
 

 

Abstract—The image we interested on may suffer the 

problems of low contrast, non-uniform lighting, blurring and so 

on, which will affect its interpretation and recognition. 

Therefore, enhancing and restoring such a low-quality image is 

of significance. Retinex models are powerful methods for image 

enhancement and restoration. In recent years, variational 

methods based on Retinex theory are increasingly paid more 

attention. In this paper, we first summarize a short review of 

traditional Retinex methods and then present existing 

variational Retinex models. We also present detailed 

descretisation of these models and numerical implementation of 

the split Bregman algorithm for solving these models using the 

fast Fourier transform. We further demonstrate the advantages 

and disadvantages of several representative variational models 

in the context of image enhancement through extensive 

experiments. These models and techniques can also be used for 

other applications, such as image decomposition, inpainting and 

segmentation. 

 
Index Terms—Image enhancement, restoration, retinex, 

variational model, split bregman  

 

I. INTRODUCTION 

 

MAGE enhancement and restoration are essential 

preprocessing parts of many image analysis processes such as 

image segmentation [1], [2], image recognition [3], [4], and 

so on. To address the difficulties of image enhancement and 

restoration, a lot of methods have been proposed. Some 

methods [5]-[7] manipulate image histogram to enhance 

images, some methods apply a nonlinear transformation [8] to 

compress dynamic range of an image, and some methods [9] 

develop a gray level transformation for an image. Among 

these color image enhancement and restoration approaches, 

technologies based on the Retinex theory have been widely 

used in many fields. The Retinex theory is originally proposed 

by Land and McCann [10] as a color perception model of the 

human visual system (HVS). Our visual system ensures that 

the perceived color of one object remains relatively constant 
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with different illuminations conditions, which called color 

constancy. The fundamental assumption of Retinex theory is 

that a given image S can be decomposed into two different 

images: the reflectance R and the illumination L such that 

                     S x R x L x                           (1) 

at each pixel (x, y) in the image domain. To simplify equation 

(1), we can apply the logarithm operation on R and L which 

leads to  

     s x r x l x                          (2) 

where logs S , logr R , and logl L . 

    Fig. 1(a) presents the well-known Retinex illusions called 

“Adelson’s checker shadow illusion”. For us, region A seems 

dark than region B, but actually the intensity value of them are 

exactly equal as shown in Fig. 1(b). This is because they are in 

different illumination conditions. It is noted that region B is 

under the shadow of a green cylinder so that the illumination 

in the region B is weaker than that in the region A, i.e., L(B)< 

L(A). Based on the Retinex theory, the reflectance in the 

region B is larger than that in the region A, i.e., R(A) < R(B) to 

ensure S(A) = S(B). As only the reflectance R is perceived by 

the HVS, that is why the region A seems darker for us. 

 

 
(a)                                               (b) 

Fig. 1.  Adelson’s checker shadow illusion: (a) Original image, (b) 

Demonstration. 

 

To simulate the mechanism of HVS, it needs to recover the 

reflectance R from a given image S, which is mathematically 

an ill-posed problem. Fig. 2 illustrates the general process of 

Retinex algorithms. Base on Land and McCann’s Retinex, a 

number of algorithms are proposed in the literature for its 

solution vary in their way of overcoming this limitation. 

These approaches can be classified into five categories such 

as path-based algorithms [10]-[12], recursive algorithms 

[13]-[15], center/surround algorithms [16]-[18], PDE-based 

algorithms [19]-[21] and variational algorithms [22]-[24].  

 

 
Fig. 2.  The general flow chart of Retinex algorithms. 
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The original Retinex algorithm is a typical path based 

algorithm, which performs a random choice on both starting 

pixels and path routes. The main problems of this kind of 

algorithms are their high computational complexity and free 

parameters. Afterwards, Frankle and McCann [13], [14] 

applies recursive matrix calculation to replace path 

computation to boost its efficiency. However, the 

disadvantage of these algorithms is that their computation 

results are strongly relied on the iteration number. As well 

known, the single scale Retinex (SSR) [16] and the multiscale 

Retinex (MSR) [17] are the representative algorithms of the 

center/surround approaches. As their 

simplicity and effectiveness, many improvement algorithms 

[25]-[30] are proposed on the basis of SSR and MSR. For 

instance, the multiscale Retinex with color restoration 

(MSRCR) [18] method is an improvement of the MSR while 

it does not solve the problem of the halo artifacts near strong 

edges. In PDE-based algorithm [19], it assumes that the 

reflectance changes at sharp edges and the illumination varies 

smoothly, therefore the above ill-posed problem can be 

modeled as a Poisson equation. On the basis of the same 

assumptions in [19], variational Retinex models [22], [24] are 

established by employing various regularization in terms of 

illumination and reflection functions. After that, many 

variational algorithms are further proposed on the basis of this 

variational framework. In this paper, we mainly focus on the 

state-of-the-art variational Retinex models. 

    The outline of this paper is as follows: we start by 

presenting a short review of some traditional Retinex flavors 

in section 2. Section 3 summarizes many variational Retinex 

models and numerical algorithms. Section 4 briefly 

introduces some recent nonlocal variational Retinex models. 

Experimental results and comparisons are shown in section 5. 

Finally, we conclude this paper in section 6. 

II. TRADITIONAL RETINEX ALGORITHMS 

    Here, the traditional Retinex algorithms are basically 

categorized as three types: path-based algorithms, 

center/surround algorithms and PDE-based algorithms. In this 

section, we will provide a brief introduction of these 

algorithms. 

A. Path-based Algorithms 

Path-based algorithms are the primary methods in Retinex 

theory, which have high computation complexity and need 

too many parameters. The difference among them is the way 

and the order to choose the other comparison pixels. 

Land’s original scheme [10] applied stochastic theory 

considering the reflectance at each pixel relying on the 

multiplication of the ratios along random walks. Further 

developments introduced random distributed path algorithm 

with Brownian motion. Brainard and Wandell [31] studied the 

convergence properties for a large set of long paths using 

stochastic theory and found that the output would be a 

degraded version of the given image. Firstly, a large number 

of walks are initiated at random locations of an input image s 

(log S), adopting the gray value of their initial position. Then, 

an accumulator image s’ that has the same size as s is 

initialized to zero. As the walkers walked around, the image s’ 

is updated by adding their values to each position they visited. 

Finally, the reflectance image is obtained by normalizing the 

accumulator image. 

Frankle and McCann [13], [15] extended the path-based 

algorithms and employed an efficient recursive matrix 

calculation to replace the path computation. In their 

algorithms, long distance interactions are first calculated and 

then progressively moves to short-distance interactions with 

decreasing the spacing. At each step, the illumination estimate 

is updated by resetting a ratio product. The illumination image 

0l̂  is initialized to be s, the original image. The algorithm 

performs the following iterative procedure, 

1

ˆ ˆˆ
ˆ max ,

2 2

n n n
n

n

l D ll s
l 

    
  

  

                (3) 

where nD  is a translation operator, shifting the image by the 

nth element of a sequence of spirally decaying translation 

vectors. The size of the first displacement is set to be half the 

minimum between the image width and height. 

    More recent variants of the algorithms involving 

multi-resolution image pyramids [13], [14], different 

sampling patterns [32], [33], or ratio modifiers [34] are 

proposed. Provenzi et al. [35] replaced the path-based 

sampling pattern with a repeated sampling through random 

sprays and formalized the standard path-based sampling 

process representation of the Retinex model. It proves that 

despite the overall path dependence, this model can be given a 

representation in terms of absorbing Markov chains, by means 

of the embedding into a suitable state space. G. Gianini et.al 

[36] derived the corresponding analytic model, accounting for 

the combined effects of path function, path sampling process 

and starting point sampling process. Here, a numerical 

algorithm named ReMark (reset only Retinex by absorbing 

Markov chains) was provided for computing this new 

representation. 

B. Center/Surround Algorithms 

    The center/surround approach was proposed by Land, et al. 

[10] and later improved by Jobson, et al. [37]. Jobson et al. 

then proposed the SSR (single scale Retinex) and the MSR 

(multiscale Retinex) which are on the basis of the assumption 

that the illumination component tends to vary smoothly, while 

the reflectance changes at sharp edges. Therefore the output 

reflectance values can be obtained by subtracting a blurred 

given image. These algorithms are easily implemented but 

need a large number of parameters. The SSR algorithm is 

given by 

      log logSSRR i I i F I i                  (4) 

where  R i  is the Retinex output,  I i  is the image 

distribution in the ith spectral band, and F is a Gaussian 

kernel. The MSR algorithm is simply the combination of 

different SSRs: 

        
1 1

log log
n n

MSR n n n n

n n

R i w R i I i w F I i
 

          (5) 

where 
1

: 1
n

n n

n

w w


  are the weights of each scale and nF  

are Gaussian kernels of different scales. 
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    By changing the order of log and Gaussian convolution of 

the SSR algorithm (4), one gets homomorphic filtering (HF) 

      log logHFR i I i F I i                   (6) 

Given the kernel  ,w i j F and logf  , it can be identified 

as 

   
 

 

     

1

1

, log

log , log

j

j

j

j

I i
R i w i j

I j

I i w i j I j





 
   

 

 





                 (7) 

C. PDE-based Algorithms 

In PDE-based formulations, people usually take a 

logarithm for the original formulation as s i r   where 

 logs s ,  logr R ,  logi I . As the illumination i  

of an input image is supposed to be changing smoothly, the 

spatial derivatives of the observed intensity are primarily 

affected the reflectance r . Horn [21] applied the Laplacian to 

obtain s i r    : i  will be finite anywhere, while r  

will be zero excepting edge regions. So Laplacian is supposed 

to yield the reflectance without regard to the finite parts of the 

observed intensity.  

 r s                                 (8) 

where the threshold function is 

 
if

0 otherwise

x x t
x

 
 


                        (9) 

Horn’s algorithm has been strongly backed up by Morel, 

Petro and Sbert [38], [39], which shows a very tight 

connection with Land’s original, reset free Retinex, and 

Horn’s Laplacian thresholding algorithm. Actually, their 

comment actually confirms the mathematical result: under the 

Brownian path assumption the original Retinex becomes a 

Poisson equation, very similar to Horn’s physical model and 

almost identical to Blake’s model [20].  

In a word, in the PDE-based formulations [20], [21], [38], 

[39], threshold functions are mainly applied on eliminating 

the effect of illumination. Then the reflectance can be 

recovered with Poisson equations which can be solved by 

several effective algorithms such as fast Fourier transform 

(FFT). 

III. VARIATIONAL RETINEX MODELS 

In recent two decades, numerous variational Retinex 

models have been applied to image enhancement and 

restoration. The primary variational model for the Retinex 

problem was proposed by Kimmel et.al [22] in 2003. 

Subsequently, variations Retinex models have been proposed 

based on this variational theory. First, Ma and Osher [40] 

established a total variation (TV) by dropping a few terms and 

replacing Gaussian smoothness of the reflectance. As a 

complication, they also introduced a nonlocal TV regularizer 

to replace the local TV prior. Afterwards, Ng and Wang [41] 

presented an improved total variation model for Retinex by a 

L2 fidelity prior between reflectance and intensity. Chen et al. 

proposed a new logarithmic total variation (LTV) model 

based on minimizing an L1 norm. They also modified the L1 

Retinex model for recovering magnetic resonance imaging 

(MRI) [42]. In this section, we summarizes several variational 

Retinex models and numerical algorithms. 

A. Kimmel's Variational Model (H1-L2)  

Similar to traditional Retinex algorithms, Kimmel’s 

variational model assumes spatial smoothness of the 

illumination field. In addition, knowledge of the limited 

dynamic range of the reflectance is used as a constraint in the 

recovery process. Three penalty terms are included, the first 

one forces spatial smoothness on the illumination, the second 

focus a proximity between l and s, and the third adopts a 

Bayesian view point of the estimation problem, which leads to 

an algebraic regularization term that contributes to better 

conditioning of the reconstruction problem. 

The penalty functional can be expressed as following 

according to all the above assumptions. 

     22 2ˆ arg min
l

l l l s l s dx 


        (10) 

subject to (s.t.) l s , and , 0l  n  on  , 

where  is the support of the image,   is its 

boundary, and n  is the normal to the boundary.  and   are 

free nonnegative real parameters. 

This is a quadratic programming problem that can be 

solved by many methods such project normalized steepest 

descent method as in paper [22]. 

B. Total Variation (TV) Model 

In 2010, Ma and Osher [40] reduced the penalty terms 

and replaced H1-smoothness of the reflectance using a TV 

regularized model. 

21
ˆ arg min

2r
r t r r s dx



 
     

 
            (11) 

which was implemented by split Bregman iterations. 

22 2

2

1
ˆ arg min s.t.

2
x y

r
r t d d s r



 
      

 
 d d        (12) 

By the general split Bregman method, we have  

 

 

 

21 2 2

2

2

2

2
1 1

2

1 1 1

1
arg min

2

1
,

2

1
arg min ,

2

k

x y

k k k

k k k k

k k k k

t
d d s

r

r r r r

r

 





 

  

   

     

      

  

d
d d

b d d d

b d

b b d

   (13) 

The above equation (13) can be explicitly solved [43]. They 

are summarized in the following algorithms: 

  
 

  
 

0 0 0

1

2

1

2

1

1 1

1 1 1

, 0

1
(1) shrink

1

(2) div

(3)

k k

k

k k k

t

k k k

k k k k

r s

r r
ε

r

s λ u λ
λ

r solution of r

u







 

  

  




    


   

  

Initialize d b

d b

d b

b b

While

en

d

d While

   (14) 
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The isotropic shrinkage function is defined by 

2

2

2

0

shrink ( )
z

t

if z t

z t
z z if t

z

 


 
 



           (15) 

C. TV-L2 Model 

Ng and Wang [41] presented an L2-fidelity prior between 

reflectance and intensity. Unlike Ma and Osher model, the 

reflection function is considered, and some constraints and a 

fidelity term are added in the proposed energy functional: 

 

 

( , )

2 22

ˆˆ, arg min ( , )

2 2 2

r l
r l E r l

Dr l dx l r s dx l dx
  



   



         
(16) 

with         1,2, | , , 0,r l r l BV W r l s                   

Here  ,   and   are positive numbers for regularization 

parameters, the term  
2

l r s dx


   is utilized for the 

fidelity, and the term 
2

l dx
  is used only for the theoretical 

setting.  

A fast alternating minimization scheme is employed to 

solve the proposed model. 

Step 1. Set 0k  , and let 0l s be the initial illumination 

function.  

Step 2. At the kth iteration: 

(1) Given kl , compute 
1

2
k

r


 by solving 

   
2

1
ˆ arg min

2

k

r
r E r Dr r s l dx


 

        (17) 

then update 
1kr 

 by using 
1

1 2max ,0
k

kr r



 

  
 

                         (18) 

(2 ) Given 1kr  , compute 
1

2
k

l


 by solving 

 

 

2

2

2
1 2

ˆ arg min
2

2 2

l

k

l E l l dx

l r s dx l dx



 





 

  

   



 

   (19) 

    Step 3. Go back to step 2 until satisfy the following ineq- 

uation.  

 

1 1

1 1
,

k k k k

l rk k

l l r r

l r
 

 

 

 
                  (20) 

    The minimization subproblem in equation (17) can be tra

nslated using the split Bregman method by introducing the au

xiliary variable d in the calculation: 

  
2

,
min s.t.

2

k

r d
d r s l dx d r


 

 
     

 
    (21) 

    The computation procedure of above equation is 

presented as follows. 

Step 1. Let 
0 0w  ,  0 0 0, 0x yb b b  be the initial value. 

Step 2. At the ith iteration: 

    (1) Given 
iw  and 

i
b , update 

1i
d  by using 

1 1
shrink ,i i iw



  
   

 
d b               (22) 

    (2) Given 1i
d  and i

b , update 1iw   by using 

          
        

1 1

1 1

k i i i i

x x x y y yi

x x y y

F l s F F d b F F d b
w F

F F F F

 

 

 

 

         
 
        
 

(23) 

where F is the discrete Fourier matrix. 

    (3) Given 1iw   and 1i
d , update 1i

b  by using 

 1 1 1i i i iw    b b d                     (24) 

Step 3. Set 
1

12
k

ir w


  until 

1

1

i i

wi

w w

w







  

The minimization subproblem in equation (19) can be 

solved by using fast Fourier transform (FFT): 

 
        

1

1 1

k

k

x x y y

F r s
l F

F F F F



  



 

 
 
         
 

  (25) 

D. L1 Variational Model 

In 2011, Ma and Osher [42] established an L1 based 

variational Retinex model. In this paper, instead of 

minimizing the L2 norm, its motivation is to minimize the L1 

norm of  tr s   . Namely, the L1 Retinex model is  

 ˆ arg min t
r

r r s


                      (26) 

t  is a threshold function applied on r  to preserve the grad

ient of reflectance, and it is defined as  

      1 , ,t t t nz z  z                   (27) 

with 

 
if

0 otherwise
t

z z t
z

 
 


                     (28) 

where the threshold t  is a positive parameter. Therefore, 

given a suitable t , we have 

 tr s                              (29) 

then the problem (26) can be defined as  

     
22

ˆ arg min x t x y t y
r

r r s r s 


          (30) 

The L1 Retinex model is also implemented using split 

Bregman method by introducing  ,x yd dd  as 

 

 
x x t x

y y t y

d r s

d r s





   

   
                       (31) 

then equation (26) can be rewritten as 

   2 2

,

ˆˆ, arg min s.t.x y t
r d

r d d r s


    d d          (32) 

then the Bregman iteration can be written as 

 

 

 

2
1

2

2
1 1

2

1 1 1

arg min div ,
2

arg min ,
2

k k k

t
r

k k k

t
d

k k k k

t

r r r s

r s

r s


 


 





 



  

     

     

    



b d

d d b d d

b b d

  (33)  

The computation procedure of subproblems (33) is as well 

as TV’s, so that won’t be covered again here. 
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E. High-order Total Variational L1 model (HoTVL1)  

As we know, the total variation method [44] may cause the 

so called staircase artifact phenomenon. In order to eliminate 

this effect, a number of higher order functions have been 

proposed such as infimal convolution of total variation (ICTV) 

[45]-[47] and total generalized variation (TGV) [48], which 

are defined as 

  2ICTV inf
u v w

u vdx wdx 
  

                 (34) 

where 2w

  is the total variation of Hessian of w  for 

 2,1w W  . 

 2TGV infu u dx dx 
 

     w
w w            (35) 

where 2 2
w  denotes the gradient of the deformation 

field 2
w . 

Liang and Zhang [49] proposed the first higher order TV 

+L1 variational model decomposition as  

   

 

2

,

,
2

1
,

2min
r l

r l s r l dx

r dx l dx

 

 



 

 
   

 
    
 



 

          (36) 

Let u r l   , then the above formula is equivalent to  

    

   

2 2

,

2

1
min

2

1
min ICTV

2

u l

u

u s dx u l l dx

u s dx u

 



 



 
      

 

 
   

 

 



 (37) 

Further replace l  by  
1

1 2,v v


v   in equation (36), then 

the following model can be obtained 

   

   

2

,

2 2

1
min ,

2

1
min TGV

2

u v

u

u s dx u dx

u s dx u

 



 



 
      

 

 
   

 

 



v v

     (38) 

To overcome some drawbacks of model (36) and infimal 

convolution (37), (38), an extended version of model (36) is 

presented as 

   

 

2

, ,

,
2 2

1
,

2
min

2

r lr l

r l s r l dx

r dx l dx l dx

  


 



 

  

 
    

 
     
  



  

   (39) 

where   is a small positive parameter to ensure the 

boundedness of l , r and l  are the box constraint for 

reflectance r  and illumination l  respectively. 

The problem of (39) can be solved by primal dual splitting 

[50], [51] and split Bregman algorithms [43] with operator 

splitting techniques. In this paper, the split inexact Uzawa 

(SIU) method presented in [52] which is an inexact variant of 

alternating direction method of multipliers (ADMM) [53] 

adopted for this problem. 

After define the following formulas 

 

   

2

1

2

, 2

1

2

,

H x s Ax

J Bx y y x x













 

             (40) 

where 

 
r

x
l

 
  
 

,
u

y
v

 
  
 

, u r , 2v l  ,  Id, IdA  ,  0, IdB  , 

1, 1 1
y u v


  ,  

then (39) can be formulated into the following form 

   
,

min , s.t .
x y

H x J x y Lx y                  (41) 

whose augmented Lagrangian formula is 

     
,

2

max min ,,

,
2

;
x yp

J x y

v
p Lx

p x y H

y

x

Lx y



     



           (42) 

where 
2

,0

0,
L

 
  

 
 and r

l

p
p

p

 
  
 

 is the Lagrangian 

multiplier. 

Then the SIU iteration can be written as 

 

 

 

 

1

1 1

1

1

1

1
; ,

2

arg min

arg mi

; ,

n k k k

Mv

k k k

k k

x

k

k

k

p x y x x

y p x y

p p v Lx y

x

 





 

 



  










         (43) 

where Id TLM vL   , which is a positive definite matrix. 

The update of 1kx   and 
1ky 
 is presented respectively as 

follows. 

      
 

2

2 2

1 arg mi
1

2

1

2 2

n

k

k

x
x sx Ax

Bx x w





  

  



     (44) 

where  k k T k k kw x L vLx p vy    . 

 

2
1 1

1,

2
1

1

2
2 1

1

arg min
2

arg min
2

2

k k k

y

k k

r

k k

l

v
y y y Lx P v

v
u u r P v

v
v v l P v








 





   

   

   

           (45) 

Finally, the update for the dual variable 1kP   is 

straightforward. 

IV. NONLOCAL VARIATIONAL RETINEX MODELS 

In this section, we recall and give a few definitions of 

nonlocal (NL) differential operators proposed by Gilboa and 

Osher [54] that can be viewed as an extension of spectral 

graph theory and the diffusion geometry framework to 

functional analysis and PDE-like evolutions. 

A. Basic Definitions (Differential Operators)  

First, the definitions of particular products and norms of 

scalars and nonlocal vectors are given as follows.  

Definition 4.1. To begin, we extend the notion of NL 

partial derivatives by the following definition: 

               
   

 
:

,
y

u y u x
u x

d x y


                      (46) 

where , , 0 ( , )x y d x y    , and d  is a positive measure 

defined between points x and y.  
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Definition 4.2. To keep with standard notations related to 

regularization framework on graphs which uses similar 

operators [55], we define the weights as  

                      2, , , 0 ,w x y d x y w x y                (47) 

Definition 4.3. In general, the weights are assumed 

symmetric, that is    , ,w x y w y x . The NL derivation (46) 

can be written as 

        : ,yu x u y u x w x y                 (48) 

Definition 4.4. The NL gradient ( ) :wu x   is 

defined as the vector of all partial derivatives: 

         , : ,wu x y u y u x w x y               (49) 

Definition 4.5. Vectors v  is denoted as 

 ,v v x y  . The standard 2L  inner product is used 

for functions  

   1 2 1 2, :u u u x u x dx


                     (50) 

Definition 4.6. Then the dot product for vectors at x is 

defined 

     1 2 1 2, : , ,v v x v x y v x y dy


                   (51) 

and an inner product is 

   1 2 1 2 1 2, : ,1 , ,v v v v v x y v x y dxdy


            (52) 

Definition 4.7. The Norm of a vector is  

   
2

1 2: ,v x v v v x y dy


                    (53) 

With the above inner products the NL divergence 

 div :wv x   is defined as the adjoint of the NL 

gradient: 

, , divw wu v u v                       (54) 

Definition 4.8. The expression for the divergence is easily 

found as 

        div : , , ,wv x v x y v y x w x y dy


        (55) 

Definition 4.9. The nonlocal Laplacian can now be defined 

by 

    

      

1
: div

2

,

w w wu x u x

u y u x w x y dy


  

 
                 (56) 

Note that in order to get the standard Laplacian definition 

which relates to the graph Laplacian we need a factor of 1/2. 

Definition 4.10. The NL (mean) curvature can be 

formulated: 

    
   

:=div

1 1
( , )

w

w w

w

w w

u
k

u

u y u x w x y dy
u x u y

 
   

 
      


       (57) 

with norm of NL gradient at q: 

        
2

: ,wu q u z u q w q z dz


             (58) 

B. Nonlocal Retinex 

Zosso and Osher [56] presented a unifying framework of 

nonlocal Retinex models. They summarize an pL NL Retinex 

functionals: 

 2 2

, 2 2
ˆ arg min

p

w w f pr
r r s r r s       (59) 

Here, we first focus on functionals with a TV-type 

regularizer and their numerical optimization, then we will 

introduce several representative NL Retinex models. 

 

NL TV Retinex 

Following Buades, Coll, and Morel’s nonlocal mean 

method [57], Gilboa and Osher introduced the nonlocal TV 

regularizer [54]. This is another successful method in image 

processing, especially for textured images [58]. 

For an image :u x , we can define the nonlocal 

weight between two pixel x and y: 

 
    

2

2
, exp

2

a

h

G u x u y
w x y

h

    
  

  

              (60) 

where aG  is the Gaussian kernel with standard deviation a . 

With the nonlocal gradient operator as shown in definition 4.4, 

the nonlocal TV regularizer can be defined as  

      

1

2
2

,wu u y u x w x y dy dx
  

 
   

 
            (61) 

So the nonlocal TV regularized model for Retinex theory is  

 
2

2

1
ˆ arg min

2
w

r
r t r r s



   
      

   
            (62) 

Similarly, we have a numerical algorithm using the split 

Bregman method to the nonlocal TV regularized model by 

introducing an auxiliary variable w wr u d . In discrete 

version, d  can be written as  1 1, , , md d dd  with 

1 2, , n

j j j jnd d d d . And the minimization problem is  

 

1

2
22

2
1 1

1
ˆ arg min s.t.

2

n m

jk w
r

k j

r t d D r s D r
 

 
    

 
  d   (63) 

When we plug this into the general form of the split Bregman 

iterations, we have 

 

 

 

1

2
1 2

1 1

2

2

21

2

2
1

2

1 1 1

arg min

1
,

2

1
arg min

2

1
,

2
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k
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k k k

w

k

u

k k k

w w

k k k k

w

t
d

D r

r D r s

D r r D r

D r







 





  

 
  

 

   

 

   

  

 
d

d

b d d d

b d

b b d

                (64) 

We explicitly solve the problem (64) and get the nonlocal TV 

Bregman iterative algorithm. 

 

    
 

0 0 0

1 1

2 2

1

1
1 1

1 1 1

, 0

/

(1)

(2)

(3)

k k k

k k k

t w

k T T T k k T

w w w

k k k k

w

u s

u u u

shrink D r

r D D D D D D Ds

D r





 

 




 

  

  

 

 

   
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Initialize d b

While

d b

d b

b b d

end While

  (65) 

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_05

(Advance online publication: 20 November 2017)

 
______________________________________________________________________________________ 



 

Here shrinkt is the nonlocal isotropic shrinkage function. For 
mnv , denote  1 2, ,

T

mv x x x  and 

  1 2 1
, , ,i in in i n

x v v v  
 . 

 
2

2

2

0

shirnk

i

t in l

in l in l i

i

if x t

v t
v v if x t

x



 

 


 
 



         (66) 

 

L2-gradient-fidelity NL Retinex 

The energy of the L2-gradient-fidelity nonlocal Retinex is 

 
2 2 2

, 2 22w w fJ r r s r r s                (67) 

The corresponding Euler-Lagrange equations are 

 ,
ˆ ˆ ˆ2 0w w fr i r r s                  (68) 

And the estimate of reflectance r̂  can be recovered as 

    
1

,
ˆ

w fr I L s s  


                (69) 

where I is the identity matrix and L is the Laplacian matrix 

derived from the weights  ,w x y : 

   

   

, , ,

, , ,
xy

z x

w x y w y x x y
L

w x z w z x x y


 
 

   
          (70) 

As the graph Laplacian L is negative semidefinite, the 

operator   I L    is diagonally dominant. The problem 

r̂  can be solved either by a Gauss-Seidel algorithm 

or successive over relaxation (SOR) method. 

 

L1-gradient-fidelity NL Retinex 

The L1-based problem is written as 

 2 2

, 2 21
min w w f

r
r s r r s               (71) 

which can be split into 

 2 2

, 2 2, 1
min s.t.w f w

r e
e s r r s e r       (72) 

The constraint can be addressed by applying the following 

augmented Lagrangian, including a quadratic penalty and a 

Lagrangian multiplier term: 

 
2

, 21

2 2

2 2

, ,

2 ,

w f

w w

AL r e e s r

r s r e r e

 

  

  

       
 (73) 

After that, the above L1-minimization problem can be 

addressed by applying the ADMM algorithm, which includes 

three steps: 

Step 1. Solving the L2-minimization in r. 

 
     

22 21

2 2 2

1

arg min

div

k k k

w
r

k k

w

r a r r s r e

I L s e

   
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



      

    

 (74) 

Step 2. Shrinkage of e. 

 
 

2
1 1

, 1 2

1

1 2 , ,

arg mink k k

w f w
r

s k k

w w f w f

e e s e r

S r s s
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 

 



    

    

  (75) 

Step 3. Updating the Lagrangian multiplier  . 

 1 1 1k k k k

wr e                    (76) 

The update of 1kr   in step 1 is the most time consuming 

part, this process can be speeded up using the split Bregman 

method or the Gauss-Seidel or conjugate gradient method. 

L0-gradient-fidelity NL Retinex 

Finally, the nonconvex L0-based gradient fidelity 

optimization problem is written as 

 2 2

, 2 20
min w w f

r
r s r r s               (77) 

To solve this difficulty problem, here, it is treated similarly 

to L1 minimization problem, which also first split into a 

linearly constrained minimization functional as follows. 

 2 2

, 2 2, 0
min s.t.w f w

r e
e s r r s e r         (78) 

Now the suboptimization problems are easy to solve, but it is 

not overall convergence. This problem can be addressed in 

analogy to the L1-gradient fidelity in subsection of 

“L1-gradient-fidelity NL Retinex”. Here, both a quadratic 

penalty and a Lagrangian multiplier are used to solve 

iteratively along each direction. The mainly difference is one 

more step is added to the iterative process, which is used to 

enforce convergence. The numerical implementation process 

is as follow. 

 
     
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r
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w

k k

r a r r s r e

I L s e

e e s e r
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s
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  
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 





 



  



      

    

    

    

   

 

   (79) 

V. NUMERICAL RESULTS  

In this section, the performance of different variational 

Retinex methods is presented and compared quantitatively 

and qualitatively. To easily discriminate the difference of 

these variational Retinex models, their energy functionals are 

summarised in Table I. All experiments are executed using 

Matlab 2012b on a Windows 7 platform with an Intel H81 

CPU i5-4460 at 3.20GHz and 4GB memory. 

TABLE I VARIATIONAL RETINEX MODELS 

Model Energy functional 

Kimmel’s      
22 2

E l l l s l s 
  

          

TV  
2

1

2
E r t r r s

 
       

TV-L2 
 

2 22
( , )

2 2 2
E r l Dr l l r s l

  
   

           

L1    tE r r s


     

HoTVL1 

     2

2 2

1
,

2

2

E r l s r l r

l l






 

 

    

  

 

 

 

NL-TV    
2

2

1

2
wE r t r r s




       

NL-LP 

(P=0,1,2) 

 
2 2

, 2 2

p

w w f p
E r r s r r s 

  
         
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A. Qualitative Measures 

In our experiments, we apply the numerical algorithms to 

several classic test images. Fig. 3 lists all the 

color images and grayscale images which will be used in the 

following experiments. These testing images suffer of one or 

more of the following problems such as low contrast, 

non-uniform lighting, blurring, color diminished and noise. 

The experimental comparison results demonstrate the 

effectiveness of the proposed models with their algorithms. 

 

     
(a)          (b)                (c)                   (d)                      (e) 

     
(f)                   (g)                   (h)                   (i)                  (j) 

Fig. 3.  The original tested images: (a)-(j) used for the following experiments. 

 

We apply the Kimmel’s process, with optimal parameters 

0.0001 0.1    and fixed 3  . Fig. 4 demonstrates the 

influence of the   and  values on the reconstructed 

illumination and reflectance images. The   values change 

from le-7 to le-1 and   values change from 1e-4 to 0 with 

relatively minor effect on the output quality. The results 

present a good image quality and parameter robustness. It was 

shown that for a wide range of the involved parameters, the 

output quality is practically the same. 

 

  
(a) 0.0001 0.1 3      

  
(b) 0.0000001 0.1 3       (c) 0.1 0.1 3      

  
          (d) 0.0001 0.0001 3      (e) 0.0001 1 3      

Fig. 4.  Performance of Kimmel’s model, illumination image, reflectance 

image, output image (left to right of each synthetic images); results with 

optimal parameters 0.0001 0.1   in (a); influence of  with 

constant   in (b) and (c); influence of  with constant in (d) and (e). 

 

In TV model’s experiment [40], one testing image is a 

piece of text in a shadow of some object shown in Fig. 3(c), 

another is a piece of cloth with colorful bands and each band 

is of a constant color, as shown in Fig. 3(d). To better 

demonstrate the performance of TV regularized model, we 

compare it with PDE-based model and NL TV regularized 

model. From the resulting image of Fig. 5, it can be seen that 

both the NL TV regularized model and TV regularized model 

outperform PDE-based model. The shadow in the resulting 

image of NL TV regularized model is almost disappeared and 

each color band is constant as shown in Fig. 5(c) and 5(f), 

especially in the treatment of the texture images. Meanwhile, 

comparing with the PDE-based model, in the resulting image 

of Fig. 5(d) and 5(e) of TV model, the shadow is less obvious 

and the color of the background is more constant. It needs to 

be noted that if the parameter t is selected larger, the effect of 

the shadow is weaker. 

 

   
(a)                                 (b)                                   (c) 

   
 (d)                                  (e)                                 (f) 

Fig. 5.  Performance of TV model: The resulting images of the PDE-based 

algorithm with t=20 in (a) and (d); The resulting images of TV regularized 

model with t=15 in (b) and (e); The result of images of NL TV regularized 

model with t=15 in (c) and (f). 

 

Fig. 6 presents the testing examples of L1 Retinex model 

[42], one is the image “Adelson’s checker shadow illusion” 

shown in Fig. 6(a) and (b), it can be seen that that the contrast 

in the recovered reflectance of the L1 Retinex model is 

stronger than the PDE model. It is also shown that a larger 

number of reflectance information is preserved in the 

recovered illumination image of the PDE model. On the 

contrary, the illumination image from the L1 Retinex method 

takes the least information of the reflectance and gives a better 

result. Fig. 6(c)-(e) are the recovered results of ‘wall in 

shadow’ from L1 Retinex model with different values of t, it 

demonstrates that the illumination (shadow effect) is 

eliminated gradually as t increases. 

The L1 Retinex model also makes a good performance on 

medical images such as MRI in Fig. 3(g)-(j). Due to the 

apparent bias field effect in the original clinical images, it can 

be hardly observed the area of the neck. Fig. 6(f)-(h) are the 

recovered MRI from the L1 Retinex model, it is shown that the 

details near the lower neck area are significantly visible 

comparing with the original images. 

To demonstrate the performance of HoTVL1 model [49], 

two image decomposition problems are considered, including 

synthetic example, Retinex illusion example. We also further 

compare HoTVL1 model with two other variational models 

(TV) and (L1 Retinex) proposed in [24] and [42] respectively. 

We start with synthetic example. As we can observe, L1 

Retinex and HoTVL1 produce better visual results than TV 

model. From TV model’s result, more information of the 

edges of reflectance is contained in the recovered illumination 

l. Conversely, only a little information of reflectance r is 

contained in the recovered illumination l after applying L1 
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Retinex and HoTVL1 models. Similar to the synthetic 

example, in Retinex illusion, the L1 Retinex and HoTVL1 

models provide visually preferable results compare to TV 

model, however, the recovered illumination in HoTVL1 

model contains less reflectance information than L1 Retinex. 

 

  
(a)                                                    (b) 

   
(c)                                (d)                                (e) 

   
(f)                                  (g)                                (h) 

Fig. 6.  Performance of L1 Retinex model: recovered reflectance and 

illumination from the PDE method in (a); recovered reflectance and 

illumination from the L1 Retinex model in (b); influence of threshold t: (c) 

t=5, (d) t=10, (e) t=15; corrected clinical images by the L1 Retinex model in 

(f), (g), (h). 

 

   
                 (a)                                  (b)                                 (c)    

   
                     (d)                                  (e)                                  (f)  

Fig. 7.  Decomposition comparison of two images: recovered reflectance r 

and illumination l of synthetic example (a-c) and Retinex illusion example 

(d-f) by TV, L1 Retinex and HoTVL1 models, respectively. 

 

B. Quantitative Measures 

In this section, this study utilises five quantitative 

evaluation mrtrics namely root mean square error (RMSE), 

peak signal to noise ratio (PSNR), structural similarity (SSIM) 

[59], discrete entropy and contrast measure (DECM) defined 

by Celik [60], and the CPU time to evaluate the performance 

of these methods. To better illustrate the performance of these 

variational Retinex models, five representative images from 

Fig. 3(a) to Fig. 3(e) and 300 test images from UC. Berkeley 

image data set are selected to execute on.  

The RMSE and PSNR are normally used to assess the noise, 

lower RMSE and higher PSNR values indicate less noise. 

Their average values in Fig. 8 and Table II shows that 

HoTVL1 and NL-TV models perform better than most of the 

other existing models. For some images, the HoTVL1 obtains 

Lower RMSE values and higher PSNR values than NL-TV 

model. However, NL-TV model achieves Lower average 

RMSE and  higher average PSNR. The SSIM and DECM 

values (values are both between 0 (worst) and 1(best))shown 

in Fig. 9 and Table III also indicate that HoTVL1 and NL-TV 

models improve the global discrete entropy and local contrast 

measures better than others’. It is shown that the SSIM values 

obtained from these models are both more than 0.85 and the 

average value of NL-TV is 0.9128, which produce 

satisfactory results.  

To conclude this part, we further present the computational 

CPU time comparison of the above models. In addition to the 

aforementioned split Bregman algorithm and the alternating 

direction method of multipliers (ADMM) algorithm, there 

also exist some other approaches, such as the augmented 

Lagrangian algorithm [61], [62], the primal-dual algorithm 

[63], [64] and etc., to solve the problems of minimising the 

energy functionals. In the experiment, we apply the 

representative split Bregman for each model and compare 

their computational speed. Tables IV demonstrates 

computational efficiency of different models. For all models, 

we set stopping criteria as 1k kE E   , where E is the 

value of energy functional of each model, and   is a small 

tolerance used to stop iteration. Here, 510   in all cases. 

Table IV illustrates NL TV is the slowest model around 10s, 

while TV is the fastest model. Furthermore, L1 and HoTVL1 

models are less efficient than Kimmel’s and TV models. 

However, the total iterations of NL TV model are fewest 

among these models, and L1 and HoTVL1 models are much 

more than others’. 

 

 
Fig. 8.  Comparison of variational Retinex models in average values of 

RMSE and PSNR of Fig. 3(a)-Fig. 3(e). 
 

 
Fig. 9.  Comparison of variational Retinex models in average values of SSIM 

and DECM of Fig. 3(a)-Fig. 3(e). 
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TABLE II 

QUANTITATIVE COMPARISON IN RMSE AND PSNR (THE BOLD 

VALUES EXPRESS THE BEST METRIC VALUES) 

Model 
RMSE  

(Average) 

PSNR 

(Average) 

Kimmel’s 9.8905 28.2264 

TV 9.1348 28.9168 

L1 7.9275 30.1481 

HoTVL1 6.6251 31.7069 

TV-L2 8.5346 29.5071 

NL-TV 6.0781 32.4554 

 

TABLE III 

QUANTITATIVE COMPARISON IN SSIM AND DECM (THE BOLD 

VALUES EXPRESS THE BEST METRIC VALUES) 

Model 
SSIM 

(Average) 

DECM 

(Average) 

Kimmel’s 0.8632 0.5078 

TV 0.8803 0.5641 

L1 0.8901 0.5793 

HoTVL1 0.9016 0.6072 

TV-L2 0.8924 0.5316 

NL-TV 0.9128 0.6425 

 

TABLE IV 

QUANTITATIVE COMPARISON IN CPU TIME OF PER ITERATION 

AND TOTAL ITERATIONS (THE BOLD VALUES EXPRESS THE BEST 

METRIC VALUES) 

Model Time (s) Total iterations  

Kimmel’s 0.0523 NA 

TV 0.0357 80 

L1 0.1972 175 

HoTVL1 1.2406 100 

TV-L2 0.1354 160 

NL-TV 10.1423 35 

 

VI. CONCLUSION 

In this paper, several variational Retinex models are 

introduced, and their application for image enhancement is 

illustrated. We present the detailed descretisation process 

based on discrete finite different scheme and numerical 

implementation of split Bregman algorithm, alternating 

direction method of multipliers (ADMM) algorithm and fast 

Fourier transform (FFT) to solve the problems. Further, the 

advantages and disadvantages of these models are 

demonstrated by extensive comparative experiments in last 

section. 

Among all the models, in Kimmel’s model, the reflection 

function is not considered. The TV regularized model is 

efficient to recover piecewise constant images due to property 

of TV regularizer, but it usually loses information about 

reflectance. L1 variational Retinex model is based on 

minimizing an L1 norm, which ensures that both the recovered 

reflectance and illumination have better quality than previous 

works. Besides, this model can be also applied to shadow 

elimination problem and MRI and hyperspectral images. 

HoTVL1 model extracts preferable illumination, and detail 

preserved reflectance, comparing to TV and L1 Retinex 

decomposition models. Nonlocal variational models can 

achieve desirable enhancement result, especially texture 

image. However, the Nonlocal and HoTVL1 models are more 

time-consuming as result of computational complexity of 

algorithms. 
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