

 

Abstract—There have been many researches that were
developed to reduce multiplication operations in polynomial
multiplier in GF(2n). This is important because of its
connection with the efficient implementation in restricted
devices, such as in elliptic curve cryptography. Two of them
are the researches conducted by Paar for n=4 and Montgomery
for n=5,6,7. Their researches are better than previous
researches, but they do not explain their methods, how they
can find the multipliers. This is the knowledge gap and in this
research sought to find a method is better than what they have
done in finding the multipliers. The first step is to develop a
formula that is better than Generalizations of The Karatsuba
Algorithm, after then develop an exhaustive search algorithm
for all possible existing products. Then, combine both of these
formulas and algorithm, which we refer to as the NAYK
algorithm. This algorithm can explain how to reduce the
multiplications significantly, that is by identifying some
multiplications or products included in the solution and some
products which is not included in the solution. So the rest of
products is reduced significantly. Then we use the products
have been identified are included in the solution, and with
reference to the upper bound of the function of O(n), then the
lack of products is added from a combination of existing
residual products. This causes the search space becomes much
smaller significanly than the Montgomery algorithm. Further,
the NAYK algorithm allows to search multiplier for n>7.
NAYK algorithm is suitable for use in composite field because
it can improve efficiency significantly.

Index Terms— Exhaustive Search Algorithm, Improving of
Generalizations of The Karatsuba Algoritm, NAYK Algorithm,
Generalizations of n-Term Karatsuba Like Formulae,
polynomial multiplication in GF(2n), Composite Field

I. INTRODUCTION

HE efficiency of multiplying two polynomials is a
crucial matter in fields such as cryptography and signal

processing. The high resource requirements polynomial
multiplication in the Galois Field GF(2n) leads to the high
number of point multiplications up to the curve level in
Elliptic Curve Cryptography (ECC) [13-14][21] resulting in
very large processing times. This can not be separated from
the process of polynomial multiplication in the arithmetic
level in GF(2n), which consumes a lot of resources and
causes the process to not only be time consuming, but also
require a large area, especially if a large bit size is used
[3 5] .

Manuscript submitted June 8, 2016, 4th revised June 22, 2017.
Muhamad Nursalman, Arif Sasongko, Yusuf Kurniawan and

Kuspriyanto are with the School of Electrical Engineering and Informatics,
Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
(corresponding author, phone: +6285601939046; e-mail:
mnursalman@upi.edu or mnursalman@students.itb.ac.id, e-mail:
asasongko,yusufk,kuspriyanto@stei.itb.ac.id).

 This large number of multiplications cause difficulties in
the hardware implementation phase, especially if the
algorithm is implemented in restricted devices [15-17][20].
To solve this problem, the number of multiplications
performed in polynomial multiplication in GF(2n) must be
reduced. However, reducing the number of multiplications
is not an easy task, in the research conducted by Paar in
which a formula for the multiplication in the multiplier in
GF(2n) for n = 4 was developed [6-7], the process of
reducing the multiplications was not described in detail.
Similarly, Montgomery used so-called division-free
formulas in finding multipliers in GF(2n) for 5,n  6, and 7,

[18] and thus no detailed description of the algorithm used
was given.
 The main problem in this research is how to reduce the
number of multiplication processes in the multiplier in
GF(2n) using a more uncomplicated method or algorithm
compared to that used in in the two previous research
carried out [6-7][18], even with limited computer resources.
To solve this problem, we developed an alternative formula
that is more efficient than Generalizations of The Karatsuba
Algorithm (GKA) in reducing the number of multiplications
in the multiplier in GF(2n) [16], and also developed an
exhaustive search algorithm to find the solution to the
equations of mathematics that appear in polynomial
multiplications in GF(2n).

II. POLYNOMIAL MULTIPLIERS IN GALOIS FIELD

A. Simple and General Karatsuba Multiplier

Starting from ordinary polynomial multiplication as
follows [9].

 

1 1

0 0

1 1

0 0

() () () mod ()

mod ()

mod ()

n n
i j

i j
i j

n n
i j

i j
i j

C x A x B x f x

a x b x f x

a b x f x

 

 

 


 



  
   
  



 



 (1)

where

1
1 1 0

1

0

() ...n
n

n
i

i
i

A x a x a x a

a x








   

 

and

1
1 1 0

1

0

() ...n
n

n
j

j
j

B x b x b x b

b x








   



Generalizations of n-Term Karatsuba Like
Formulae in GF(2n) with NAYK Algorithm

Muhamad Nursalman, Member, IAENG, Arif Sasongko, Yusuf Kurniawan, Kuspriyanto

T

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_02

(Advance online publication: 20 November 2017)

__

Then Karatsuba divide A and B in (1) into two parts as
follows.

1 2
1 2 1 0

/ 2 / 2 1 / 2 1
1 / 2 / 2 1 0

/ 2

...

... ...

n n
n n

n n n
n n n

n
H L

A a x a x a x a

x a x a a x a

x A A

 
 

 
 

    

           

 

1 2
1 2 1 0

/ 2 / 2 1 / 2 1
1 / 2 / 2 1 0

/ 2

...

... ...

n n
n n

n n n
n n n

n
H L

B b x b x b x b

x b x b b x b

x B B

 
 

 
 

    

           

 

Then

    

 

 

/ 2 / 2

/ 2

mod

mod

n n
H L H L

n n
H H H L L H L L

AB x A A x B B f x

x A B x A B A B A B

f x

  

      (2)

Then Karatsuba manipulate the equation (2) in the brackets
as follows.

   

 

  

H L L H

H L L H H H H H L L L L

H H H L L H L L H H L L

H L H L H H L L

A B A B

A B A B A B A B A B A B

A B A B A B A B A B A B

A A B B A B A B



     

     

    

 (3)

Then (3) substitute into (2) as follows.

    

  

/ 2

mod

n n
H H H L H L

H H L L L L

AB x A B x A A B B

A B A B A B f x

   

   

 (4)

Previously (2), there are four products that must be
processed,

H HA B , H LA B , L HA B , and L LA B .

But, after using a simple algorithm Karatsuba above, the
products are reduced by one, so only three products are
processed in (4) [2][10][17], these are

H HA B ,   H L H LA A B B  and L LA B .

If we divide A and B to be more than two products and we
use the Karatsuba multiplication properties, then the method
is called as a General Karatsuba Multiplier [3-5].

B. Generalizations of The Karatsuba Algorithm (GKA)

Then if we divide A and B into the smallest form, where
an product has only two coefficients (if n is odd, then there
is one product contains only a single coefficient), then this
method of multiplication between A and B is called as
generalizations of The Karatsuba Algorithm [1][22]. Then
the form will be as follows.

Generalizations of The Karatsuba Algorithm

Take any polynomial of degree (n-1) with n coefficient

1 1

0 0

() , ()
n n

i i

i i

i i

A x a x B x b x
 

 

  

0,1, , 1i n   compute

i i i
D a b ,

and 1, 2, , 2 3i n  

and , , 0j k j k i j k      compute

,
()()

j k j k j k
D a a b b   ,

Then
2 2

0

() () ()
n

i

i

i

C x A x B x c x




   

can be computed as follows

0 0

2 2 1n n

c D

c D
 

 

 

 

 

,

0 1 0 1

,

where 1,3,5, ,2 3

i j k j k

j k i j k i

j k n j k n

c D D D

i n

   

       

   

 

 



 (5)

 

 

, / 2

0 1 0 1

,

where 2, 4, 6, , 2 4

i j k j k i

j k i j k i

j k n j k n

c D D D D

i n

   

       

    

 

 



C. Polynomial Multiplier for Galois Field GF((2n)4)

Furthermore, for n = 4 in the equation GKA, Paar
modifies it as follows [6-7][19][24].

Suppose
3 2 4

3 2 1 0
() ; (2); ((2))

n n

i
A x a x a x a x a a GF A GF     

and
3 2 4

3 2 1 0
() ; (2); ((2))

n n

i
B x b x b x b x b b GF B GF     

and

() () () mod ()C x A x B x P x 

Then, Paar manipulate it into

0 0

1 0 1 2

2 0 2 3 6

3 0 1 2 3 4 5 6 7 8

4 2 5 6 8

5 6 7 8

6 8

c d

c d d d

c d d d d

c d d d d d d d d d

c d d d d

c d d d

c d

 

   

    

         

    

   

 

where

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_02

(Advance online publication: 20 November 2017)

__

0 0 0

1 0 1 0 1

2 1 1

3 0 2 0 2

4 0 1 2 3 0 1 2 3

5 1 3 1 3

6 2 2

7 2 3 2 3

8 3 3

()()

()()

()()

()()

()()

d a b

d a a b b

d a b

d a a b b

d a a a a b b b b

d a a b b

d a b

d a a b b

d a b



  



  

      

  



  



If the same multiplication count one, then the number of
multiplication operations is nine, where previously the
number was ten, it means the number of multiplication
process is reduced by one. In this research did not examine
the modulo process, but more toward reducing the number
of arithmetic multiplication process in polynomial
multiplication between A and B. For modulo process itself
has been researched and discussed in [11-12], where the
methods use the results of the multiplier which already
exists [7][18] to construct a multiplier for a value of n,
which is greater than 7, and then look for modulo function
which is suitable for the constructors of a multiplier.

D. 5,6,7-Term Karatsuba Like Formulae

After Paar has developed multiplication for n = 4, then
Montgomery developed multiplication for n = 5, 6, and 7,
by utilizing and manipulating properties of Karatsuba
Multiplications as follows [18].

Suppose

2

0 1 0 1 0 0 0 1 1 0 1 1
()() ()a a X b b X a b a b a b X a b X      (6)

Note that

0 1 1 0 0 1 0 1 0 0 1 1
()()a b a b a a b b a b a b     

Then the equation (6) can be written as follows

0 1 0 1

2

0 0 0 1 0 1 0 0 1 1 1 1

0 0

0 1 0 1

2

1 1

()()

(()())

(1)

()()

()

a a X b b X

a b a a b b a b a b X a b X

a b X

a a b b X

a b X X

 

      

 

  

 

Then for n = 3, the formula is

2 2

0 1 2 0 1 2

2

0 0

2 3

1 1

2 3 4

2 2

0 1 0 1

2

0 2 0 2

3

1 2 1 2

0 1 2 0 1 2

()()

(1)

()

()

()()()

()()()

()()()

()()

a a X a X b b X b X

a b K X X

a b K X X X

a b K X X X

a a b b K X

a a b b K X

a a b b K X

a a a b b b K

   

   

   

   

    

    

    

    

If K = X2, then the number of multiplication changed
from nine to six, this is more efficient. Then, Montgomery
utilize this pattern to form the multipliers for n = 5, 6, and 7,
where the complexity of those formulas can be found in
[18]. The multipliers are better than the multipliers that have
been developed previously. But even so, it was very difficult
to obtain for each multiplier, especially for n = 7, even
Montgomery himself called it the divison-free formulas.

E. Knowledge Gap

In research conducted by Paar and Montgomery, the
process of developing formulas and algorithms to obtain
multipliers was not described. In polynomial multiplication
in the Galois Field GF(2n), for n = 7, Montgomery stated
that obtaining the multipliers requires a resource-intensive
calculation process, while computer resources limited.
Therefore, in this research developed an improved method
and algorithm for easy determination of multipliers in a
polynomial multiplication in GF(2n).

III. RESEARCH METHODOLGY

Figure 1 illustrates previous researches carried out by
several researchers regarding GKA, as well as how the
current study relates to those researches.

Fig. 1. Position and focus of the research of the Generalizations of n-Term
Karatsuba Like Formulae with NAYK algorithm in Multiplier Researches

Roadmap

There are three main steps to solve the problems

mentioned above, the development of an improved formula
compared to GKA, the development of an exhaustive search
algorithm, and the combination of both methods,

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_02

(Advance online publication: 20 November 2017)

__

subsequently named the Nursalman, Arif, Yusuf and
Kuspriyanto (NAYK) algorithm. Previous researches on
improving the modulo functions of karatsuba multiplications
have been carried out by [11][12], including the
determination of the best modulo functions that result in a
reduced number of multiplications in polynomial
multiplications in GF(2n). In this study, we did not focus on
these modulo functions, but they can be integrated in further
research for developing further improved algorithms for
polynomial multiplications in GF(2n) for n=8, and for larger
values of n.

A. The Development of a Better Formula Than GKA

An improved formula was obtained by comparing the
original equation C' produced by GKA with the equation C'
produced by the Paar [7] and Montgomery [18] Multipliers
(Figure 2). The Improved GKA formula combines at least
two products into one new product, thus reducing the
number of multiplications in the process.

Fig. 2. Improving of the Generalizations of the Karatsuba Algorithm

In its application, the Improved GKA reduced the
complexity of the polynomial multiplication process better
than the original GKA. However, there are constraints in the
algorithm for combining products for large values of n,
resulting in difficulties for the algorithm to find a
combination of combined products that are solutions to
equation C'.

Therefore, we developed an exhaustive search algorithm
that can find the combination of combined products that are
solutions to equation C'.

B. Exhaustive Search Algorithm

The algorithm developed is illustrated in Figure 3, and
have the following steps:
1. Creating a matrix C' with GKA formula
2. Creating a matrix D for all combinations of existing

values, 0,1,2, ..., n
3. Searching for all combinations of all rows in the matrix

D
4. Summing up for each combination of line matrix D
5. Looking for a solution to the equation C' from the sum

of each combination

Fig. 3. The steps of the Exhaustive Search Algorithm

The algorithm was implemented in MATLAB and was
then tested for a value of n. The results show that this
algorithm can only run for n = 4. For values of n larger than
4, the amount of data processed was very large, requiring a
very large amount of computer memory, and a very long
processing time to find the solution.

C. Nursalman, Arif and Yusuf Algorithm (NAYK
 Algorithm)

The Improved GKA algorithm was able to solve
polynomial multiplications in GF(2n) for values of n up to 4
with much less complexity compared to the original GKA,
but failed to sufficiently reduce the complexity (determine
all combinations of combined products that are solutions to
equation C') for larger values of n. In addition, the
exhaustive search algorithm succeeded in efficiently finding
combinations of combined products that are solutions to
equation C', but, similarly, only for values of n of up to 4.
To overcome the limitations of both algorithms, we
developed a combination of the two, subsequently named
the Nursalman, Arif, Yusuf, and Kuspriyanto (NAYK)
Algorithm. The Improved GKA serves to identify which
combinations of products are solutions to equation C' and
which are not. This reduces the number of rows in matrix D,
which in turn reduces the number of lines from the many
combinations of rows of matrix D. Through proper
identification, only a small portion of the combinations of
rows of matrix D needs to be calculated. Thus, this method
provides a reduction in the amount of data to be processed,
and also reduces the computation time. Figure 4 illustrates
the procedure of the NAYK algorithm.

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_02

(Advance online publication: 20 November 2017)

__

Determine the
value of n

Begin

Create
the matrix D and C

Find the best
solution for C(n-2),

C(n-1) and C(n)

Identifying some
elements that are
solutions and not

in C

Create The New
Matrix D (Dn)

A

Fig. 4.a. The NAYK algorithm to find the new matrix D

Fig. 4.b. The NAYK algorithm to find the products combination for
solution equation of C'.

IV. RESULTS AND DISCUSSION

A. The Development of a Better Formula Than GKA

 in (2)
n

GF

In the Improved GKA formula, two or more products can
be combined which consequently reduces the number of
multiplications in the polynomial multiplication process.
The stages of the development of the formula are as follows:

1. Combining Products pattern in polynomial multiplication
in GF(2n)

As has been described above, GKA has the form similar
to equation (5). For n=4,

   
3 0,3 1,2 0 3 1 2

c D D D D D D      

The equation can be transformed into, the following:

   
3 0,1,2,3 0,1 0,2 1,3 2,3

0 3 1 2

c D D D D D

D D D D

     

   
 (7)

which means that

0,3 1,2 0,1,2,3 0,1 0,2 1,3 2,3
D D D D D D D      ,

where D0,1, D0,2, D1,3, and D2,3 are existing products. Note
that in equation (7), there are two products missing, (D0,3
and D1,2), and a new product appears, D(0,1,2,3). This
means that the number of multiplications is reduced by one
compared to the previous equation.

Note the first product on the right side of the above
equation (5),

,

0 1

j k

j k i

j k n

D
 

   

 , for odd or even values of n

By understanding the patterns of the above equation, it
can be written in four forms as follows:

(1) For 1 1i n   and odd numberi  , then

0, 1, 1 (1) / 2,(1) / 2 0,1,2, , ,

0

i i i i i j k

j k i

j k i

D D D D D
  

 

  

     


 where

0 ,1,2 , , 0 1 0 1
()()

i i i
D a a a b b b      


 

 (2) For 1 1i n   and even numberi  , then

0, 1, 1 / 2 1, / 2 1

0,1, , / 2 1, / 2 1, , ,

0

0

i i i i

i

i i i j k s

j k i s

j k i

D D D

D D D

  

 

  

  

  

    



 where

0 ,1, , / 2 1, / 2 1, ,

0 1 / 2 1 / 2 1

0 1 / 2 1 / 2 1

()

()

i i i

i i i

i i i

D

a a a a a

b b b b b

 

 

 

      

      

 

 

 

 (3) For 1 2 1n i n    and odd numberi  , then

(1), 1 (2), 2 (1) / 2,(1) / 2

(1), (2), ,(1) / 2,(1) / 2, , 1 ,

(1) 1

i n n i n n i i

i n i n i i n j k

j k i

i n j k n

D D D

D D

       

      

 

     

  

   



 where

(1), (2), ,(1) / 2 ,(1) / 2 , , 1

(1) 1 (1) 1
()()

i n i n i i n

i n n i n n

D

a a b b

      

     
    

 

 

 (4) For 1 2 1n i n    and even numberi  , then

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_02

(Advance online publication: 20 November 2017)

__

(1), 1 (2), 2 / 2 1, / 2 1

1

(1), , 1 ,

(1)

(1) / 2 1

i n n i n n i i

n

i n n j k s

s i nj k i

i n j k i

D D D

D D D

       



  

   

     

  

   



 where

(1), (2), , / 2 1, / 2 1

(1) 1 (1) 1
()().

i n i n i i

i n n i n n

D

a a b b

     

     
    



 

2. The Generalizations of The Combining Products Formula
in GF(2n)

The results of the four equations above we can make it in
general form as follows.

if odd numberi  , then

(0) (1) (2) (3) (1) ()
, , , , , , , ,

1 1

0 0

(0) (1) ()

,

where ; ,

and , 0 ,

j k i i j k
p p p p p p p p p p

k j k j

j k i j k i

i j k

j k

D D D

p p p p p

p p j k i



   

     



 

   

    

 




 (8)

 (10

and if even numberi  , then

(0) (1) (2) (3) (1) ()

, , , , , , ,

1

0

, ()

01

0

(0) (1) ()

,

where ; ,

and , 0 .

j k i i

j k

p p p p p p p p

k j

j k i

i

p p p s

sk j

j k i

i j k

j k

D D

D D

p p p p p

p p j k i



 

  

 

  





 

   

    



 







 (9)

We obtain the Improved GKA formula by substituting

equation (8) or (9) into equation (5). From this formula, we
find that at least two products can be combined into a new
product, meaning that two products disappear and one new
product appears. Therefore, this formula reduces the number
of multiplications by at least one. However, another
algorithm that can combine existing products in equation C
is still needed to further reduce the number of
multiplications.

3. Combining Products in The Equation C'(n-2), C'(n-1),
and C'(n)

To easily identify several products into a solution or not a
solution, then it requires an algorithm combining products in
the equation C'(n-2), C'(n-1), and C'(n). This is because all
three equations have the most abundant products when
compared to other equations. Therefore, it is easy to be
completed first and give a lot of information for the purpose
of the identification process. Here are the steps.

3.1. The Process of Combining Products of The Equation C'

For i = n-2, n = 5, then

1 1 1 1

2 2 2 2

1 1

1 4

0 1

2 2

1 4

() (0, , -1) ((1), (2), (3), (4))

((1), (2), (3), (4))

(,) ((), ())

((), ()) (1)

j k i j k

j k n

j k

c i D n D p p p p

D p p p p

D j k D p j p k

D p j p k D n

    

   

  

   



 

  










 



 (10)

Where

(1) (2) (3) (4)

P1 (i-1)/2-1
(i+1)/2

(i+1)/2+1 (i+1)/2+2
P2 (i-1)/2

For i = n-1, n = 5, then

1 1 1 1

2 2 2 2

1 1

1 4

0 1

2 2

1 4

() (0, , -1) ((1), (2), (3), (4))

((1), (2), (3), (4))

(,) ((), ())

((), ())

j k i j k

j k n

j k

c i D n D p p p p

D p p p p

D j k D p j p k

D p j p k

    

   

  

   



 












 



 (11)

Where

(1) (2) (3) (4)

P1 i/2-2
i/2 i/2+1

i/2+2
P2 i/2-1 i/2

For i = n, n = 5, then

1 1 1 1

2 2 2 2

1 1

1 4

0 1

2 2

1 4

() (0, , -1) ((1), (2), (3), (4))

((1), (2), (3), (4))

(,) ((), ())

((), ()) (0)

j k i j k

j k n

j k

c i D n D p p p p

D p p p p

D j k D p j p k

D p j p k D

    

   

  

   



 

 










 



 (12)

Where

(1) (2) (3) (4)

P1 (i-1)/2-2 (i-1)/2-1
(i-1)/2

(i+1)/2+1
P2 (i+1)/2

For i = n-2, n > 5 and n is an odd number, then

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_02

(Advance online publication: 20 November 2017)

__

1 1 1 1 1

2 2 2 2

1 1

1 5

0 1

5

1 2 2

1 1 4

() (0, , -1) ((1), (2), (3), (4), (5))

((1), (2), (3), (4))

(,) ((), ())

(()) ((), ()) (1)

j k i j k

j k n

s j k

c i D n D p p p p p

D p p p p

D j k D p j p k

D p s D p j p k D n

    

   

   

   



 

   










 

 

Where

(1) (2) (3) (4) (5)

P1 (i-1)/2-2 (i-1)/2-1 (i+1)/2 (i+1)/2+1 (i+1)/2+2
P2 (i-1)/2-1 (i-1)/2 (i+1)/2+1 (i+1)/2+2 -

For i = n-1, n > 5 and n is an odd number, then

1 1 1

2 2 2

1 1

1 5

0 1

5 5

1 2 2 2

1 1 5 1

() (0, , -1) ((1), (2), , (5))

((1), (2), , (5))

(,) ((), ())

(()) ((), ()) (())

j k i j k

j k n

s j k s

c i D n D p p p

D p p p

D j k D p j p k

D p s D p j p k D p s

    

   

    

   



 

  










 

  





Where

(1) (2) (3) (4) (5)

P1 i/2-3 i/2-2 i/2 i/2+1 i/2+2
P2 i/2-2 i/2-1 i/2 i/2+2 i

For i = n, n > 5 and n is an odd number, then

1 1 1 1 1

2 2 2 2

1 1

1 5

0 1

5

1 2 2

1 1 4

() (0, , -1) ((1), (2), (3), (4), (5))

((1), (2), (3), (4))

(,) ((), ())

(()) ((), ()) (0)

j k i j k

j k n

s j k

c i D n D p p p p p

D p p p p

D j k D p j p k

D p s D p j p k D

    

   

   

   



 

  










 

 

Where

(1) (2) (3) (4) (5)

P1 (i-1)/2-2 (i-1)/2-1
(i-1)/2

(i+1)/2+1
i-1

P2 (i+1)/2 -

3.2. Completion of all other products

 Then, do the process of combining products for two
coefficients (products of the equation in parentheses), use
the combining formula (8) or (9) until the number of
multiplications can not be further reduced.

For even values of n the same steps can be used to make
the formula imitate the pattern in equations (10), (11), and
(12).

Then, to solve equation c'(i) for i other than n-2, n-1 and
n, the following search algorithm is used.

B. Exhaustive Search Algorithm for Polynomial
 Multiplier in GF(2n)

This algorithm was developed to supplement the
drawbacks of the improved GKA formula, namely its
inability to compute polynomial multiplications in GF(2n)
for large values of n. The exhaustive search algorithm is
intended to find solutions to equation C'(i) for i other than n-
2, n-1, and n.

The following are the stages of development of the
exhaustive search algorithm:

1. Creating The Matrix C' with the GKA Formula

The first step is to create matrix C', in which each row is
c'(i), i = 0, 1, ..., 2n-2
and the columns are

0 0 0 1 0 1

1 0 1 1 1 1

1 0 1 1 1 1

, , ..., ,

, , ..., ,

...

, , ..., ,

n

n

n n n n

a b a b a b

a b a b a b

a b a b a b





   

Then, the matrix is filled with a value of 1 (one) in any
positions in the matrix that corresponds to the value of c'(i).

For example, for n = 3, then

0 0

0 1 1 0

0 2 1 1 2 0

1 2 2 1

2 2

'(0)

'(1)

'(2)

'(3)

'(4)

c a b

c a b a b

c a b a b a b

c a b a b

c a b



 

  

 



The matrix C' is shown in Table I.

TABLE I
THE MATRIX C' FOR N = 3

a0b0 a0b1 a0b2 a1b0 a1b1 a1b2 a2b0 a2b1 a2b2

c'0 1

c'1 1 1

c'2 1 1 1

c'3 1 1

c'4 1

2. Creating a matrix D with The Combining Products
 Formula for all Combinations

A matrix D is then created using the improved GKA
formula, where the rows contain all the possible
combinations of existing indexes and the columns are
identical to those of matrix C'.

The number of possible combinations for a given value of
n is (!/((-)! !)n n i i or 2n-1.

For values of n, then there will be an n index ranging
from 0 to n-1. Thus, the combinations are:

0, …, n-1 (one index),
01, …, 0(n-1) (two indexes),
…
0123…(n-1) (n indexes).

For n = 3, the combination is represented in binary code

as in Table II:

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_02

(Advance online publication: 20 November 2017)

__

TABLE II
REPRESENTING OF THE COMBINATION IN BINARY CODE FOR N = 3

row 0 1 2

0 0 0 0 -

1 0 0 1 = D(2)

2 0 1 0 = D(1)

3 0 1 1 = D(1,2)

4 1 0 0 = D(0)

5 1 0 1 = D(0,2)

6 1 1 0 = D(0,1)

7 1 1 1 = D(0,1,2)

Matrix D for n = 3 will then have the following form
(Table III):

TABLE III
THE MATRIX D FOR N = 3

a0b0 a0b1 a0b2 a1b0 a1b1 a1b2 a2b0 a2b1 a2b2

001 1

010 1

011 1 1 1 1

100 1

101 1 1 1 1

110 1 1 1 1

111 1 1 1 1 1 1 1 1 1

3. Combining all rows in matrix D
To combine all rows of the matrix D, then the process is

the same as the combined index for the matrix D. Using the
tables III, then we can use the column line to combine it.
The number of lines is 2^(2n-1)-1.

4. Summing up for each combination of rows in matrix D

For each a combination result of the above, then each
index on the combination represented as in table II and III.
Thereafter, for each the combination is summed. Then any
combination thereof will be represented as a table III, and
can be searched from any such combination that satisfies the
equation C'.
5. Searching for a solution to equation C'

The sums of each of the results of the above combinations
were checked whether they satisfy equation C'. For
example,

0 2 1 1 2 0
'(2)c a b a b a b  

will be equal to an XOR operation for rows 7/111/(012),
6/110/(01), and 3/011/(12), resulting in the following table:

a0b0 a0b1 a0b2 a1b0 a1b1 a1b2 a2b0 a2b1 a2b2

110 1 1 1 1

011 1 1 1 1

111 1 1 1 1 1 1 1 1 1

c‘(2) = 0 0 1 0 1 0 1 0 0

This can also be represented as the following:

0 2 1 1 2 0'(2) (0,2) (0) (1) (2)c a b a b a b D D D D      

This exhaustive search algorithm succeeded in solving
equation C'(i) for i other than n-2, n-1, and n, by searching
for combinations of products that satisfy the equations.
However, for values of n of more than 4, the algorithm fails
to find the solutions in a reasonable amount of time and
computer memory. The problem that arises is, then, to
search for any combination set that satisfies equation C' that
provides the least number of multiplications.

C. Nursalman, Arif, Yusuf and Kuspriyanto Algorithm
 (NAYK Algorithm)

This algorithm combines the Improved GKA algorithm
and the Exhaustive Search Algorithm in order to overcome
the flaws of both algorithms. The algorithm includes the
following steps:

1. Identify the products that are significantly involved
 in solutions for C'.
2. Identify the products are not involved in solutions for
 C'.
3. Reduce the number of rows of the combinations in
 matrix D.
4. Utilize the properties that arise from polynomial
 multiplication in GF(2n) such as symmetry.

By significantly reducing the number of combinations in
matrix D, the algorithm is much simpler and can be
processed much easier.

As an example, the following are details of the steps for
n=5.
1. Determine the value of n, matrix C', and matrix D
 Let n = 5
 The Exhaustive Search Algorithm is used to calculate
 matrix C' and D. The matrix D consists of 31 rows.
2. Find a solution for c'(n-2), c'(n-1) and c'(n)

To find the solutions to equation C'(i) for i values of n-2,
 n-1, and n, the Improved GKA formula was used by
 substituting equation (8) or (9) into (5). For n = 5 look at
 (10), (11) and (12). The following formulas are then
 obtained:

'(3) (0,1,2,3,4) (0,2,3,4) (0,1,3,4)

(3,4) (0,4) (4)

'(4) (0,1,2,3,4) (0,2,3,4) (0,1,2,4)

(0,2) (2,4)

'(5) (0,1,2,3,4) (0,1,2,4) (0,1,3,4)

(0,1) (0,4) (0)

c D D D

D D D

c D D D

D D

c D D D

D D D

  

  

  

 

  

  

 (13)

3. Identification of products that are solutions to equation
 C'

Note that in order to identify the products involved in the
equation in C' is seeing the results of all three equations in
the middle of the above (13), then we will get the products
as follows.

D(0,1,2,3,4), D(0,2,3,4), D(0,1,2,4), D(0,1,3,4), D(0,1),

D(3,4), D(0,4), D(1,3), D(0), and D(4).

Note, the form of D(0,1) in the equation c'(1) and D(3,4)

in equation c'(7) the multiplication are already difficult to be
reduced again, the formula is in (5) with n = 5. therefore,
both the equations have a fixed form. So consequently the
equation of c'(0) and c'(8) have a fixed form too. Then the
products included in the solution in C' will increase, those
are

D(1) and D(3).

Thus, the number had grown to 11. The upper bound of

the function O(5) of Karatsuba multiplier is 12.8 or rounded
to 13. This means that we have at most two products to be
added to the solution. If more than that, it means that the

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_02

(Advance online publication: 20 November 2017)

__

algorithm is not better than the Montgomery algorithm. for
D(0,2) and D(2,4) are not added in the solution because it
would involve D(2) as well, so the number of the solution is
greater than 13.

4. Identify the products that are not solutions to equation
 C'

In order to significantly reduce the number of rows in
matrix D the products that are not solutions to equation C'
must be identified. These products will not appear again in
the new C' equation.

Note that the new equations of c'(3) and c'(5) have a fixed
form, in which the number of multiplications cannot be
further reduced. Therefore, the products that do not appear
in these new equations are not included in the solution.
These products are

D(0,2), D(0,3), D(1,2), D(1,4), D(2,3), and D(2,4).

In addition, note that equation c'(4) contains the D(1,3)

product, which does not appear in the new equations of
c'(3), c'(4), and c'(5). Thus, this product is also not included
in the solution to C', increasing the number of products that
are not included to 7.

5. Create a new matrix D

The rows of matrix D are reduced with both products that
are included in the solution and those that are not.

There are 31 rows in matrix D, meaning that the number
of rows of the new matrix D is 31-11-7 = 13 (Table IV).

6. Choose the combination of products for the solution to C'.

To find the solution of the equations of c'(2) and c'(6), we
only choose two products from 13 products outside products
that have been identified are included and not included in
the solution. In other words, we are looking for a
combination of two products from 13 products, then for
each combination were combined with 11 products, which
are included in the solution. Then each combination will
consist of 13 products. Therefore, the search space of the
solution becomes 78, which is much smaller compared to
the algorithm developed by Montgomery, in which the
search space is 2.1·108.

TABLE IV

THE NEW MATRIX D FOR N = 5

No Decimal Binary
The New
Matrix D

1 4 00100 2
2 7 00111 234
3 11 01011 134
4 13 01101 124
5 14 01110 123
6 15 01111 1234
7 19 10011 034
8 21 10101 024
9 22 10110 023

10 25 11001 014
11 26 11010 013
12 28 11100 012
13 30 11110 0123

7. Calculate the combination of selected products for the
 solution in C'

 Each of the search space is calculated to find
combinations that are included in the solution to equation
C'. So we get on the line 38th is the combination solution,
that is [13 22] or [01101 10110] or [124 023]. then the
equation of c'(2) and c'(6) will have the following form.

'(2) (0,1, 2, 4) (1,2,4) (0,1)

(0, 4) (4) (0)

'(6) (0, 2,3, 4) (0, 2,3) (3,4)

(0, 4) (0) (4)

c D D D

D D D

c D D D

D D D

  

  

  

  

Note that there are five different indexes of these

solutions (0, 1, 2, 3, and 4), and that 2 is the middle value.
Due to the symmetrical property of polynomial
multiplication in GF(2n), if we reflect 0 and 1 to 2, then the
results of the reflection are 4 and 3, respectively, and vice
versa. If D(0,1,2,4) is used in the solutions in c'(2), then
D(0,2,3,4) can also be used in the solutions in c'(6), and this
can also be done for all other products. This means that we
can easily obtain a solution to c'(6) by obtaining the solution
to c'(2). So the results of c'(6) is the result of reflection from
c'(2) on a symmetrical lines in C', that is c'(4). This means
that to obtain a solution to equation C', we simply need to
find a solution to c'(2) up to c'(n-1), and by reflecting c'(2)
up to c'(n-2), the solutions for c'(n) up to c'(2n-2) can be
found. Other solutions to c'(0) and c'(1) need not be found
due to their fixed form.

For n = 5 or above, not all of the products of the new
matrix D in table IV need to be used. Note that if D(2),
D(1,2,3) and D(0,2,4) are reflected, then the results are
identical, or symmetrical. Therefore, for 10 products, half is
a mirror of the other half. This means that the search space
can be decreased to 3 + 5 = 8 rows in the new matrix D.
Then we simply seek 1 from 8 products to be combined with
the 11 products of the solution that have been identified
previously to find solutions to c'(2) or c'(6), further reducing
the search space to 8 products. This is significantly lower
than that found by Montgomery.

8. Get the solution with
log(3,2)

()O n n ,where O(n) rounded

 off by default.

If not, then choose another combination of products for a
solution C', or repeat the steps above. Then, we get the
solution for the equation of C', for n = 5, then the form is as
follows (14).

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_02

(Advance online publication: 20 November 2017)

__

'(0) (0)

'(1) (0,1) (0) (1)

'(2) (0,1, 2, 4) (1, 2, 4)

(0,1) (0, 4) (4) (0)

'(3) (0,1, 2, 3, 4) (0, 2, 3, 4)

(0,1, 3, 4) (3, 4) (0, 4) (4)

'(4) (0,1, 2, 3, 4) (0, 2, 3) (1, 2, 4)

(3, 4) (0,1) (0) (1)

c D

c D D D

c D D

D D D D

c D D

D D D D

c D D D

D D D D



  

 

   

 

   

  

    (3) (4)

'(5) (0,1, 2, 3, 4) (0,1, 2, 4)

(0,1, 3, 4) (0,1) (0, 4) (0)

'(6) (0, 2, 3, 4) (0, 2, 3)

(3, 4) (0, 4) (4) (0)

'(7) (3, 4) (3) (4)

'(8) (4)

D D

c D D

D D D D

c D D

D D D D

c D D D

c D

 

 

   

 

   

  



 (14)

 From the above it can be observed that there are 13
multiplication operations, resulting in the same complexity
as the Montgomery algorithm, and the upper bound
Karatsuba algorithm O(5) = 12.8 with rounded. This means
that solutions are acceptable. The question now is, whether
13 is the smallest bound to the number of multiplication
operations in polynomial multiplication in GF(25)

9. 13 is the lower bound for n = 5

 We saw earlier in the identification process, that the
products are involved as many as 11, which still has not
formed a full solution because it still requires two other
products, This means that 11 is not a lower bound, and
based on the results of the above that upper bound of the
latest is 13 multiplication.

The question is, is it possible that 12 is the new lower
bound? If 12 is the new lower bound, then the number of
products of the longest being the solution for any c'(i) is 10.
Then the rest of the equation c'(j) are 4, it means that one
products is loaded by two equations of c'(j), this is the
minimum amount required to complete the two equations.
So that the rest of the two products is loaded by 4 equations
of c'(j). Consider again that the products involved to be the
solution. Note that the form of c'(3) and c'(5) are fixed, and
the remaining are c'(2) and c'(6), which later those results
will be substituted into c'(4).

The products are involved as many as 11, it means
staying one more, then the remaining one will be published
by the two equations c'(2) and c'(6), where the equation of
c'(2) is the mirror of the equation of c'(6). Then the
combinations of D is C(14,1) = 14, which is the matrix D
itself. Products of the matrix D which is a mirror for himself
are 2, 13, 123, and 024, then one by one the product is
combined with the 11 previous products, it was found that
these products no one becomes a solution for the c'(2) and
c'(6).

So based on the method developed above, we can
conclude that the amount of 12 products is not a solution for
n = 5, it means that the 13 products is an upper bound, but
also a lower bound for the solution n = 5.

Furthermore, we can repeat the same steps above to get a
solution for n = 6 and 7. Here are the form of multipliers for
n=6 and 7, which differs from Montgomery. For n = 6, we
get two different forms than the forms found by
Montgomery but still have the same complexity, 17
multiplications. Here is the first form (15).

'(0) (0)

'(1) (0,1) (0) (1)

'(2) (0,1, 2) (0,1) (1, 2)

'(3) (0,1, 2, 3, 4, 5) (1, 2, 4, 5) (0,1, 3, 4)

(0,1, 2) (0, 3, 5) (0,1) (1, 4)

(2, 3) (3, 4) (0) (5)

'(4) (0,1, 2, 3, 4, 5) (1, 2, 4, 5) (0,1, 2)

c D

c D D D

c D D D

c D D D

D D D D

D D D D

c D D D

D



  

  

  

   

   

  

 (0, 3, 5) (1, 2) (2, 3) (0)

(4) (5)

'(5) (0,1, 2, 3, 4, 5) (1, 2, 4, 5) (0,1, 3, 4)

(0,1, 2) (3, 4, 5) (0,1) (1, 2)

(3, 4) (4, 5)

'(6) (0,1, 2, 3, 4, 5) (0,1, 3, 4) (0, 2, 5)

(3, 4, 5) (2, 3) (3, 4) (0)

(1) (

D D D

D D

c D D D

D D D D

D D

c D D D

D D D D

D D

  

 

  

   

 

  

   

  5)

'(7) (0,1, 2, 3, 4, 5) (0,1, 3, 4) (1, 2, 4, 5)

(0, 2, 5) (3, 4, 5) (1, 2) (1, 4)

(4, 5) (2, 3) (0) (5)

'(8) (3, 4, 5) (3, 4) (4, 5)

'(9) (4, 5) (4) (5)

'(10) (5)

c D D D

D D D D

D D D D

c D D D

c D D D

c D

  

   

   

  

  



 (15)

Then for the second form, replace the equation c'(3) and

c'(7) in (15) with the following equations.

'(3) (0, 2, 3, 5) (0, 2, 5) (3, 4, 5)

(2, 3) (3, 4) (4, 5) (1) (4)

c D D D

D D D D D

  

    

'(7) (0, 2, 3, 5) (0,1, 2) (0, 3, 5)

(0,1) (1, 2) (2, 3) (1) (4)

c D D D

D D D D D

  

    

 In this second form of the equation D(1,4) does not exist
but appears equation D(0,2,3,5). The complexity of the
number of multiplications is the same but the number of add
operations increased two products, which means that the
first form solution is better than the second.

Then for n = 7 with NAYK algorithms can we write as
follows (16).

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_02

(Advance online publication: 20 November 2017)

__

'(0) (0)

'(1) (0,1) (0) (1)

'(2) (0, 2) (0) (1) (2)

'(3) (1, 2, 3, 5, 6) (0, 2, 3, 5, 6)

(0,1, 5, 6) (0,1) (0, 2)

(1, 3) (5, 6) (2) (3)

'(4) (0, 4) (1, 3) (0) (1)

(2) (3) (4)

'(5) (0,1, 2, 3, 4

c D

c D D D

c D D D D

c D D

D D D

D D D D

c D D D D

D D D

c D



  

   

 

  

   

   

  

 , 5, 6) (0,1, 3, 4, 6)

(1, 2, 4, 5) (0, 2) (2, 6)

(3, 5) (5, 6) (0) (1)

(3) (4)

'(6) (0,1, 2, 3, 4, 5, 6) (1, 2, 3, 5, 6)

(0,1, 3, 4, 5) (0, 2) (1, 3)

(3, 5) (4, 6) (0) (2)

(4) (6)

'(7) (0,1, 2, 3, 4, 5, 6) (0,

D

D D D

D D D D

D D

c D D

D D D

D D D D

D D

c D D



  

   

 

 

  

   

 

  2, 3, 5, 6)

(1, 2, 4, 5) (0,1) (0, 4)

(1, 3) (4, 6) (2) (3)

(5) (6)

'(8) (2, 6) (3, 5) (2) (3)

(4) (5) (6)

'(9) (0,1, 3, 4, 5) (0,1, 3, 4, 6)

(0,1, 5, 6) (0,1) (3, 5)

(4, 6) (5, 6) (3) (4)

'(10) (

D D D

D D D D

D D

c D D D D

D D D

c D D

D D D

D D D D

c D

  

   

 

   

  

 

  

   

 4, 6) (4) (5) (6)

'(11) (5, 6) (5) (6)

'(12) (6)

D D D

c D D D

c D

  

  



(16)

 The above solution difference with Montgomery, it lies in
the equation c'(3) and c'(9). Both of these equations written
by Montgomery to be as follows.

'(3) (0,1,3,4,5) (0,2,3,4,6) (0,2,3,5,6)

(1,2,4,5) (0,1) (1,3) (4,6)

(5,6) (2)

c D D D

D D D D

D D

  

   

 

and

'(9) (1,2,3,5,6) (0,2,3,4,6) (0,1,3,4,6)

(1,2,4,5) (0,1) (0,2) (3,5)

(5,6) (4)

c D D D

D D D D

D D

  

   

 

 In the solution of the equation C' with NAYK algorithm
there is products of D(0,1,5,6) and there is no product of
D(0,2,3,4,6). It is clear that the number of operations of
addition in D(0,1,5,6) is less than the D(0,2,3,4,6), besides

Montgomery write the equation c'(3) and c'(9) more long.
This means that the solutions of the equation C' with NAYK
algorithm is better than Montgomery.
 Note that if the index i<n-1 is reflected to its midpoint,

1n  , then the result is 1n i  . Therefore, the results of

reflection or partner of
1 2

D(, ,...,)
m

i i i is

(1) (2) ()
(-1 , -1 , ..., -1)

m
D n i n i n i   ,

and for i>n-1, then the result of the reflection is 1n i  , so

that pairs of
1 2

(, , ...,)
m

D i i i is

(1) (2) ()
(-1 , -1 , ..., -1)

m
D n i n i n i   .

 While reflecting n-1 is himself. This is the reflection
properties that appear in the equation in C'.

Consider the results of the search for a solution of the
equation C' for n = 5, we get that the search space can be
reduced again from 78 to 8 by utilizing the properties of
reflection that appears on the solution in C', this is better
than Montgomery did, where the search space is 2.1·108,
although Montgomery then automatically selects the three
following multiplication a0b0, an-1bn-1, and (a0b0+...+an-1bn-1),
so the search space becomes 1.3·107. Utilization of the
reflection properties as above to determine the search space,
from 78 to 8, very risky if not described in more detail as
was done by NAYK algorithm to search for a solution for n
= 5. Because it could be in one equation c'(i) there are two
or more variations of products in pairs as part of the
solution. So if various products in pairs are separated into
two different groups, and we only took one of them to
complete a c'(i), then c'(i) will not have a solution. For
example, consider the equation c'(3) for n = 6 and c'(6) for n
= 7 follows below,

'(3) (0,1, 2, 3, 4, 5) (1, 2, 4, 5) (0,1, 3, 4)

(0,1, 2) (0, 3, 5) (0,1) (1, 4)

(2, 3) (3, 4) (0) (5)

c D D D

D D D D

D D D D

  

   

   

and

'(6) (0,1, 2, 3, 4, 5, 6) (1, 2, 3, 5, 6)

(0,1, 3, 4, 5) (0, 2) (1, 3)

(3, 5) (4, 6) (0) (2)

(4) (6)

c D D

D D D

D D D D

D D

 

  

   

 

For n = 6, products of D(1,2,4,5) is a pair of D(0,1,3,4),

and for n = 7, D(1,2,3,5,6) is a pair of D(0,1,3,4,5). If they
are separated into different groups and if we only look for
solutions to c'(3) or c'(6) with one of these groups, then both
of these equations will not have a solution, either with an
algorithm Montgomery nor with NAYK algorithm.
Therefore, it is very risky if separated the two groups are
mutually coupled to resolve C'. Unless already identified
some significant products which became a solution and
which would not be a solution and with the separation there
is a solution for every c'(i) sought as an example for n = 5
with NAYK algorithm above.

Here are some products that are identified as the solution
and not the solution for n = 6.

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_02

(Advance online publication: 20 November 2017)

__

Some products for the solution:

D(01,2,3,4,5), D(0,1,3,4), D(1,2,4,5), D(0,1,2), D(0,3,5),
D(3,4,5), D(0,2,5), D(0,1), D(1,2), D(1,4), D(2,3), D(3,4),
D(4,5), D(0), D(1), D(4), and D(5)

Some products are not the solution:

D(0,5), D(0,2), D(3,5), D(2,5), D(0,3), D(2,4), D(1,3),
D(1,5), D(0,4), D(2), and D(3).

 From 63 existing products, then reduced and the rest
became 63-16-11 = 36. Because the function O(6) gives the
upper bound is 17, so we are now looking for 17-16 = 1
from 36, then the product is combined with the 16 products
to be the solution for C'. This means there are as many as 36
possible search space for n = 6. But then consider, that only
one product we were looking for which is contained by the
two equations c'(3) and c'(7), this means that the products
are symmetrical. Then we find the products that are
symmetrical are not included in the two groups above, these
products are D(1,4), D(1,2,3,4), D(0,2,3,5) and D(0,1,4,5).
This means that we are not looking for one from 36
products, but we are looking for 1 from 4 symmetrical
products. So the search space is reduced from 36 to 4.

Here are some products that are identified as the solution
and not the solution for n = 7.

Some products for the solution:

D(0,1,2,3,4,5,6), D(0,1,3,4,5), D(1,2,3,5,6), D(0,1,3,4,6),
D(0,2,3,5,6), D(1,2,4,5), D(0,1), D(0,2), D(0,4), D(1,3),
D(2,6), D(3,5), D(4,6), D(5,6), D(0), D(1), D(2), D(3), D(4),
D(5), and D(6).

Some products are not the solution:

D(0,3), D(0,5), D(0,6), D(1,2), D(1,4), D(1,5), D(1,6),
D(2,3), D(2,4), D(2,5), D(3,4), D(3,6), and D(4,5).

 From 127 products, was reduced to 127-21-13 = 93. But
Consider that the upper bound is O(7) = 22, while some
products that have been identified as a solution there are 21,
which means that we are now looking for one from 93. But
then consider, that only one product we were looking for
which is contained by the two equations c'(3) and c'(9), this
means that the products are symmetrical. Then we find the
products that are symmetrical are not included in the two
groups above, these products are

D(2,3,4), D(1,3,5), D(0,3,6), D(1,2,4,5), D(0,2,4,6),
D(0,1,5,6), D(1,2,3,4,5), D(0,2,3,4,6), and D(0,1,3,5,6).

 This means that we are not looking for one from 93
products, but we are looking for one from 9 symmetrical
products. So the search space is reduced from 93 to 9.

Here below, table V, is the comparison of the search
space between Montgomery algorithm and NAYK
algorithm to find the products for solution equation of C'.

TABLE V
THE COMPARISON OF THE SEARCH SPACE BETWEEN

MONTGOMERY ALGORITHM AND NAYK ALGORITHM

n

The Search Space

Montgomery Algorithm [18] NAYK Algorithm

5 1.3·107 78 8

6 1.7·1013 36 4

7 1.1·1022 93 9

In Table V, there are two values for the search space

resulted from the NAYK algorithm. The right values are
obtained by utilizing the properties of symmetry of
polynomial multiplications in GF(2n), resulting in a much
smaller search space. The NAYK algorithm can also provide
a very small search space for values of n of larger than 7, for
which the Montgomery algorithm cannot. This is because
the NAYK algorithm identifies which products are solutions
and which are not, and utilizes these products for
completing other equations of c'(i), significantly reducing
the search space. From these results, we can conclude that
the NAYK algorithm is much simpler and less resource-
consuming in finding a polynomial multiplier in GF(2n) than
the algorithm developed by Montgomery.

To see how the NAYK algorithm can improve calculation
efficiency, it was compared with two other methods, namely
the School Book and the Simple Karatsuba methods for n =
6 and 7. We constructed a 169 bit multiplier in the
composite field GF((2p)q), where p = q = 13 bits, or
p×q=13×13=169 bits, while p and q themselves will be
constructed from n = 6 and 7, that is 13 = 7 + 6.

A comparison of the complexity function O(n) for the
three different methods is shown in Table VI and Figure 5.
For the School Book method, O(n) = n2, while for the
Simple Karatsuba, O(n) ≤ 3n2/4. This is because by using a
small number of bits, only one iteration is needed, so the
efficiency is approximately 3n/4 (upper limit). As for the
NAYK method, the upper limit is the standard rounding of
the value of nlog(3,2) ≥ O(n).

The Karatsuba method for p and q was used for the first
composite field, while for the second composite field, the
Karatsuba method was used for p and the NAYK method for
q. To compare the algorithms, the implementation of the
two methods were simulated in Quartus II:

TABLE VI

COMPARISON OF THE COMPLEXITY FUNCTION O(N) FOR SMALL BITS

School Book Karatsuba NAYK

1 1 1 1

2 4 3 3

3 9 7 6

4 16 12 9

5 25 19 13

6 36 27 17

7 49 37 22

n

O(n) for small bits

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_02

(Advance online publication: 20 November 2017)

__

Fig. 5. Comparison of the Complexity Function O(n) for Small Bits

Due to the low number of bits used (169 bits), only one

iteration is needed for the Karatsuba algorithm. The
following formula (17) was used:

    

  

   

     

12 6

12

6

mod

mod

mod

H H H L H L

H H L L L L

H H

H L H L H H L L

L L

AB x A B x A A B B

A B A B f x A B

x A B f x

x A A B B A B A B f x

A B

   

  



    





 (17)

Each element is divided into part H (high) and L (low),

where H and L each consists of 7 and 6 coefficients (7 + 6 =
13 bits). The modulo function used is as follows:

  13 4 3
1f x x x x x     (18)

From these functions, we obtain the following algorithm

for the finite state machine:

0

1

0 0 1

1

2

0 0 1

0 0 2

6

1 1

6

1 1

6

0 0

0 0 1

0 2

1 :

2 :

3 :

4 :

5 :

6 :

7 :

8 :

9 :

10 :

11 :

12 :

H L

H L

H H

L L

S RM A A

S RM B B

S RM RM RM

S RM A B

S RM A B

S RM RM RM

S RM RM RM

S RM RM x

S RM RM x

S RM RM x

S RM RM RM

S Output RM RM

 

 

 

 

 

 

 

 

 

 

 

 

From the algorithm, the following finite state machine is

obtained (Figure 6):

Fig. 6. Finite State Machine (FSM) for polynomial multiplier in GF(213)

The implementation of equations (15) and (16) is

illustrated in the following datapath circuit (Figure 7):

6()x  

Fig. 7. Datapath for polynomial multiplier in GF(213)

The combination of the datapath and finite state machine

was simulated with VHDL in Quartus II. Below is a sample
the FSM module that regulates how the system works:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY fsm IS PORT (
 Clock, Reset, Start: IN std_logic;
 OE, enM0, enM1, enM2: OUT std_logic;
 IE_op1, IE_op2, IE_op3: OUT std_logic_vector(2 downto 0));
END fsm;

ARCHITECTURE fsm_KOA13 OF fsm IS
 TYPE state_type IS (s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10,
s11, s12);
 signal next_state, current_state: state_type;

BEGIN
 process (Clock, Reset)
begin
 if Reset = '1' then
 current_state <= s0;
 elsif (rising_edge(Clock)) then
 current_state <= next_state;
 end if;
end process;

process (current_state)
begin
 next_state <= current_state;
 case current_state is
when s0 =>
 IF (Start = '1') THEN next_state <= s1;
 ELSE next_state <= s0;
 END IF;
 when s1 => next_state <= s2;
 when s2 => next_state <= s3;
 when s3 => next_state <= s4;
 when s4 => next_state <= s5;
 when s5 => next_state <= s6;
 when s6 => next_state <= s7;
 when s7 => next_state <= s8;
 when s8 => next_state <= s9;
 when s9 => next_state <= s10;
 when s10 => next_state <= s11;
 when others => next_state <= s12;
 end case;
end process;

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_02

(Advance online publication: 20 November 2017)

__

PROCESS(current_state)
BEGIN
CASE current_state IS
 WHEN s1 => IE_op1<="000"; IE_op2 <= "000"; IE_op3 <= "001"; OE
<= '0'; enM0 <= '1'; enM1 <= '0'; enM2 <= '0';
 WHEN s2 => IE_op1<="001"; IE_op2 <= "001"; IE_op3 <= "001"; OE
<= '0'; enM0 <= '0'; enM1 <= '1'; enM2 <= '0';
 WHEN s3 => IE_op1<="010"; IE_op2 <= "011"; IE_op3 <= "011"; OE
<= '0'; enM0 <= '1'; enM1 <= '0'; enM2 <= '0';
 WHEN s4 => IE_op1<="000"; IE_op2 <= "001"; IE_op3 <= "010"; OE
<= '0'; enM0 <= '0'; enM1 <= '1'; enM2 <= '0';
 WHEN s5 => IE_op1<="000"; IE_op2 <= "001"; IE_op3 <= "100"; OE
<= '0'; enM0 <= '0'; enM1 <= '0'; enM2 <= '1';
 WHEN s6 => IE_op1<="010"; IE_op2 <= "011"; IE_op3 <= "000"; OE
<= '0'; enM0 <= '1'; enM1 <= '0'; enM2 <= '0';
 WHEN s7 => IE_op1<="010"; IE_op2 <= "100"; IE_op3 <= "000"; OE
<= '0'; enM0 <= '1'; enM1 <= '0'; enM2 <= '0';
 WHEN s8 => IE_op2 <= "011"; IE_op3 <= "101"; OE <= '0'; enM0 <=
'0'; enM1 <= '1'; enM2 <= '0';
 WHEN s9 => IE_op2 <= "011"; IE_op3 <= "101"; OE <= '0'; enM0 <=
'0'; enM1 <= '1'; enM2 <= '0';
 WHEN s10 => IE_op2 <= "010"; IE_op3 <= "101"; OE <= '0'; enM0 <=
'1'; enM1 <= '0'; enM2 <= '0';
 WHEN s11 => IE_op1<="011"; IE_op2 <= "010";
IE_op3 <= "000"; OE <= '0'; enM0 <= '1'; enM1 <= '0'; enM2 <= '0';
 WHEN others => IE_op1<="010"; IE_op2 <= "100"; IE_op3 <= "000";
OE <= '1'; enM0 <= '0'; enM1 <= '0'; enM2 <= '0';
END CASE;
END PROCESS;
END fsm_KOA13;

The results of the simulation are shown in Figure 8.a and

8.b.

Fig. 8.a. Simulation result for polynomial multiplier in GF(213), part 1

Fig. 8.b. Simulation result for polynomial multiplier in GF(213), part 2

In Quartus II, the complexity of the Simple Karatsuba
algorithm is shown by a Combinational ALUTs (Adaptive
Look Up Tables), in which a Combinational ALUTs
consists of more than one logic gate. It can be seen that to
run the programs of multiplier in GF(213) using this
algorithm requires 117 combinational ALUTs (Figure 9).

Fig. 9. Flow summary from Simulation result of polynomial multiplier in
GF(213) for Karatsuba Method.

On the other hand, the complexity of the NAYK

algorithm requires as many as 182 Combinational ALUTs.
This value is greater than the complexity of the Simple
Karatsuba method because XOR process increases
significantly. But if the NAYK algorithm is implemented
with a composite filed on the outside power, the XOR
operation will be executed only once. While a large impact
on efficiency is the number of multiplication process that
has been generated by the algorithm NAYK, these
multiplication process are then operated with power on the
inside.

Fig. 10. Flow summary from Simulation result of polynomial multiplier in
GF(213) for NAYK Method.

Because formula (17) uses the multipliers of n = 7 and 6,

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_02

(Advance online publication: 20 November 2017)

__

the number of multiplication processes generated by the
NAYK algorithm is 22+(22-1)+17=60. Thus, the composite
complexity of Karatsuba-NAYK is (117*60+182)=7,202.00
Combinational ALUTs.

Meanwhile, the number of multiplications generated by
the Karatsuba algorithm is 49+(49-1)+36=133. Therefore,
the composite complexity of Karatsuba-Karatsuba is
117*133+117=15,678.00 Combinational ALUTs. A
comparison of the complexities of the composite methods is
shown in Table VII.

TABLE VII

COMPARISON OF COSTS FOR THE COMPOSITE FIELD
KARATSUBA-NAYK IN COMBINATIONAL ALUTS

Composite Methods O(13)

 Combinational
ALUTs

GF(2
13

) GF((2
13

)
13

)

Karatsuba-Karatsuba 133 117 15,678.00

Karatsuba-NAYK 60 182 7,202.00

It can be clearly observed that the costs required for

executing the composite Karatsuba-NAYK algorithm is as
low as about 50% of the costs required for the composite
Karatsuba-Karatsuba method. This is caused by the fact that
the NAYK method significantly reduces the number of
multiplications. Therefore, it has been proven that the
NAYK method can improve the efficiency of polynomial
multiplication in the Galois Field by reducing the
complexity or cost (measured in Combinational ALUTs) of
the calculations.

Therefore, it has been proven that the NAYK can improve
the efficiency of the area and also the speed by reducing the
complexity or cost of combinational ALUTs.

The results of this development, NAYK method, are well
suited for the composite field, which is placed on the
outside. Because the number of multiplication of this
method is much less when compared with the results of the
Simple Karatsuba algorithm. This causes the amount of
calculation becomes much diminished significantly, and this
will improve the efficiency of the area. Moreover, it
provides an easy step in finding a polynomial multiplier in
GF(2n).

Furthermore, with NAYK algorithm we can find and
develop bigger bits and better of the polynomial multiplier
for n>7 more quickly and produce a number of products are
much smaller because the upper limit is a function O(n) of
Montgomery.

Moreover, with the implementation of NAYK algorithm
results in composite field, implementation of ECC will be
much better than before because at least the processing time
will be two times faster than before. This is due to the
process of arithmetic can be reduced by half, as described
above. In fact we can apply the results in other processes
such as inverse that uses a multiplication operation in the
process, so that the ECC processing time will be much
faster.

In addition, since the implementation of NAYK algorithm
can reduce the number of arithmetic processes significantly,
then the area of ECC can be reduced smaller than before.

Why this research is necessary, because the results will
have a great influence on the efficiency of the area as well

as time in ECC as a whole. Now, look at figure 11 that in
ECC there are three levels of calculation.

Fig. 11. Three levels of process in ECC

In the encryption process there is a public key generation
process Pb = kb.B with a very large integer kb, this is at the
level of scalar multiplication in EC. For example if kb = 100,
then the doubling and addition rule of Pb can be calculated
as Pb=100B=2(2(2(2(2B+B)))+B)), then to do the
calculation will need 2 addition and 6 doubling. Meanwhile,
if the ECC is applied in affine coordinates, then at the level
of GF(2n) the addition process require 1 inverse, 2
multiplication, and 1 square, and the doubling process
require 1 inverse, 2 multiplication, and 2 square. Then it is
known that the square process is also a multiplication
process, so the calculation of Pb will at least involve
(2+1)2+(2+2)6=30 multiplication, while the inverse process
is only done as much as 1*2+1*6=8, but the inverse process
does not take up a lot of resources in GF(2n) because the
process is simple unlike the complexity of the multiplication
process [25], For comparison see figure 12.

Others
0.2

Multiplication
0.8

Fig. 12. Distribution area in ECC

So if a multiplication process at the arithmetic level of
GF(2n) can cause enlargement of the area, then with the
processes of as much as 30 multiplication will cause more
enlargement of the area. Thus it is clear that the
multiplication process in arithmetic GF(2n) gives a direct
influence on the encryption process in ECC. Using the
results from the NAYK Algorithm as the results in table VII
states that the algorithm can reduce the efficiency of the
complexity area of the product around 50%, so that the
overall efficiency of the ECC process is about 40%, see
figure 13.

Others
0.2

Multiplication
0.4

Efficiency
0.4

Fig. 13. Distribution and efficiency area in ECC
after using NAYK Algorithm

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_02

(Advance online publication: 20 November 2017)

__

To speed up the processing time it depends on how the
architecture is designed from the start level in GF(2n) to the
scalar multiplication process in EC. But with NAYK
algorithm results, ECC architecture can be designed to be
better and can speed up the processing time.

Further research on [26-28], the multiplication forms in
GF(2n) can be improved in efficiency if using NAYK
algorithm, because this algorithm is not only used in ECC
but in other research field can be used as in error correction
codes.

V. CONCLUSION & FUTURE WORK

In this study, we have developed an improved
Generalizations of the Karatsuba Algorithm (GKA) formula
for use in polynomial multiplications in the Galois Field
GF(2n). The aim was to improve the efficiency of the
calculations by developing an algorithm in which the
number of multiplications is significantly reduced compared
to previous methods. The Improved GKA formula utilizes
symmetry, a property that arises in the multiplication
process. By solving only half of the equations in C'
(including for c'(n-1)), the solutions to the other half can be
obtained using symmetry. However, for large values of n,
the algorithm fails to execute with acceptable time and
computer resources. In order to solve this problem, we
developed an Exhaustive Search Algorithm to find the
combinations of products that are solutions to equation C',
hence reducing the number of multiplications required. For
large values of n, though, this algorithm requires large
amounts of resources. To overcome the shortcomings of
both algorithms, we developed the NAYK algorithm that
combines both the Improved GKA and Exhaustive Search
Algorithm. The NAYK algorithm has a much lower
complexity compared to previous methods to solve
polynomial multiplications in GF(2n).

In further research, we aim to develop improved
algorithms for polynomial multiplications in GF(2n) for
values of n of larger than 7, and implement the algorithms in
a composite field. The development of such algorithms is
useful in a variety of applications, including Elliptic Curve
Cryptography (ECC). By utilizing the NAYK algorithm,
limited computer resources is no longer an obstacle to
implementing ECC.

REFERENCES

[1] Andre Weimerskirch and Christof Paar, “Generalizations of the
Karatsuba Algorithm for Efficient Implementations,” Ruhr-
Universitat Bochum, Germany, 2003

[2] Berk Sunar, “A Generalized Method for Constructing Subquadratic
Complexity GF(2k) Multipliers,” IEEE Transactions on Computers,
Vol. 53, No. 9, September 2004

[3] Chester Rebeiro, Debdeep Mukhopadhyay, “High Performance
Elliptic Curve Crypto-Processor for FPGA Platforms,” Dept. of
Computer Science and Engineering, IIT Kharagapur, 2008

[4] Chester Rebeiro, Debdeep Mukhopadhyay, “High Speed Compact
Elliptic Curve Cryptoprocessor for FPGA Platforms,” INDOCRYPT
2008: 376-388

[5] Chester Rebeiro, Sujoy Sinha Roy, Debdeep Mukhopadhyay,
“Pushing the Bound of High Speed GF(2m) Elliptic Curve Scalar
Multiplier on FPGAs,” CHES Springer, December 2012

[6] Cristof Paar, “A New Architecture for a Parallel Finite Field
Multiplier with Low Complexity Based on Composite Fields,” IEEE
Transactions on Computers, July 1996

[7] Cristof Paar, Peter Fleischmann, Peter Roelse, “Efficient Multiplier
Architectures for Galois Fields GF (24n),” IEEE Transactions on
Computers, February 1998

[8] Daniel V. Bailey and Christof Paar, “E cient Arithmetic in Finite
Field Extensions with Application in Elliptic Curve Cryptography,”
Journal of Cryptology, 2001

[9] Don Johnson, Alfred Menezes, Scott Vanstone, ”The Elliptic Curve
Digital Signature Algorithm (ECDSA)”, Certicom, 2001

[10] Haining Fan, Jiaguang Sun, Ming Gu and Kwok-Yan Lam, “Overlap-
free Karatsuba-Ofman Polynomial Multiplication Algorithms,“ IET
Information security, vol. 4, no. 1, pp. 8-14, 2010

[11] Haining Fan and M. Anwar Hasan, Senior Member, IEEE,
“Comments on “Five, Six, and Seven-Term Karatsuba Like
Formulae”,” IEEE Transactions on Computers, Vol. 56, No. 5, May
2007

[12] Ivan Oseledets, “Improved n-Term Karatsuba Like Formulas in
GF(2),” IEEE Transactions on Computers, Vol. 60, No. 8, August
2011

[13] M. Ernst, M. Jung, F. Madlener, S. Huss, and R. Blumel, “A
Reconfigurable System on Chip Implementation for Elliptic Curve
Cryptography over GF(2n),” Integrated Circuits and System Lab.,
Computer Science Department, Darmstadt University of Technology,
Germany

[14] Misrolav Knezevic, ”Efficient Hardware Implementations of
Cryptographic Primitives,” Disertation, Arenberg Doctoral School of
Science, Engineering & Technology, Maret 2011

[15] M. Machhout, M. Zeghid, W. El hadj youssef, B. Bouallegue, A.
Baganne, and R. Tourki, “Efficient Large Numbers Karatsuba-Ofman
Multiplier Designs for Embedded Systems,” World Academy of
Science, Engineering and Technology 28, 2009

[16] Muhamad Nursalman, Arif Sasongko, Yusuf Kurniawan,
Kuspriyanto, “Improved Generalizations of The Karatsuba Algorithm
in GF(2n),” IEEE International Conference on Advance Informatics:
Concepts, Theory and Applications, August 2014, Bandung-
Indonesia

[17] Muhamad Nursalman, Arif Sasongko, Yusuf Kurniawan, Sarwono
Sutikno, “Architecture Design and Implementation of KOA Multiplier
for Small Bits in Galois Field,” IEEE International Conference on
Electronics Technology and Industrial Development, October 2013,
Bali-Indonesia

[18] Peter L. Montgomery, “Five, Six, and Seven-Term Karatsuba Like
Formulae,” IEEE Transactions on Computers, Vol. 54, No. 3, March
2005

[19] Sameh M. Shohdy, Ashraf B. El-Sisi, and Nabil Ismail, “Hardware
Implementation of Efficient Modi ed Karatsuba Multiplier Used in
Elliptic Curves,” International Journal of Network Security, Vol.11,
No.3, PP.155-162, Nov. 2010

[20] Sandeep S. Kumar, “Elliptic Curve Cryptography for Constrained
Devices”, Verlag Dr. Muller, Saarbrucken, Germany, 2008

[21] Steffen Peter and Peter Langendorfer, “An Ef cient Polynomial
Multiplier in GF(2m) and its Application to ECC Designs,” IHP
GmbH, Frankfurt(Oder), Germany

[22] Sudhanshu Mishra, Manoranjan Pradhan, “Synthesis Comparison of
Karatsuba Multiplier using Polynomial Multiplication, Vedic
Multiplier and Classical Multiplier,” International Journal of
Computer Applications (0975 – 8887) Volume 41– No.9, March 2012

[23] Vinodh Gopal (Intel Corporation, USA), Satyajit Grover, Michael E.
Kounavis, “Fast Multiplication Techniques for Public Key
Cryptography,“ IEEE Symposium on Computers and
Communications, 2008. ISCC 2008

[24] Y.A.Suryawanshi, Neha Trimbak Khadgi, “Design Of Elliptic Curve
Crypto Processor with Modified Karatsuba Multiplier and its
Performance Analysis,” International Journal of Distributed and
Parallel Systems (IJDPS) Vol.4, No.3, May 2013

[25] Darrel Hankerson, Alfred Menezes, Scott Vanstone, “Guide to
Elliptic Curve Cryptography,“ Springer-Verlag, New York, Inc. 2004

[26] Xiaoqiang ZHANG, Ning WU, Gaizhen YAN, and Liling DONG,
"Hardware Implementation of Compact AES S-box," IAENG
International Journal of Computer Science, vol. 42, no.2, pp125-131,
2015

[27] Dindayal Mahto, Danish Ali Khan, and Dilip Kumar Yadav,
"Security Analysis of Elliptic Curve Cryptography and RSA," Lecture
Notes in Engineering and Computer Science: Proceedings of The
World Congress on Engineering 2016, 29 June - 1 July, 2016,
London, U.K., pp419-422

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_02

(Advance online publication: 20 November 2017)

__

[28] Yaoping Liu, Ning Wu, Xiaoqiang Zhang, Liling Dong, and Lidong
Lan, "An Area Optimized Implementation of AES S-Box Based on
Composite Field and Evolutionary Algorithm," Lecture Notes in
Engineering and Computer Science: Proceedings of The World
Congress on Engineering and Computer Science 2015, 21-23
October, 2015, San Francisco, USA, pp33-37

Muhamad Nursalman received his Bachelor
(Mathematics, 2002) and Master degree (Informatics,
2005) from Institut Teknologi Bandung, Indonesia.
Now he is continuing his graduation in Doctoral degree
at the School of Electrical Engineering and Informatics,
at the same university. Since 2006, he has been with
Department of Computer Science, Universitas
Pendidikan Indonesia, where now he is an Assistant

Professor. His research interests focus on Mathematics and Cryptography.

Arif Sasongko received his Bachelor and Master
degree (Electrical Engineering) from Institut Teknologi
Bandung, Indonesia, and he received his Ph.D degree
from Universite Joseph Fourier, France, in 2005. Since
2006, he has been with the School of Electrical
Engineering and Informatics, Institut Teknologi
Bandung, Indonesia. Now, he is an Associate Professor
with research interests focus on Cryptography, SoC,

and Embedded Systems.

Yusuf Kurniawan received his Bachelor, Master and
Doctoral degree from Institut Teknologi Bandung,
Indonesia. Since 2008, he has been with the School of
Electrical Engineering and Informatics, Institut
Teknologi Bandung, Indonesia. Now, he is an
Associate Professor with research interests focus on
Telecommunication and Electrical Engineering, and
Cryptography. He is known as the inventor of Bc1,

Bc2, and Bc3. He has improved block cipher algorithm.

Kuspriyanto received his Bachelor degree (Electrical
Engineering) from Institut Teknologi Bandung,
Indonesia, and he received his DEA and Ph.D degree
from Universite Des Sciences et Techniques du
Languedoc, France, in 1981. Since 1976, he has been
with the School of Electrical Engineering and
Informatics, Institut Teknologi Bandung, Indonesia.
Now, he is a Professor with research interests focus on

the Automatic System, Computer Architecture, and Cryptography.

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_02

(Advance online publication: 20 November 2017)

__

