
all combinations of combined products that are solutions to 
equation C') for larger values of n. In addition, the 
exhaustive search algorithm succeeded in efficiently finding 
combinations of combined products that are solutions to 
equation C', but, similarly, only for values of n of up to 4. 
To overcome the limitations of both algorithms, we 
developed a combination of the two, subsequently named 
the Nursalman, Arif, Yusuf, and Kuspriyanto (NAYK) 
Algorithm. The Improved GKA serves to identify which 
combinations of products are solutions to equation C' and 
which are not. This reduces the number of rows in matrix D, 
which in turn reduces the number of lines from the many 
combinations of rows of matrix D. Through proper 
identification, only a small portion of the combinations of 
rows of matrix D needs to be calculated. Thus, this method 
provides a reduction in the amount of data to be processed, 
and also reduces the computation time. Figure 4 illustrates 
the procedure of the NAYK algorithm. 
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Determine the 
value of n

Begin

Create
the matrix D and C

Find the best 
solution for C(n-2), 

C(n-1) and C(n)

Identifying some 
elements that are 
solutions and not 

in C

Create The New 
Matrix D (Dn)

A

 
 

Fig. 4.a.  The NAYK algorithm to find the new matrix D 

 
 

 
 

Fig. 4.b.  The NAYK algorithm to find the products combination for 
solution equation of C'. 

IV. RESULTS AND DISCUSSION 

A. The Development of a Better Formula Than GKA   

  in (2 )
n

GF  

In the Improved GKA formula, two or more products can 
be combined which consequently reduces the number of 
multiplications in the polynomial multiplication process. 
The stages of the development of the formula are as follows: 

1. Combining Products pattern in polynomial multiplication 
in GF(2n) 

As has been described above, GKA has the form similar 
to equation (5). For n=4, 
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where D0,1, D0,2, D1,3, and D2,3 are existing products. Note 
that in equation (7), there are two products missing, (D0,3 
and D1,2), and a new product appears, D(0,1,2,3). This 
means that the number of multiplications is reduced by one 
compared to the previous equation. 

Note the first product on the right side of the above 
equation (5), 
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By understanding the patterns of the above equation, it 
can be written in four forms as follows: 
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 (4) For 1 2 1n i n    and even numberi  , then 
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( 1), 1 ( 2 ), 2 / 2 1, / 2 1

1

( 1), , 1 ,

( 1)      

( 1) / 2 1

i n n i n n i i

n

i n n j k s

s i nj k i

i n j k i

D D D

D D D

       



  

   

     

  

   



  

 where

  
( 1), ( 2 ), , / 2 1, / 2 1

( 1) 1 ( 1) 1
( )( ).

i n i n i i

i n n i n n

D

a a b b

     

     
    



 
 

2. The Generalizations of The Combining Products Formula 
in GF(2n) 

The results of the four equations above we can make it in 
general form as follows. 

 

if odd numberi  , then 
 

( 0 ) ( 1 ) ( 2 ) ( 3 ) ( 1 ) ( )
, , , , , , , ,

1 1

0 0

(0 ) (1) ( )

,

where ; ,

and ,   0 ,

j k i i j k
p p p p p p p p p p

k j k j

j k i j k i

i j k

j k

D D D

p p p p p

p p j k i



   

     



 

   

    

 




 (8) 

 (10   

and if even numberi  , then

 
( 0 ) ( 1 ) ( 2 ) ( 3 ) ( 1 ) ( )

, , , , , , ,

1

0

, ( )

01

0

(0) (1) ( )

,

where ; , 

and ,   0 .

j k i i

j k

p p p p p p p p

k j

j k i

i

p p p s

sk j

j k i

i j k

j k

D D

D D

p p p p p

p p j k i



 

  

 

  





 

   

    



 







 (9) 

 
We obtain the Improved GKA formula by substituting 

equation (8) or (9) into equation (5). From this formula, we 
find that at least two products can be combined into a new 
product, meaning that two products disappear and one new 
product appears. Therefore, this formula reduces the number 
of multiplications by at least one. However, another 
algorithm that can combine existing products in equation C 
is still needed to further reduce the number of 
multiplications. 

3. Combining Products in The Equation C'(n-2), C'(n-1), 
and C'(n) 

To easily identify several products into a solution or not a 
solution, then it requires an algorithm combining products in 
the equation C'(n-2), C'(n-1), and C'(n). This is because all 
three equations have the most abundant products when 
compared to other equations. Therefore, it is easy to be 
completed first and give a lot of information for the purpose 
of the identification process. Here are the steps. 

3.1. The Process of Combining Products of The Equation C'  

For i = n-2, n = 5, then 

1 1 1 1

2 2 2 2

1 1

1 4

0 1

2 2

1 4

( ) (0, , -1) ( (1), (2), (3), (4))

( (1), (2), (3), (4))

( , ) ( ( ), ( ))

( ( ), ( )) ( 1)

j k i j k

j k n

j k

c i D n D p p p p

D p p p p

D j k D p j p k

D p j p k D n

    

   

  

   



 

  










 



 (10) 

Where 

 
(1) (2) (3) (4) 

P1 (i-1)/2-1 
(i+1)/2 

(i+1)/2+1 (i+1)/2+2 
P2 (i-1)/2  

 

For i = n-1, n = 5, then 

1 1 1 1

2 2 2 2

1 1

1 4

0 1

2 2

1 4

( ) (0, , -1) ( (1), (2), (3), (4))

( (1), (2), (3), (4))

( , ) ( ( ), ( ))

( ( ), ( ))

j k i j k

j k n

j k

c i D n D p p p p

D p p p p

D j k D p j p k

D p j p k

    

   

  

   



 












 



 (11) 

Where 

 
(1) (2) (3) (4) 

P1 i/2-2 
i/2 i/2+1 

i/2+2 
P2 i/2-1 i/2  

 

For i = n, n = 5, then 

1 1 1 1

2 2 2 2

1 1

1 4

0 1

2 2

1 4

( ) (0, , -1) ( (1), (2), (3), (4))

( (1), (2), (3), (4))

( , ) ( ( ), ( ))

( ( ), ( )) (0)

j k i j k

j k n

j k

c i D n D p p p p

D p p p p

D j k D p j p k

D p j p k D

    

   

  

   



 

 










 



 (12) 

Where 

 
(1) (2) (3) (4) 

P1 (i-1)/2-2 (i-1)/2-1 
(i-1)/2 

(i+1)/2+1 
P2 (i+1)/2  

 

For i = n-2, n > 5 and n is an odd number, then 
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1 1 1 1 1

2 2 2 2

1 1

1 5

0 1

5

1 2 2

1 1 4

( ) (0, , -1) ( (1), (2), (3), (4), (5))

( (1), (2), (3), (4))

( , ) ( ( ), ( ))

( ( )) ( ( ), ( )) ( 1)

j k i j k

j k n

s j k

c i D n D p p p p p

D p p p p

D j k D p j p k

D p s D p j p k D n

    

   

   

   



 

   










 

 

 

Where 

 
(1) (2) (3) (4) (5) 

P1 (i-1)/2-2 (i-1)/2-1 (i+1)/2 (i+1)/2+1 (i+1)/2+2 
P2 (i-1)/2-1 (i-1)/2 (i+1)/2+1 (i+1)/2+2 -  

 

For i = n-1, n > 5 and n is an odd number, then 

1 1 1

2 2 2

1 1

1 5

0 1

5 5

1 2 2 2

1 1 5 1

( ) (0, , -1) ( (1), (2), , (5))

( (1), (2), , (5))

( , ) ( ( ), ( ))

( ( )) ( ( ), ( )) ( ( ))

j k i j k

j k n

s j k s

c i D n D p p p

D p p p

D j k D p j p k

D p s D p j p k D p s

    

   

    

   



 

  










 

  





Where 

 
(1) (2) (3) (4) (5) 

P1 i/2-3 i/2-2 i/2 i/2+1 i/2+2 
P2 i/2-2 i/2-1 i/2 i/2+2 i  

 

For i = n, n > 5 and n is an odd number, then 

1 1 1 1 1

2 2 2 2

1 1

1 5

0 1

5

1 2 2

1 1 4

( ) (0, , -1) ( (1), (2), (3), (4), (5))

( (1), (2), (3), (4))

( , ) ( ( ), ( ))

( ( )) ( ( ), ( )) (0)

j k i j k

j k n

s j k

c i D n D p p p p p

D p p p p

D j k D p j p k

D p s D p j p k D

    

   

   

   



 

  










 

 

 

Where 

 
(1) (2) (3) (4) (5) 

P1 (i-1)/2-2 (i-1)/2-1 
(i-1)/2 

(i+1)/2+1 
i-1 

P2 (i+1)/2 -  

3.2. Completion of all other products 

 Then, do the process of combining products for two 
coefficients (products of the equation in parentheses), use 
the combining formula (8) or (9) until the number of 
multiplications can not be further reduced. 

For even values of n the same steps can be used to make 
the formula imitate the pattern in equations (10), (11), and 
(12). 

Then, to solve equation c'(i) for i other than n-2, n-1 and 
n, the following search algorithm is used. 

B. Exhaustive Search Algorithm for Polynomial     
  Multiplier in GF(2n) 

This algorithm was developed to supplement the 
drawbacks of the improved GKA formula, namely its 
inability to compute polynomial multiplications in GF(2n) 
for large values of n. The exhaustive search algorithm is 
intended to find solutions to equation C'(i) for i other than n-
2, n-1, and n. 

The following are the stages of development of the 
exhaustive search algorithm: 

1. Creating The Matrix C' with the GKA Formula 

The first step is to create matrix C', in which each row is 
c'(i), i = 0, 1, ..., 2n-2  
and the columns are 
 

0 0 0 1 0 1

1 0 1 1 1 1

1 0 1 1 1 1

, , ..., ,

, , ..., ,

...

, , ..., ,

n

n

n n n n

a b a b a b

a b a b a b

a b a b a b





   

 

 

Then, the matrix is filled with a value of 1 (one) in any 
positions in the matrix that corresponds to the value of c'(i). 

For example, for n = 3, then 

0 0

0 1 1 0

0 2 1 1 2 0

1 2 2 1

2 2

'(0)

'(1)

'(2)

'(3)

'(4)

c a b

c a b a b

c a b a b a b

c a b a b

c a b



 

  

 



 

 
The matrix C' is shown in Table I. 

TABLE I 
THE MATRIX C' FOR N = 3 

a0b0 a0b1 a0b2 a1b0 a1b1 a1b2 a2b0 a2b1 a2b2

c'0 1

c'1 1 1

c'2 1 1 1

c'3 1 1

c'4 1
 

 

2. Creating a matrix D with The Combining Products 
 Formula for all Combinations 

A matrix D is then created using the improved GKA 
formula, where the rows contain all the possible 
combinations of existing indexes and the columns are 
identical to those of matrix C'. 

The number of possible combinations for a given value of 
n is ( !/(( - )! !)n n i i or 2n-1. 

For values of n, then there will be an n index ranging 
from 0 to n-1. Thus, the combinations are: 

0, …, n-1 (one index), 
01, …, 0(n-1) (two indexes), 
… 
0123…(n-1) (n indexes). 
 
For n = 3, the combination is represented in binary code 

as in Table II: 
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TABLE II 
REPRESENTING OF THE COMBINATION IN BINARY CODE FOR N = 3 

row 0 1 2

0 0 0 0 -

1 0 0 1 = D(2)

2 0 1 0 = D(1)

3 0 1 1 = D(1,2)

4 1 0 0 = D(0)

5 1 0 1 = D(0,2)

6 1 1 0 = D(0,1)

7 1 1 1 = D(0,1,2) 

 

Matrix D for n = 3 will then have the following form 
(Table III): 

TABLE III 
THE MATRIX D FOR N = 3 

a0b0 a0b1 a0b2 a1b0 a1b1 a1b2 a2b0 a2b1 a2b2

001 1

010 1

011 1 1 1 1

100 1

101 1 1 1 1

110 1 1 1 1

111 1 1 1 1 1 1 1 1 1
 

3. Combining all rows in matrix D 
To combine all rows of the matrix D, then the process is 

the same as the combined index for the matrix D. Using the 
tables III, then we can use the column line to combine it. 
The number of lines is 2^(2n-1)-1. 

4. Summing up for each combination of rows in matrix D 

For each a combination result of the above, then each 
index on the combination represented as in table II and III. 
Thereafter, for each the combination is summed. Then any 
combination thereof will be represented as a table III, and 
can be searched from any such combination that satisfies the 
equation C'. 
5. Searching for a solution to equation C' 

The sums of each of the results of the above combinations 
were checked whether they satisfy equation C'. For 
example, 

0 2 1 1 2 0
'(2)c a b a b a b    

will be equal to an XOR operation for rows 7/111/(012), 
6/110/(01), and 3/011/(12), resulting in the following table: 

 

a0b0 a0b1 a0b2 a1b0 a1b1 a1b2 a2b0 a2b1 a2b2

110 1 1 1 1

011 1 1 1 1

111 1 1 1 1 1 1 1 1 1

c‘(2) = 0 0 1 0 1 0 1 0 0  
 

This can also be represented as the following: 
 

0 2 1 1 2 0'(2) (0,2) (0) (1) (2)c a b a b a b D D D D        
 

This exhaustive search algorithm succeeded in solving 
equation C'(i) for i other than n-2, n-1, and n, by searching 
for combinations of products that satisfy the equations. 
However, for values of n of more than 4, the algorithm fails 
to find the solutions in a reasonable amount of time and 
computer memory. The problem that arises is, then, to 
search for any combination set that satisfies equation C' that 
provides the least number of multiplications. 

C. Nursalman, Arif, Yusuf and Kuspriyanto Algorithm   
  (NAYK Algorithm) 

This algorithm combines the Improved GKA algorithm 
and the Exhaustive Search Algorithm in order to overcome 
the flaws of both algorithms. The algorithm includes the 
following steps: 

1.  Identify the products that are significantly involved 
 in solutions for C'. 
2.  Identify the products are not involved in solutions for 
 C'. 
3.  Reduce the number of rows of the combinations in 
 matrix D. 
4. Utilize the properties that arise from polynomial 
 multiplication in GF(2n) such as symmetry. 

By significantly reducing the number of combinations in 
matrix D, the algorithm is much simpler and can be 
processed much easier. 

As an example, the following are details of the steps for 
n=5. 
1. Determine the value of n, matrix C', and matrix D 
 Let n = 5 
 The Exhaustive Search Algorithm is used to calculate   
 matrix C' and D. The matrix D consists of 31 rows. 
2. Find a solution for c'(n-2), c'(n-1) and c'(n) 

To find the solutions to equation C'(i) for i values of n-2, 
 n-1, and n, the Improved GKA formula was used by 
 substituting equation (8) or (9) into (5). For n = 5 look at 
 (10), (11) and (12). The following formulas are then 
 obtained: 

'(3) (0,1,2,3,4) (0,2,3,4) (0,1,3,4)

(3,4) (0,4) (4)

'(4) (0,1,2,3,4) (0,2,3,4) (0,1,2,4)

(0,2) (2,4)

'(5) (0,1,2,3,4) (0,1,2,4) (0,1,3,4)

(0,1) (0,4) (0)

c D D D

D D D

c D D D

D D

c D D D

D D D

  

  

  

 

  

  

 (13) 

 
3. Identification of products that are solutions to equation  
 C' 

Note that in order to identify the products involved in the 
equation in C' is seeing the results of all three equations in 
the middle of the above (13), then we will get the products 
as follows. 

 
D(0,1,2,3,4), D(0,2,3,4), D(0,1,2,4), D(0,1,3,4), D(0,1), 

D(3,4), D(0,4), D(1,3), D(0), and D(4). 
 
Note, the form of D(0,1) in the equation c'(1) and D(3,4) 

in equation c'(7) the multiplication are already difficult to be 
reduced again, the formula is in (5) with n = 5. therefore, 
both the equations have a fixed form. So consequently the 
equation of c'(0) and c'(8) have a fixed form too. Then the 
products included in the solution in C' will increase, those 
are 

 
D(1) and D(3). 
 
Thus, the number had grown to 11. The upper bound of 

the function O(5) of Karatsuba multiplier is 12.8 or rounded 
to 13. This means that we have at most two products to be 
added to the solution. If more than that, it means that the 
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algorithm is not better than the Montgomery algorithm. for 
D(0,2) and D(2,4) are not added in the solution because it 
would involve D(2) as well, so the number of the solution is 
greater than 13. 

 

4. Identify the products that are not solutions to equation   
 C' 

In order to significantly reduce the number of rows in 
matrix D the products that are not solutions to equation C' 
must be identified. These products will not appear again in 
the new C' equation. 

Note that the new equations of c'(3) and c'(5) have a fixed 
form, in which the number of multiplications cannot be 
further reduced. Therefore, the products that do not appear 
in these new equations are not included in the solution. 
These products are 

 
D(0,2), D(0,3), D(1,2), D(1,4), D(2,3), and D(2,4). 
 
In addition, note that equation c'(4) contains the D(1,3) 

product, which does not appear in the new equations of 
c'(3), c'(4), and c'(5). Thus, this product is also not included 
in the solution to C', increasing the number of products that 
are not included to 7. 

5. Create a new matrix D 

The rows of matrix D are reduced with both products that 
are included in the solution and those that are not. 

There are 31 rows in matrix D, meaning that the number 
of rows of the new matrix D is 31-11-7 = 13 (Table IV). 

 

6. Choose the combination of products for the solution to C'. 
 

To find the solution of the equations of c'(2) and c'(6), we 
only choose two products from 13 products outside products 
that have been identified are included and not included in 
the solution. In other words, we are looking for a 
combination of two products from 13 products, then for 
each combination were combined with 11 products, which 
are included in the solution. Then each combination will 
consist of 13 products. Therefore, the search space of the 
solution becomes 78, which is much smaller compared to 
the algorithm developed by Montgomery, in which the 
search space is 2.1·108. 

 
TABLE IV 

THE NEW MATRIX D FOR N = 5 

No Decimal Binary 
The New  
Matrix D 

1 4 00100 2 
2 7 00111 234 
3 11 01011 134 
4 13 01101 124 
5 14 01110 123 
6 15 01111 1234 
7 19 10011 034 
8 21 10101 024 
9 22 10110 023 

10 25 11001 014 
11 26 11010 013 
12 28 11100 012 
13 30 11110 0123 

 
 
 

7. Calculate the combination of selected products for the 
 solution in C' 

 Each of the search space is calculated to find 
combinations that are included in the solution to equation 
C'. So we get on the line 38th is the combination solution, 
that is [13 22] or [01101 10110] or [124 023]. then the 
equation of c'(2) and c'(6) will have the following form. 
 

'(2) (0,1, 2, 4) (1,2,4) (0,1)

(0, 4) (4) (0)

'(6) (0, 2,3, 4) (0, 2,3) (3,4)

(0, 4) (0) (4)

c D D D

D D D

c D D D

D D D

  

  

  

  

 

 
Note that there are five different indexes of these 

solutions (0, 1, 2, 3, and 4), and that 2 is the middle value. 
Due to the symmetrical property of polynomial 
multiplication in GF(2n), if we reflect 0 and 1 to 2, then the 
results of the reflection are 4 and 3, respectively, and vice 
versa. If D(0,1,2,4) is used in the solutions in c'(2), then 
D(0,2,3,4) can also be used in the solutions in c'(6), and this 
can also be done for all other products. This means that we 
can easily obtain a solution to c'(6) by obtaining the solution 
to c'(2). So the results of c'(6) is the result of reflection from 
c'(2) on a symmetrical lines in C', that is c'(4). This means 
that to obtain a solution to equation C', we simply need to 
find a solution to c'(2) up to c'(n-1), and by reflecting c'(2) 
up to c'(n-2), the solutions for c'(n) up to c'(2n-2) can be 
found. Other solutions to c'(0) and c'(1) need not be found 
due to their fixed form. 

For n = 5 or above, not all of the products of the new 
matrix D in table IV need to be used. Note that if D(2), 
D(1,2,3) and D(0,2,4) are reflected, then the results are 
identical, or symmetrical. Therefore, for 10 products, half is 
a mirror of the other half. This means that the search space 
can be decreased to 3 + 5 = 8 rows in the new matrix D. 
Then we simply seek 1 from 8 products to be combined with 
the 11 products of the solution that have been identified 
previously to find solutions to c'(2) or c'(6), further reducing 
the search space to 8 products. This is significantly lower 
than that found by Montgomery. 

8. Get the solution with 
log(3,2)

( )O n n ,where O(n) rounded 

 off by default.  

If not, then choose another combination of products for a 
solution C', or repeat the steps above. Then, we get the 
solution for the equation of C', for n = 5, then the form is as 
follows (14). 
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'(0) (0)

'(1) (0,1) (0) (1)

'(2) (0,1, 2, 4) (1, 2, 4)

(0,1) (0, 4) (4) (0)

'(3) (0,1, 2, 3, 4) (0, 2, 3, 4)

(0,1, 3, 4) (3, 4) (0, 4) (4)

'(4) (0,1, 2, 3, 4) (0, 2, 3) (1, 2, 4)

(3, 4) (0,1) (0) (1)

c D

c D D D

c D D

D D D D

c D D

D D D D

c D D D

D D D D



  

 

   

 

   

  

    (3) (4)

'(5) (0,1, 2, 3, 4) (0,1, 2, 4)

(0,1, 3, 4) (0,1) (0, 4) (0)

'(6) (0, 2, 3, 4) (0, 2, 3)

(3, 4) (0, 4) (4) (0)

'(7) (3, 4) (3) (4)

'(8) (4)

D D

c D D

D D D D

c D D

D D D D

c D D D

c D

 

 

   

 

   

  



 (14)  

 
 From the above it can be observed that there are 13 
multiplication operations, resulting in the same complexity 
as the Montgomery algorithm, and the upper bound 
Karatsuba algorithm O(5) = 12.8 with rounded. This means 
that solutions are acceptable. The question now is, whether 
13 is the smallest bound to the number of multiplication 
operations in polynomial multiplication in GF(25) 

9. 13 is the lower bound for n = 5 

 We saw earlier in the identification process, that the 
products are involved as many as 11, which still has not 
formed a full solution because it still requires two other 
products, This means that 11 is not a lower bound, and 
based on the results of the above that upper bound of the 
latest is 13 multiplication. 

The question is, is it possible that 12 is the new lower 
bound? If 12 is the new lower bound, then the number of 
products of the longest being the solution for any c'(i) is 10. 
Then the rest of the equation c'(j) are 4, it means that one 
products is loaded by two equations of c'(j), this is the 
minimum amount required to complete the two equations. 
So that the rest of the two products is loaded by 4 equations 
of c'(j). Consider again that the products involved to be the 
solution. Note that the form of c'(3) and c'(5) are fixed, and 
the remaining are c'(2) and c'(6), which later those results 
will be substituted into c'(4). 

The products are involved as many as 11, it means 
staying one more, then the remaining one will be published 
by the two equations c'(2) and c'(6), where the equation of 
c'(2) is the mirror of the equation of c'(6). Then the 
combinations of D is C(14,1) = 14, which is the matrix D 
itself. Products of the matrix D which is a mirror for himself 
are 2, 13, 123, and 024, then one by one the product is 
combined with the 11 previous products, it was found that 
these products no one becomes a solution for the c'(2) and 
c'(6). 

So based on the method developed above, we can 
conclude that the amount of 12 products is not a solution for 
n = 5, it means that the 13 products is an upper bound, but 
also a lower bound for the solution n = 5. 

Furthermore, we can repeat the same steps above to get a 
solution for n = 6 and 7. Here are the form of multipliers for 
n=6 and 7, which differs from Montgomery. For n = 6, we 
get two different forms than the forms found by 
Montgomery but still have the same complexity, 17 
multiplications. Here is the first form (15). 

 
'(0) (0)

'(1) (0,1) (0) (1)

'(2) (0,1, 2) (0,1) (1, 2)

'(3) (0,1, 2, 3, 4, 5) (1, 2, 4, 5) (0,1, 3, 4)

(0,1, 2) (0, 3, 5) (0,1) (1, 4)

(2, 3) (3, 4) (0) (5)

'(4) (0,1, 2, 3, 4, 5) (1, 2, 4, 5) (0,1, 2)

c D

c D D D

c D D D

c D D D

D D D D

D D D D

c D D D

D



  

  

  

   

   

  

 (0, 3, 5) (1, 2) (2, 3) (0)

(4) (5)

'(5) (0,1, 2, 3, 4, 5) (1, 2, 4, 5) (0,1, 3, 4)

(0,1, 2) (3, 4, 5) (0,1) (1, 2)

(3, 4) (4, 5)

'(6) (0,1, 2, 3, 4, 5) (0,1, 3, 4) (0, 2, 5)

(3, 4, 5) (2, 3) (3, 4) (0)

(1) (

D D D

D D

c D D D

D D D D

D D

c D D D

D D D D

D D

  

 

  

   

 

  

   

  5)

'(7) (0,1, 2, 3, 4, 5) (0,1, 3, 4) (1, 2, 4, 5)

(0, 2, 5) (3, 4, 5) (1, 2) (1, 4)

(4, 5) (2, 3) (0) (5)

'(8) (3, 4, 5) (3, 4) (4, 5)

'(9) (4, 5) (4) (5)

'(10) (5)

c D D D

D D D D

D D D D

c D D D

c D D D

c D

  

   

   

  

  



  

 ........... (15) 

 
Then for the second form, replace the equation c'(3) and 

c'(7) in (15) with the following equations. 
 

'(3) (0, 2, 3, 5) (0, 2, 5) (3, 4, 5)

(2, 3) (3, 4) (4, 5) (1) (4)

c D D D

D D D D D

  

    
 

 
'(7) (0, 2, 3, 5) (0,1, 2) (0, 3, 5)

(0,1) (1, 2) (2, 3) (1) (4)

c D D D

D D D D D

  

    
 

 
 In this second form of the equation D(1,4) does not exist 
but appears equation D(0,2,3,5). The complexity of the 
number of multiplications is the same but the number of add 
operations increased two products, which means that the 
first form solution is better than the second. 

Then for n = 7 with NAYK algorithms can we write as 
follows (16). 
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'(0) (0)

'(1) (0,1) (0) (1)

'(2) (0, 2) (0) (1) (2)

'(3) (1, 2, 3, 5, 6) (0, 2, 3, 5, 6)

(0,1, 5, 6) (0,1) (0, 2)

(1, 3) (5, 6) (2) (3)

'(4) (0, 4) (1, 3) (0) (1)

(2) (3) (4)

'(5) (0,1, 2, 3, 4

c D

c D D D

c D D D D

c D D

D D D

D D D D

c D D D D

D D D

c D



  

   

 

  

   

   

  

 , 5, 6) (0,1, 3, 4, 6)

(1, 2, 4, 5) (0, 2) (2, 6)

(3, 5) (5, 6) (0) (1)

(3) (4)

'(6) (0,1, 2, 3, 4, 5, 6) (1, 2, 3, 5, 6)

(0,1, 3, 4, 5) (0, 2) (1, 3)

(3, 5) (4, 6) (0) (2)

(4) (6)

'(7) (0,1, 2, 3, 4, 5, 6) (0,

D

D D D

D D D D

D D

c D D

D D D

D D D D

D D

c D D



  

   

 

 

  

   

 

  2, 3, 5, 6)

(1, 2, 4, 5) (0,1) (0, 4)

(1, 3) (4, 6) (2) (3)

(5) (6)

'(8) (2, 6) (3, 5) (2) (3)

(4) (5) (6)

'(9) (0,1, 3, 4, 5) (0,1, 3, 4, 6)

(0,1, 5, 6) (0,1) (3, 5)

(4, 6) (5, 6) (3) (4)

'(10) (

D D D

D D D D

D D

c D D D D

D D D

c D D

D D D

D D D D

c D

  

   

 

   

  

 

  

   

 4, 6) (4) (5) (6)

'(11) (5, 6) (5) (6)

'(12) (6)

D D D

c D D D

c D

  

  



 

 ...........(16) 

 
 The above solution difference with Montgomery, it lies in 
the equation c'(3) and c'(9). Both of these equations written 
by Montgomery to be as follows. 
 

'(3) (0,1,3,4,5) (0,2,3,4,6) (0,2,3,5,6)

(1,2,4,5) (0,1) (1,3) (4,6)

(5,6) (2)

c D D D

D D D D

D D

  

   

 

 

 
and 
 

'(9) (1,2,3,5,6) (0,2,3,4,6) (0,1,3,4,6)

(1,2,4,5) (0,1) (0,2) (3,5)

(5,6) (4)

c D D D

D D D D

D D

  

   

 

 

 
 In the solution of the equation C' with NAYK algorithm 
there is products of D(0,1,5,6) and there is no product of 
D(0,2,3,4,6). It is clear that the number of operations of 
addition in D(0,1,5,6) is less than the D(0,2,3,4,6), besides 

Montgomery write the equation c'(3) and c'(9) more long. 
This means that the solutions of the equation C' with NAYK 
algorithm is better than Montgomery. 
 Note that if the index i<n-1 is reflected to its midpoint, 

1n  , then the result is 1n i  . Therefore, the results of 

reflection or partner of 
1 2

D( , ,..., )
m

i i i is 

(1) ( 2 ) ( )
( -1 , -1 , ..., -1 )

m
D n i n i n i   , 

and for i>n-1, then the result of the reflection is 1n i  , so 

that pairs of 
1 2

( , , ..., )
m

D i i i is  

(1) ( 2 ) ( )
( -1 , -1 , ..., -1 )

m
D n i n i n i   . 

 While reflecting n-1 is himself. This is the reflection 
properties that appear in the equation in C'. 

Consider the results of the search for a solution of the 
equation C' for n = 5, we get that the search space can be 
reduced again from 78 to 8 by utilizing the properties of 
reflection that appears on the solution in C', this is better 
than Montgomery did, where the search space is 2.1·108, 
although Montgomery then automatically selects the three 
following multiplication a0b0, an-1bn-1, and (a0b0+...+an-1bn-1), 
so the search space becomes 1.3·107. Utilization of the 
reflection properties as above to determine the search space, 
from 78 to 8, very risky if not described in more detail as 
was done by NAYK algorithm to search for a solution for n 
= 5. Because it could be in one equation c'(i) there are two 
or more variations of products in pairs as part of the 
solution. So if various products in pairs are separated into 
two different groups, and we only took one of them to 
complete a c'(i), then c'(i) will not have a solution. For 
example, consider the equation c'(3) for n = 6 and c'(6) for n 
= 7 follows below, 

 
'(3) (0,1, 2, 3, 4, 5) (1, 2, 4, 5) (0,1, 3, 4)

(0,1, 2) (0, 3, 5) (0,1) (1, 4)

(2, 3) (3, 4) (0) (5)

c D D D

D D D D

D D D D

  

   

   

 

 
and 
 

'(6) (0,1, 2, 3, 4, 5, 6) (1, 2, 3, 5, 6)

(0,1, 3, 4, 5) (0, 2) (1, 3)

(3, 5) (4, 6) (0) (2)

(4) (6)

c D D

D D D

D D D D

D D

 

  

   

 

 

 
For n = 6, products of D(1,2,4,5) is a pair of D(0,1,3,4), 

and for n = 7, D(1,2,3,5,6) is a pair of D(0,1,3,4,5). If they 
are separated into different groups and if we only look for 
solutions to c'(3) or c'(6) with one of these groups, then both 
of these equations will not have a solution, either with an 
algorithm Montgomery nor with NAYK algorithm. 
Therefore, it is very risky if separated the two groups are 
mutually coupled to resolve C'. Unless already identified 
some significant products which became a solution and 
which would not be a solution and with the separation there 
is a solution for every c'(i) sought as an example for n = 5 
with NAYK algorithm above. 

Here are some products that are identified as the solution 
and not the solution for n = 6. 
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Some products for the solution: 
 

D(01,2,3,4,5), D(0,1,3,4), D(1,2,4,5), D(0,1,2), D(0,3,5), 
D(3,4,5), D(0,2,5), D(0,1), D(1,2), D(1,4), D(2,3), D(3,4), 
D(4,5), D(0), D(1), D(4), and D(5) 
 

Some products are not the solution: 
 

D(0,5), D(0,2), D(3,5), D(2,5), D(0,3), D(2,4), D(1,3), 
D(1,5), D(0,4), D(2), and D(3). 
 
 

 From 63 existing products, then reduced and the rest 
became 63-16-11 = 36. Because the function O(6) gives the 
upper bound is 17, so we are now looking for 17-16 = 1 
from 36, then the product is combined with the 16 products 
to be the solution for C'. This means there are as many as 36 
possible search space for n = 6. But then consider, that only 
one product we were looking for which is contained by the 
two equations c'(3) and c'(7), this means that the products 
are symmetrical. Then we find the products that are 
symmetrical are not included in the two groups above, these 
products are D(1,4), D(1,2,3,4), D(0,2,3,5) and D(0,1,4,5). 
This means that we are not looking for one from 36 
products, but we are looking for 1 from 4 symmetrical 
products. So the search space is reduced from 36 to 4. 

Here are some products that are identified as the solution 
and not the solution for n = 7. 
 

Some products for the solution: 
 

D(0,1,2,3,4,5,6), D(0,1,3,4,5), D(1,2,3,5,6), D(0,1,3,4,6), 
D(0,2,3,5,6), D(1,2,4,5), D(0,1), D(0,2), D(0,4), D(1,3), 
D(2,6), D(3,5), D(4,6), D(5,6), D(0), D(1), D(2), D(3), D(4), 
D(5), and D(6). 
 

Some products are not the solution: 
 

D(0,3), D(0,5), D(0,6), D(1,2), D(1,4), D(1,5), D(1,6), 
D(2,3), D(2,4), D(2,5), D(3,4), D(3,6), and D(4,5). 
 

 From 127 products, was reduced to 127-21-13 = 93. But 
Consider that the upper bound is O(7) = 22, while some 
products that have been identified as a solution there are 21, 
which means that we are now looking for one from 93. But 
then consider, that only one product we were looking for 
which is contained by the two equations c'(3) and c'(9), this 
means that the products are symmetrical. Then we find the 
products that are symmetrical are not included in the two 
groups above, these products are 
 

D(2,3,4), D(1,3,5), D(0,3,6), D(1,2,4,5), D(0,2,4,6), 
D(0,1,5,6), D(1,2,3,4,5), D(0,2,3,4,6), and D(0,1,3,5,6). 
 

 This means that we are not looking for one from 93 
products, but we are looking for one from 9 symmetrical 
products. So the search space is reduced from 93 to 9. 

Here below, table V,  is the comparison of the search 
space between Montgomery algorithm and NAYK 
algorithm to find the products for solution equation of C'. 

 
 
 
 
 
 
 

TABLE V 
THE COMPARISON OF THE SEARCH SPACE BETWEEN 

MONTGOMERY ALGORITHM AND NAYK ALGORITHM 

n 

The Search Space 

Montgomery Algorithm [18] NAYK Algorithm 

5 1.3·107 78 8 

6 1.7·1013 36 4 

7 1.1·1022 93 9 

 
In Table V, there are two values for the search space 

resulted from the NAYK algorithm. The right values are 
obtained by utilizing the properties of symmetry of 
polynomial multiplications in GF(2n), resulting in a much 
smaller search space. The NAYK algorithm can also provide 
a very small search space for values of n of larger than 7, for 
which the Montgomery algorithm cannot. This is because 
the NAYK algorithm identifies which products are solutions 
and which are not, and utilizes these products for 
completing other equations of c'(i), significantly reducing 
the search space. From these results, we can conclude that 
the NAYK algorithm is much simpler and less resource-
consuming in finding a polynomial multiplier in GF(2n) than 
the algorithm developed by Montgomery. 

To see how the NAYK algorithm can improve calculation 
efficiency, it was compared with two other methods, namely 
the School Book and the Simple Karatsuba methods for n = 
6 and 7. We constructed a 169 bit multiplier in the 
composite field GF((2p)q), where p = q = 13 bits, or 
p×q=13×13=169 bits, while p and q themselves will be 
constructed from n = 6 and 7, that is 13 = 7 + 6. 

A comparison of the complexity function O(n) for the 
three different methods is shown in Table VI and Figure 5. 
For the School Book method, O(n) = n2, while for the 
Simple Karatsuba, O(n) ≤ 3n2/4. This is because by using a 
small number of bits, only one iteration is needed, so the 
efficiency is approximately 3n/4 (upper limit). As for the 
NAYK method, the upper limit is the standard rounding of 
the value of nlog(3,2) ≥ O(n). 

The Karatsuba method for p and q was used for the first 
composite field, while for the second composite field, the 
Karatsuba method was used for p and the NAYK method for 
q. To compare the  algorithms, the implementation of the 
two methods were simulated in Quartus II: 

 
TABLE VI 

COMPARISON OF THE COMPLEXITY FUNCTION O(N) FOR SMALL BITS 

School Book Karatsuba NAYK

1 1 1 1

2 4 3 3

3 9 7 6

4 16 12 9

5 25 19 13

6 36 27 17

7 49 37 22

n

O(n) for small bits
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Fig. 5. Comparison of the Complexity Function O(n) for Small Bits 

 
Due to the low number of bits used (169 bits), only one 

iteration is needed for the Karatsuba algorithm. The 
following formula (17) was used: 
 

    

  

   

     

12 6

12

6

mod

mod

mod

H H H L H L

H H L L L L

H H

H L H L H H L L

L L

AB x A B x A A B B

A B A B f x A B

x A B f x

x A A B B A B A B f x

A B

   

  



    





 (17)

 

 
Each element is divided into part H (high) and L (low), 

where H and L each consists of 7 and 6 coefficients (7 + 6 = 
13 bits). The modulo function used is as follows: 

  13 4 3
1f x x x x x      (18) 

 
From these functions, we obtain the following algorithm 

for the finite state machine: 
 

0

1

0 0 1

1

2

0 0 1

0 0 2

6

1 1

6

1 1

6

0 0

0 0 1

0 2

1 :

2 :

3 :

4 :

5 :

6 :

7 :

8 :

9 :

10 :

11 :

12 :

H L

H L

H H

L L

S RM A A

S RM B B

S RM RM RM

S RM A B

S RM A B

S RM RM RM

S RM RM RM

S RM RM x

S RM RM x

S RM RM x

S RM RM RM

S Output RM RM

 

 

 

 

 

 

 

 

 

 

 

 

 

 
From the algorithm, the following finite state machine is 

obtained (Figure 6): 

 
 
Fig. 6. Finite State Machine (FSM) for polynomial multiplier in GF(213)  

 
The implementation of equations (15) and (16) is 

illustrated in the following datapath circuit (Figure 7): 
 

6( )x  

 
 

Fig. 7. Datapath for polynomial multiplier in GF(213) 
 
The combination of the datapath and finite state machine 

was simulated with VHDL in Quartus II. Below is a sample 
the FSM module that regulates how the system works: 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
ENTITY fsm IS PORT ( 
 Clock, Reset, Start: IN std_logic; 
 OE, enM0, enM1, enM2: OUT std_logic; 
 IE_op1, IE_op2, IE_op3: OUT std_logic_vector(2 downto 0));  
END fsm; 
 
ARCHITECTURE fsm_KOA13 OF fsm IS 
 TYPE state_type IS (s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, 
s11, s12); 
     signal next_state, current_state: state_type; 
 
BEGIN 
 process (Clock, Reset) 
begin 
 if Reset = '1' then 
  current_state <= s0; 
 elsif (rising_edge(Clock)) then 
  current_state <= next_state; 
 end if;  
end process; 
 
process (current_state) 
begin 
 next_state <= current_state; 
 case current_state is 
when s0 =>  
   IF (Start = '1') THEN next_state <= s1;  
   ELSE next_state <= s0;  
   END IF; 
  when s1 => next_state <= s2; 
  when s2 => next_state <= s3; 
  when s3 => next_state <= s4; 
  when s4 => next_state <= s5; 
  when s5 => next_state <= s6; 
  when s6 => next_state <= s7; 
  when s7 => next_state <= s8; 
  when s8 => next_state <= s9; 
  when s9 => next_state <= s10; 
  when s10 => next_state <= s11; 
  when others => next_state <= s12; 
 end case; 
end process; 
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PROCESS(current_state) 
BEGIN 
CASE current_state IS 
   WHEN s1 => IE_op1<="000"; IE_op2 <= "000"; IE_op3 <= "001"; OE 
<= '0'; enM0 <= '1'; enM1 <= '0'; enM2 <= '0'; 
 WHEN s2 => IE_op1<="001"; IE_op2 <= "001"; IE_op3 <= "001"; OE 
<= '0'; enM0 <= '0'; enM1 <= '1'; enM2 <= '0'; 
 WHEN s3 => IE_op1<="010"; IE_op2 <= "011"; IE_op3 <= "011"; OE 
<= '0'; enM0 <= '1'; enM1 <= '0'; enM2 <= '0'; 
 WHEN s4 => IE_op1<="000"; IE_op2 <= "001"; IE_op3 <= "010"; OE 
<= '0'; enM0 <= '0'; enM1 <= '1'; enM2 <= '0'; 
 WHEN s5 => IE_op1<="000"; IE_op2 <= "001"; IE_op3 <= "100"; OE 
<= '0'; enM0 <= '0'; enM1 <= '0'; enM2 <= '1'; 
 WHEN s6 => IE_op1<="010"; IE_op2 <= "011"; IE_op3 <= "000"; OE 
<= '0'; enM0 <= '1'; enM1 <= '0'; enM2 <= '0'; 
 WHEN s7 => IE_op1<="010"; IE_op2 <= "100"; IE_op3 <= "000"; OE 
<= '0'; enM0 <= '1'; enM1 <= '0'; enM2 <= '0'; 
 WHEN s8 => IE_op2 <= "011"; IE_op3 <= "101"; OE <= '0'; enM0 <= 
'0'; enM1 <= '1'; enM2 <= '0'; 
 WHEN s9 => IE_op2 <= "011"; IE_op3 <= "101"; OE <= '0'; enM0 <= 
'0'; enM1 <= '1'; enM2 <= '0'; 
 WHEN s10 => IE_op2 <= "010"; IE_op3 <= "101"; OE <= '0'; enM0 <= 
'1'; enM1 <= '0'; enM2 <= '0'; 
 WHEN s11 => IE_op1<="011"; IE_op2 <= "010";  
IE_op3 <= "000"; OE <= '0'; enM0 <= '1'; enM1 <= '0'; enM2 <= '0'; 
 WHEN others => IE_op1<="010"; IE_op2 <= "100"; IE_op3 <= "000"; 
OE <= '1'; enM0 <= '0'; enM1 <= '0'; enM2 <= '0'; 
END CASE; 
END PROCESS; 
END fsm_KOA13; 

 
The results of the simulation are shown in Figure 8.a and 

8.b. 
 

 
 

Fig. 8.a. Simulation result for polynomial multiplier in GF(213), part 1 
 

 
 

Fig. 8.b. Simulation result for polynomial multiplier in GF(213), part 2 
 

In Quartus II, the complexity of the Simple Karatsuba 
algorithm is shown by a Combinational ALUTs (Adaptive 
Look Up Tables), in which a Combinational ALUTs 
consists of more than one logic gate. It can be seen that to 
run the programs of multiplier in GF(213) using this 
algorithm requires 117 combinational ALUTs (Figure 9). 

  

 
 

Fig. 9. Flow summary from Simulation result of polynomial multiplier in 
GF(213) for Karatsuba Method. 

 
On the other hand, the complexity of the NAYK 

algorithm requires as many as 182 Combinational ALUTs. 
This value is greater than the complexity of the Simple 
Karatsuba method because XOR process increases 
significantly. But if the NAYK algorithm is implemented 
with a composite filed on the outside power, the XOR 
operation will be executed only once. While a large impact 
on efficiency is the number of multiplication process that 
has been generated by the algorithm NAYK, these 
multiplication process are then operated with power on the 
inside. 

 

 
 

Fig. 10. Flow summary from Simulation result of polynomial multiplier in 
GF(213) for NAYK Method. 

 
Because formula (17) uses the multipliers of n = 7 and 6, 

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_02

(Advance online publication: 20 November 2017)

 
______________________________________________________________________________________ 



 

the number of multiplication processes generated by the 
NAYK algorithm is 22+(22-1)+17=60. Thus, the composite 
complexity of Karatsuba-NAYK is (117*60+182)=7,202.00 
Combinational ALUTs. 

Meanwhile, the number of multiplications generated by 
the Karatsuba algorithm is 49+(49-1)+36=133. Therefore, 
the composite complexity of Karatsuba-Karatsuba is 
117*133+117=15,678.00 Combinational ALUTs. A 
comparison of the complexities of the composite methods is 
shown in Table VII.  

 
TABLE VII 

COMPARISON OF COSTS FOR THE COMPOSITE FIELD 
KARATSUBA-NAYK IN COMBINATIONAL ALUTS 

Composite Methods O(13) 

 Combinational 
ALUTs 

GF(2
13

) GF((2
13

)
13

) 

Karatsuba-Karatsuba 133 117 15,678.00 

Karatsuba-NAYK 60 182 7,202.00 

 
It can be clearly observed that the costs required for 

executing the composite Karatsuba-NAYK algorithm is as 
low as about 50% of the costs required for the composite 
Karatsuba-Karatsuba method. This is caused by the fact that 
the NAYK method significantly reduces the number of 
multiplications. Therefore, it has been proven that the 
NAYK method can improve the efficiency of polynomial 
multiplication in the Galois Field by reducing the 
complexity or cost (measured in Combinational ALUTs) of 
the calculations. 

Therefore, it has been proven that the NAYK can improve 
the efficiency of the area and also the speed by reducing the 
complexity or cost of combinational ALUTs. 

The results of this development, NAYK method, are well 
suited for the composite field, which is placed on the 
outside. Because the number of multiplication of this 
method is much less when compared with the results of the 
Simple Karatsuba algorithm. This causes the amount of 
calculation becomes much diminished significantly, and this 
will improve the efficiency of the area. Moreover, it 
provides an easy step in finding a polynomial multiplier in 
GF(2n). 

Furthermore, with NAYK algorithm we can find and 
develop bigger bits and better of the polynomial multiplier 
for n>7 more quickly and produce a number of products are 
much smaller because the upper limit is a function O(n) of 
Montgomery. 

Moreover, with the implementation of NAYK algorithm 
results in composite field, implementation of ECC will be 
much better than before because at least the processing time 
will be two times faster than before. This is due to the 
process of arithmetic can be reduced by half, as described 
above. In fact we can apply the results in other processes 
such as inverse that uses a multiplication operation in the 
process, so that the ECC processing time will be much 
faster. 

In addition, since the implementation of NAYK algorithm 
can reduce the number of arithmetic processes significantly, 
then the area of ECC can be reduced smaller than before. 

Why this research is necessary, because the results will 
have a great influence on the efficiency of the area as well 

as time in ECC as a whole. Now, look at figure 11 that in 
ECC there are three levels of calculation. 

 

 
 

Fig. 11. Three levels of process in ECC 
 

In the encryption process there is a public key generation 
process Pb = kb.B with a very large integer kb, this is at the 
level of scalar multiplication in EC. For example if kb = 100, 
then the doubling and addition rule of Pb can be calculated 
as Pb=100B=2(2(2(2(2B+B)))+B)), then to do the 
calculation will need 2 addition and 6 doubling. Meanwhile, 
if the ECC is applied in affine coordinates, then at the level 
of GF(2n) the addition process require 1 inverse, 2 
multiplication, and 1 square, and the doubling process 
require 1 inverse, 2 multiplication, and 2 square. Then it is 
known that the square process is also a multiplication 
process, so the calculation of Pb will at least involve 
(2+1)2+(2+2)6=30 multiplication, while the inverse process 
is only done as much as 1*2+1*6=8, but the inverse process 
does not take up a lot of resources in GF(2n) because the 
process is simple unlike the complexity of the multiplication 
process [25], For comparison see figure 12. 

 

Others
0.2

Multiplication
0.8

 
 

Fig. 12. Distribution area in ECC 
 

So if a multiplication process at the arithmetic level of 
GF(2n) can cause enlargement of the area, then with the 
processes of as much as 30 multiplication will cause more 
enlargement of the area. Thus it is clear that the 
multiplication process in arithmetic GF(2n) gives a direct 
influence on the encryption process in ECC. Using the 
results from the NAYK Algorithm as the results in table VII 
states that the algorithm can reduce the efficiency of the 
complexity area of the product around 50%, so that the 
overall efficiency of the ECC process is about 40%, see 
figure 13. 

Others
0.2

Multiplication
0.4

Efficiency
0.4

 
 

Fig. 13. Distribution and efficiency area in ECC  
after using NAYK Algorithm 
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To speed up the processing time it depends on how the 
architecture is designed from the start level in GF(2n) to the 
scalar multiplication process in EC. But with NAYK 
algorithm results, ECC architecture can be designed to be 
better and can speed up the processing time. 

Further research on [26-28], the multiplication forms in 
GF(2n) can be improved in efficiency if using NAYK 
algorithm, because this algorithm is not only used in ECC 
but in other research field can be used as in error correction 
codes. 

 
V. CONCLUSION & FUTURE WORK 

 

In this study, we have developed an improved 
Generalizations of the Karatsuba Algorithm (GKA) formula 
for use in polynomial multiplications in the Galois Field 
GF(2n). The aim was to improve the efficiency of the 
calculations by developing an algorithm in which the 
number of multiplications is significantly reduced compared 
to previous methods. The Improved GKA formula utilizes 
symmetry, a property that arises in the multiplication 
process. By solving only half of the equations in C' 
(including for c'(n-1)), the solutions to the other half can be 
obtained using symmetry. However, for large values of n, 
the algorithm fails to execute with acceptable time and 
computer resources. In order to solve this problem, we 
developed an Exhaustive Search Algorithm to find the 
combinations of products that are solutions to equation C', 
hence reducing the number of multiplications required. For 
large values of n, though, this algorithm requires large 
amounts of resources. To overcome the shortcomings of 
both algorithms, we developed the NAYK algorithm that 
combines both the Improved GKA and Exhaustive Search 
Algorithm. The NAYK algorithm has a much lower 
complexity compared to previous methods to solve 
polynomial multiplications in GF(2n). 

In further research, we aim to develop improved 
algorithms for polynomial multiplications in GF(2n) for 
values of n of larger than 7, and implement the algorithms in 
a composite field. The development of such algorithms is 
useful in a variety of applications, including Elliptic Curve 
Cryptography (ECC). By utilizing the NAYK algorithm, 
limited computer resources is no longer an obstacle to 
implementing ECC.  
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