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Abstract—This paper has presented a weighted sum based
semidefinite programming (SDP) optimization technique for
solving stochastic multi-objective economic dispatch (MOED)
model that incorporates Combined Heat and Power (CHP)
units. The stochastic multi-objective model was transformed
into its deterministic equivalent through their expectation, with
the assumption that involved random variables are normally
distributed. The multi-objective problem was recast in matrix
form as a SDP relaxation problem and subsequently solved with
a MATLAB programming suite. The system inequality and
equality constraints uncertainty were entered into YALMIP,
which is a linear matrix inequality parser. Simulations were
performed on modified IEEE 6 and 20 units’ networks with
2 CHP units. The efficiency of the proposed method is deter-
mined by investigating reformulated problems in stochastic and
deterministic models on power dispatch. The standard weighted
sum method is utilized in generating the Pareto-optimal solution
between two objectives’ functions. An optimal selection of
control weight selection k1 parameter that provides a better
convergence property and moderately good extent of the Pareto
distributions was empirically determined. The proposed SDP
method performed well in accuracy of results and providing
lower operational cost in the Pareto set produced.

Index Terms—SDP, stochastic Multi-objectives problem,
Pareto Distribution.

I. I NTRODUCTION

T HE reduction of operational cost of power production
in electrical power system analysis can be simply re-

ferred to as economic dispatch (ED) [1]. Thus, the problem
in economic dispatch becomes multi-objective optimization
when two or more objectives’ functions are considered in
the optimization model such as the total running fuel cost
and the total emission are to be minimized simultaneously
by adjusting the output power of every single generator
while meeting the load demand and satisfying the system’s
constraints.
However, in recent years, cogeneration unit popularly known
as combined heat and power (CHP) unit has become an
essential energy production technology in many countries
due to its advanced efficiency in the production of total
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energy which can produce sufficient different heat and power
generation. Moreso, the heat generated by CHP units can be
used for heating or industrial purposes. It is more important
to know that the load demand is unstable in nature [2]. There-
fore, problems in CHP are usually formulated as stochastic
model and based on this, different power dispatch plans can
be modeled. The main objectives in CHP units dispatch are
to ensure sufficient production of power and heat, and fuel
costs minimization.
Some of the works that are relevant to this study are
hereby presented. Particle Swarm Optimization method for
solving Stochastic Multi-Objective Dispatch Problems has
been reported in[2], [3], [4], [5], [6], [7], [8], [9], [10],[11].
A bi-objective economic dispatch model incorporating wind
power units has been formulated in [12], whereby opera-
tional cost and security effects are considered as conflicting
objectives. Some evolutionary optimization methods based
on stochastic searching techniques have been presented in
[13],[14],[15],[16],[17],[18] to achieve optimal power flow
problems resolutions. Problems such as smooth, non-smooth
and piecewise fuel cost objectives were considered in the
presented works.
Quasi-oppositional teaching learning based optimization
(QOTLBO) has been proposed by [19] to solve non-linear
multi-objective economic emission dispatch (EED) formu-
lated problem of electric power generation with valve point
loading. Also, recent studies on optimal power flow prob-
lems have been solved by the hybridization of stochastic
searching-based optimization techniques proposed by [20],
[21]. Similarly, a study on PID controller design for an au-
tomatic generation control of multi-area power units network
has been addressed in [22] using Firefly algorithm. A three
level decomposition technique has been presented in [23]
for solving problems on ac-unit commitment and a robust
commitment schedule to resist the stochastic wind power
generation. More so, a mixed integer linear programming
has been proposed for solving multi-carrier power systems
problems presented in [24].
An optimization approach based on generalized bender de-
composition has been presented in [25] for solving volt-
age problems in transmission and distribution networks of
distributed generation units such as wind and solar power
systems. Furthermore, a direct search optimization technique
has been presented in [26] for the reduction of fuel cost taken
into account the inter-area power flow and reserve capacity
constraints.
Many techniques involved in handling the multi-objective
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CHP problem (both deterministic and stochastic) are all
heuristic in nature [27]. These evolutionary methods are
population based algorithms and can generate a number
of solutions over several runs. However, because they are
stochastic in nature, the attainment of the Pareto solutions
are not guaranteed to converge to the ideal optimal solu-
tion set: they involve multiple runs and different solutions
obtained in each run which result to keeping the statistical
data by obtaining the best and worst optimal solutions.
Another problem about these evolutionary methods is their
less capacity of dealing with problem constraints, which pro-
duces non-feasible solutions. Examples of these algorithms
are genetic algorithms (GAs), particle swarm optimization
technique (PSO), they consumed much time in evaluating a
large number of functions. On the other hand, semi-definite
programming (SDP)-based weighted sum approach proposed
in this paper is not a population based algorithm but convex
optimization technique and have been shown to be useful
in attaining the global optimal solution over several runs;
therefore, the global optimality of its solution is assured, if
the problem is convex. Likewise, for non-convex problem,
semi-definite relaxation of the problem gives an estimated
convex form that generates an approximation bound for the
problem [27]. The applications of SDP to optimal power
flow (OPF) and economic dispatch (ED) problems can be
found in [27],[28],[29],[30],[31],[32],[33]. The paper is
structured as follows: Section I presents the introduction
and literature reviews, Section II describes the formulation
of stochastic multi-objective problems, constraints and their
SDP relaxation forms, Section III discusses the description
of semi-definite programming approach. Section IV reports
the simulations and results and Section V is the conclusion.

II. PROBLEM OBJECTIVES

A. Total cost function

The objective function for the Total cost(J1) is formulated
as [7]

J1 =
Np∑
i=1

Ci(Pi) +
Nc∑
j=1

Cj(Θj ,Hj) +
Nh∑
k=1

Ck(Tk) (1)

whereNp are the numbers of conventional power units,
Nc are the numbers of electrical and thermal power outputs
units andNh are the numbers of heat units, respectively.
The expected stochastic objective cost functionJ1 is further
expressed as follows [7]:

J1 =
Np∑
i=1

{αi + βiP̄i + γi(P̄ 2
i + V ar(Pi))}+

Nc∑
j=1

{αj+

βjΘ̄j + γj(Θ̄j
2 + V ar(Θj)) + δjH̄j + Θj(H̄j

2+

V ar(Hj)) + ξj(Θ̄jH̄j + Cov(Θj ,Hj)}+
Nh∑
k=1

{αk+

δkT̄k + θk(T̄ 2
k + V ar(Tk))}

(2)
wherebyαi, βi, γi are the running cost coefficients of theith
thermal unit,Pi is the power output of theith unit, Θj and
Hj are the electrical and thermal power output coefficients
of the jth chp unit respectively. Also,αj , βj , γj , δj , θj , ξj

are the cost coefficients of thejth chp unit andαi, δk, θk are
the cost coefficients of thekth heat-only unit.
Where the termsV ar(Pi) = V 2(Pi)P̄i

2
, V ar(Tk) =

V 2(Tk)T̄k
2
, Coυ(Θj ,Hj) = C2(Θj ,Hj)Θ̄j

2
H̄j , and

V(), C() are the variance coefficients and correlation coeffi-
cients of all the random variables respectively. The coefficient
of variance of all the involved random variables is chosen as
0.2, and the correlation coefficient of each pair of random
variables is set as 0.3 [7].

J̄1 =
Np∑
i=1

{αi + βiP̄i + γi(P̄ 2
i + V 2(Pi))P̄i

2}+
Nc∑
j=1

{αj+

βjΘ̄j + γj(Θ̄j
2 + V 2(Θj)Θ̄j

2) + δjH̄j + θj(H̄j
2+

V 2(Hj)H̄j
2) + ξj(Θ̄jH̄j + C2(Θj ,Hj)Θ̄jH̄j}+

Nh∑
k=1

{αk + δkT̄k + θk(T̄ 2
k + V 2(Tk)T̄k

2)}
(3)

J̄1 =
Np∑
i=1

{αi + βiP̄i + γi(1 + V 2(Pi))P̄i
2}+

Nc∑
j=1

{αj + βjΘ̄j

+ γj(1 + V 2(Θj))Θ̄j
2 + δjH̄j + θj(1 + V 2(Hj))H̄j

2

+ ξj(1 + C2(Θj ,Hj))Θ̄jH̄j}+
Nh∑
k=1

{αk + δkT̄k + θk(1+

V 2(Tk))T̄k
2}

J̄1 =
Np∑
i=1

{αi + βiP̄i + γi(1 + 0.04)P̄i
2}+

Nc∑
j=1

{αj + βjΘ̄j+

γj(1 + 0.04)Θ̄j
2 + δjH̄j + θj(1 + 0.04)H̄j

2+

ξj(1 + 0.09)Θ̄jH̄j}+
Nh∑
k=1

{αk + δkT̄k + θk(1 + 0.04)T̄k
2}

The conversion of Eq. (II-A) to its equivalent deterministic
model becomes;

J̄1 =
Np∑
i=1

{αi + βiP̄i + γi(1.04)P̄ 2
i }+

Nc∑
j=1

{αj + βjΘ̄j+

γj(1.04)Θ̄j
2 + δjH̄j + θj(1.04)(H̄j

2) + ξj(1.09)Θ̄jH̄j}

+
Nh∑
k=1

{αk + δkT̄k + θk(1.04)T̄ 2
k }

J̄1 = trace(XT ΓX) + ∆T X + Ω + δT
j H̄j + Θ̄j

T
H̄j (4)

where X represents the vector variables in matrix form i.e
X = [P̄i, Θ̄j , H̄j , T̄k]T ,

Γ = blkdiag[diag(γ1, · · · , γi); diag(γ1, · · · , γj); · · ·
diag(θ1, · · · , θj); diag(θ1, · · · , θk)] ∗ 1.04,
∆ = [(β1, · · · , βi); (β1, · · · , βj); (δ1, · · · , δj)]T

Ω =
∑Np

i=0 αi +
∑Nc

j=0 αj +
∑Nk

k=0 αk,

B. Expected emissionsSO2/NOx and CO2

The total emissions in ton/h ofSO2 andNOx are given
as follows by a function of units power output with an
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exponential factor for the conventional units [7]:

J̄2 =
Np∑
i=1

102(αi + βiPi + γiP
2
i ) + ζie

(λi,Pi)

+
Nc∑
j=1

(θj + ηj)Θ̄j +
Nh∑
k=1

(πk + ρk)Tk

(5)

wherePi is the power output generated by the conventional
generators, power produced by the CHP units is denoted
as Θj and the coefficients of the emission for the thermal
units areαi, βi, γi, ζi, λ, the emissions coefficients for the
CHP units are given asθj , ηj and the emissions coefficients
for the heat-only units are given asπk, ρk respectively. The
expectation values of the random variables in Eq. (5) can be
further expressed by taking the Taylor series expansion for
the exponential factor:

J̄2 =
Np∑
i=1

102(αi + βiP̄i + γi(P̄ 2
i + V ar(Pi)))

+ ζi + ζiλiP̄i +
ζiλi

2
(P̄ 2

i + V ar(Pi))+

Nc∑
j=1

(θj + ηj)Θ̄j +
Nh∑
k=1

(πk + ρk)T̄k

(6)

Therefore, the sdp relaxation of (6) is as follows;

J̄2 = trace(P̄iΓiP̄i
T ) + ∆T P̄i + Ωi)

+ ζi + ζiλiP̄i +
ζiλi

2
(P̄ 2

i + V ar(Pi))

+
Nc∑
j=1

{(θj + ηj)}Θ̄j +
Nh∑
k=1

{(πk + ρk)}T̄k

(7)

Γ = diag[(γ1, · · · , γi)](1.04);
∆ = [(β1, · · · , βi)]T

Ω =
∑Np

i=0 αi,
Also, the stochastic approximation ofCO2 emissions can

be expressed as a linear equation of units’ power output as
follows [7]:

J̄2c =
Np∑
i=1

τiP̄i +
Nc∑
j=1

kjΘ̄j +
Nh∑
k=1

σkT̄k (8)

whereτi, kj , σk are the coefficients ofCO2 emissions.

C. Expected power deviation

The model for the expected deviation is obtained by
finding the difference between the scheduled electric power
generation and demand by taking the expectation of the
square of unsatisfied demand, during the dispatch calculation,
and is stated in [7] as:

J̄3 = E

{(
pD + pL −

Np∑
i=1

Pi −
Nc∑
j=1

Θj

)2}
(9)

where the power demand is denoted aspD, the power loss
is pL. Eq. (9) can be expressed further as [7]:

J̄3 =
Np∑
i=1

V ar(Pi) +
Nc∑
j=1

V ar(Θj) + 2
Np−1∑
i=1

Np∑
m=i+1

Cov(Pi,

Pm) + 2
Nc−1∑
j=1

Np∑
m=j+1

Cov(Θi,Θm) + 2
Np∑
i=1

Nc∑
j=1

Cov(Pi,

Θj)
(10)

J̄3 =
Np∑
i=1

V 2(Pi)P̄i
2 +

Nc∑
j=1

V 2(Θj)Θ̄j
2 + 2

Np−1∑
i=1

Np∑
m=i+1

C2(Pi, Pm)P̄iP̄m + 2
Nc−1∑
j=1

Np∑
m=j+1

C2(Θi,Θm)Θ̄iΘ̄m

+ 2
Np∑
i=1

Nc∑
j=1

C2(Pi,Θj)P̄iΘ̄j

Eq. (10) can be transformed into its equivalent determin-
istic matrix form as,

J̄3 = 0.04× P 2
i + 0.04× Θ̄j

2 + 2× 0.09× P̄i
T
P̄m + 2×

0.09× Θ̄i
T Θ̄m + 2× 0.09× P̄i

T Θ̄j

(11)
Similarly, the expected heat generation deviation can be

expressed as an objective function̄J3 formulated as follows:

J̄4 = E

{(
hD −

Nc∑
j=1

Hj −
Nh∑
k=1

Tk

)2}
(12)

wherehD is the heat deviation.

D. Problem constraints

The total electric power generation comprises both the
total electric power demand and the real power losses, given
as follows [7]:

P̄D + P̄L −
Np∑
i=1

P̄i = 0 (13)

The inner matrix representation of Eq. (13) is as follows:[
(P̄D + P̄L) −1

−P̄i 1

]
� 0 (14)

where the expectation value of the power losses is denoted
as P̄L. The power lossesPL otherwise known asJ4 can be
expressed further by utilizing the Kron’s B-loss coefficients
as [7]:

P̄L =
Np∑
i=1

Np∑
m=1

PiBimPm +
Np∑
i=1

Nc∑
j=1

PiBijΘj

+
Nc∑
j=1

Nc∑
n=1

ΘjBjnΘn

(15)

where the coefficients of the power loss for a line branch
connecting unitsi and j is represented asBij . The sdp
relaxation of Eq. (15) can be written as,

J4 = PT
i BimPm + PT

i BijΘj + ΘT
j BjnΘn (16)
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TABLE I
THERMAL UNITS COEFFICIENTS

Units αi βi γi P min
GI P max

GI

G1 100 200 10 0.05 0.5
G2 120 150 10 0.05 0.6
G3 40 180 10 0.05 1.00
G4 60 100 10 0.05 1.20

TABLE II
CHP AND BOILER COEFFICIENTS

Units αj βj γj δj θj ξj

CHP1 265 145 34.5 42 30 31
CHP2 125 360 43.5 6 27 11

HEAT1 110 41 23 - - -

The stochastic expression for Eq. (15) can be found in [1]
which is further expressed as:

J̄4 =
Np∑
i=1

Np∑
m=1

P̄iBimP̄m +
Np∑
i=1

Nc∑
j=1

P̄iBijΘ̄j

+
Nc∑
j=1

Nc∑
n=1

Θ̄jBjnΘ̄n +
Np∑
i=1

BiiV ar(Pi) +
Nc∑
j=1

Bjj

V ar(Θj) + 2
Np−1∑
i=1

Np∑
m=i+1

BimCov(Pi, Pm) + 2
Nc−1∑
j=1

Nc∑
n=j+1

BjnCov(Θj ,Θn) +
Np∑
i=1

Nc∑
j=1

BijCov(Pi,Θj)

(17)

J̄4 =
Np∑
i=1

Np∑
m=1

P̄iBimP̄m +
Np∑
i=1

Nc∑
j=1

P̄iBijΘ̄j +
Nc∑
j=1

Nc∑
n=1

Θ̄jBjnΘ̄n +
Np∑
i=1

BiiV
2(Pi)P̄i

2 +
Nc∑
j=1

BjjV
2(Θj)Θ̄j

2

+ 2
Np−1∑
i=1

Np∑
m=i+1

BimC2(Pi, Pm)P̄iP̄m + 2
Nc−1∑
j=1

Nc∑
n=j+1

BjnC2(Θj ,Θn)Θ̄jΘ̄n +
Np∑
i=1

Nc∑
j=1

BijC
2(Pi,Θj)P̄iΘ̄j

Eq. (17) can be relaxed as follows,

J̄4 = P̄i
T
BimP̄m + P̄i

T
BijΘ̄j + Θ̄j

T
BjnΘ̄n

+ 0.04BT
iiP

2
i + 0.04BT

jjΘ
2
j + 2(0.09(BimP̄i

T
P̄m))

+ 2(0.09(BjnΘ̄i
T Θ̄n)) + 0.09(BijP̄i

T Θ̄j) (18)

The expected values are limited within the ranges of the
minimum and maximum limits given below,

IT Pmin
i ≤ P̄i ≤ IT Pmax

i i = 1, . . . , Np (19)

IT Θmin
j ≤ Θ̄j ≤ IT Θmax

j j = 1, . . . , Nc (20)

IT Hmin
j ≤ H̄j ≤ IT Hmax

j j = 1, . . . , Nc (21)

IT Tmin
k ≤ T̄k ≤ IT Tmax

k k = 1, . . . , Nh (22)

Tables I, II, III are obtained from [7] while Table IV and
the B matrix of the transmission loss coefficient for 20 units
network are available in [34].

TABLE III
CHP AND BOILER CAPACITY

Unit Θmin
j Θmax

j Hmin
j Hmax

j

CHP1 0.05 1.0 0 0.6
CHP2 0.05 0.6 0 0.6

HEAT1 - - 0 2

TABLE IV
DATA FOR THE TWENTY THERMAL UNITS OF GENERATING UNIT

CAPACITY AND COEFFICIENTS

Unit P min
i (pu) P max

i (pu) γ($/pu2) β($/pu) α($)
1 1.50 6.00 6.80 1819 1000
2 0.50 2.00 7.10 1926 970
3 0.50 2.00 65.00 1980 600
4 0.50 2.00 50.00 1910 700
5 0.50 1.60 73.80 1810 420
6 0.20 1.00 61.20 1926 360
7 0.25 1.25 79.00 1714 490
8 0.50 1.50 81.30 1892 660
9 0.50 2.00 52.20 1827 765
10 0.30 1.50 57.30 1892 770
11 1.00 3.00 48.00 1669 800
12 1.50 5.00 31.00 1676 970
13 0.40 1.60 85.00 1736 900
14 0.20 1.30 51.10 1870 700
15 0.25 1.85 39.80 1870 450
16 0.20 0.80 71.20 1426 370
17 0.30 0.85 89.00 1914 480
18 0.30 1.20 71.30 1892 680
19 0.40 1.20 62.20 1847 700
20 0.30 1.00 77.30 1979 850

III. SEMI-DEFINITE PROGRAMMING

Semi-definite programming is a solution method for con-
vex optimization problems which simplifies the linear pro-
gram (LP) by replacing the vector variables by matrix vari-
ables. Moreover, the component-wise non-negativity condi-
tion is replaced by positive semidefiniteness of the matrices.
Therefore, the general SDP optimization problem is stated
below as [35];

minimize 〈A0,X〉
subject to: 〈Ai,X〉 = bi, i = 1, . . . ,m

X � 0
(23)

where X ∈ Sn is the decision variable,b ∈ Rn and
A0,Ai ∈ Sn while Sn is refer to as a set of all symmetric
matrices inRn×n. The inner product between two matrices
M,N ∈ Sn is defined as〈M,N〉 = trace(MN)

A. SDP Relaxation

Semidefinite programming (SDP) approach is a recent
approach that is becoming widely used for solving vari-
ous power system optimization problems. SDP involves the
minimization of a linear problem subject to the constraints
that are affine combination of symmetric matrices is semi-
definite [36]. Semidefinite programming is considered as an
extension of linear programming whereby the elements of
the inequalities vectors are substituted by matrix inequali-
ties, otherwise, the first orthant is substituted by the cone
of positive semi-definiteness of the matrices [36]. Several
normal problems such as linear and quadratic programming
are combined using semi-definite programming and discovers
a lot of uses in the field of engineering and combinatorial
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optimization [36]. More so, SDPs are gaining much recogni-
tion comparedto linear programs, SDPs are not much harder
to solve. Most interior-point methods for linear programming
have been simplified to semidefinite programs. As in linear
programming, these methods have polynomial worst-case
complexity and perform very well in practice.
Most importantly, semi-definite programs can be effectively
executed, both in theory and practice [37]. Semi-definite
programs have been successfully applied to non-convex or
combinatorial optimization. For instance, given an optimiza-
tion problem in a quadratic form:

minimize f0(x)
subject to: fi(x) ≤ 0, i = 1, . . . , l,

(24)

where f0(x) = xT A0x + 2b0
T x + c0, fi(x) = xT Aix +

2bi
T x + ci, i = 1, · · · , l
The matrices ofAi are indefinite, and thus, Eq. (24) is

a difficult, non-convex optimization problem and involves
polynomial objective problem and polynomial constraints.

With A0, Ai ∈ Rn×n; b0, bi ∈ Rn; and c0, ci ∈ R;
i = 1, · · · , l. Each of the quadratic functions is convex if
Ai ≥ 0. A lifting variable X = xxT is introduced to convert
the problem in Eq. (24) to its SDP relaxation form, by further
reducing the constraint in equality form to an inequality
constraint X≥ xxT . Eq. (24) becomes

minimize Tr〈XA0〉+ 2b0
T x + c0

subject to: Tr〈XAi〉+ 2bi
T x + ci ≤ 0, i = 1, . . . , l,[
X x
xT 1

]
≥ 0,

(25)
whereX = XT ∈ Rk×k and x ∈ Rk are the variables.

The constraint

[
X x
xT 1

]
≥ 0 is similar to X ≥ xxT . A

relaxation of the original problem (24) is the semi-definite
program in (25) which is expressed as

minimize Tr〈XA0〉+ 2b0
T x + c0

subject to: Tr〈XAi〉+ 2bi
T x + ci ≤ 0, i = 1, . . . , l,
X = xxT .

(26)
The only difference between (26) and (25) is the re-

placement of the non-convex constraintX = xxT with
the convex relaxationX ≥ xxT . The relaxed problem
(26) and the problem in Eq. (25) are equivalent to each

other if

[
X x
xT 1

]
is of rank one. Furthermore, every of the

quadratic representation in Eq. (26) can be relaxed in their
SDP equivalent, in which the optimization problem can be
deduced to the standard SDP form in Eq. (23) as

minimize

〈[
Ao bo

bT
o co

]
,

[
X x
xT 1

]〉
subject to:

〈[
Ai bi

bT
i ci

]
,

[
X x
xT 1

]〉
≤ 0, i = 1, · · · , p[

X x
xT 1

]
≥ 0,

(27)
It is essential to have a good computation on the lower
bounds for the ideal value of (23) using Shor’s relaxation

[35] by getting the dual SDP:

maximize φ

subject to:

[
A0 b0

bT
0 c0 − φ

]
+ τ1

[
A1 b1

bT
1 c1

]
+

· · ·+ τL

[
AL bL

bT
L cL

]
≥ 0,

τi ≥ 0, i = 1, . . . , L.

(28)

The constraint in the non-convex problem (24) can be relaxed
as follows:

fi(x) =
[

x
1

]T [
Ai bi

bT
i ci

] [
x
1

]
≤ 0 (29)

fi(x) =
[

x
1

]T ([
A0 b0

bT
0 c0 − φ

]
+ τ1

[
A1 b1

bT
1 c1

]
+

· · ·+ τL

[
AL bL

bT
L cL

])[
x
1

]
≥ 0 (30)

f0(x)− φ + τ1f1(x) + · · ·+ τLfL(x) = 0

f0(x)− φ ≥ 0

Simply, the derivation of the problem (28) is obtained by
using Lagrangian duality.

IV. L AGRANGIAN RELAXATIONS

Lagrangian relaxation is another lesser way of achieving
a more computable lower bound on an optimal value of the
nonconvex quadratic optimization problem given as [38];

minimize xT A0x + b0
T x + c0

subject to: xT Aix + bi
T x + ci ≤ 0, i = 1, . . . , l,

(31)
This method utilizes the dual of a problem which is always
convex to achieve a solvable problem. The lagrangian form
of the above Eq. (31) is given as

L(x, λ) = x
T

(
A0 +

l∑
i=1

λiAi

)
x +

(
b0 +

l∑
i=1

λibi

)T

x

+ c0 +

l∑
i=1

λici

(32)

To obtain the dual form of Eq. (31), given a function

inf
x∈R

x
T

Ax + b
T

x + c =

{
c-14 bT Ab, if A � 0 andb ∈ R(A)
-∞, otherwise

(33)

Then, the dual function is

g(λ) = inf
x∈R

L(x, λ) (34)

=
1

4

(
A0 +

l∑
i=1

λiAi

)T

x +

(
b0 +

l∑
i=1

λibi

)T

(
A0 +

l∑
i=1

λiAi

)
+

l∑
i=1

λici + c0

(35)

The dualform of Eq. (31) using Schur complements becomes

maximize γ +
∑l

i=1
λiAi + c0

subject to:

[
(A0 +

∑l

i=1
λiAi) (b0 +

∑l

i=1
λibi)/2

(b0 +
∑l

i=1
λibi)

T /2 −γ

]
≥ 0,

λi ≥ 0 i = 1, . . . , l
(36)
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where the variableλ ∈ Rm. The dual of the nonconvex
quadratically constrained quadratic programs (QCQP) in Eq.
(31) is a convex program, otherwise known a Semidefinite
program which is easier to solve, and gives a lower bound
on the optimal value of the nonconvex QCQP.

A. Unpredictability of a Nonconvex Optimization Problem

The sdp relaxation in Eq. (25) is used to produce a positive
semidefinite and covariance of the matrix with the constraint
limit condition on the objective [38]. However, ifx is taken
as a normal distribution variable withx ∼ N(x, X − xxT ),
the nonconvex quadratic problem in (25) can be solved by
considering the mean distribution ofx, i.e:

minimize E(Tr(XA0) + 2b0
T x + c0)

subject to: E(Tr(XAi) + 2bi
T x + ci) ≤ 0, i = 1, . . . , l,[
X x
xT 1

]
≥ 0,

(37)
A “good” feasible solution can be determined by sampling
x over a large number of times, which results to keeping the
best statistical solution.

B. Weighted sum method

Considering the weight vectorw = [w1, · · · , wp]T ∈ Rp,
the vector objective functionf(x) = [f1(x), · · · , fp(x)]T

∈ Rp and the mapφ(f, w) : Rp×Rp 7−→ R. The weighted
sum method includes a linear or convex combination of the
objectivesfi(x), i = 1, · · · , p, details can be obtained in
[27]. Each of the objectivesfi(x) is multiplied by a weight
factor wi and later added up to provide the scalar objective,
φ(x,w), as

φ(f, w) =
p∑

i=1

wifi(x) = wT f(x) (38)

wherep stands for the size of the objectives and
p∑

i=1

wi = 1, wi ≥ 0, i =, · · · , p. (39)

This vector optimization problem in (38) is transformed to a
scalar of the form:

minimize φ(f, w)
s.t: x ∈ X

(40)

The p-dimensional objective space are mapped onto the
positive real lineR and each of the optimal (non-dominated)
points are mapped to the same point on the line. Let’s
consider whenp = 2 for the bi-objective problem, then both
Eqs. (38) and (39) ca be deduced to

φ(f, w) = w1f1(x) + w2f2(x) (41)

and
w1 + w2 = 1, w1, w2 ≥ 0 (42)

If the weights in (41) is constrained byλ, i.e w1 = λ and
w2 = 1− λ, therefore the gradient ofw is defined as

tan θw =
1− λ

λ
(43)

and sensitivity of the gradient as

d

dλ
tan θw =

d

dλ

(
1− λ

λ

)
= − 1

λ2
(44)

C. Theadaptation of weight selection in improving weighted
sum method

Let’s assume that the weights in Eq. (41) are parameterized
by λ, such thatw1 = λ and w2 = 1 − λ, a consistent set
value ofλ does not generate a consistent space distribution
on the Pareto front (PF) [27]. Although, when the weight is
parameterized such thatk is parameterized on the surface of
an ellipsoid, the improved spreading of the Pareto solutions
are obtained on the Pareto front. In the parameterizations,
setting

w1 =
λ2

1

k2
1

, w2 =
λ2

2

k2
2

(45)

and substituting(45) in (42), the elliptical equation becomes

λ2
1

k2
1

+
λ2

2

k2
2

= 1 (46)

where the elliptical axes are denoted ask1 and k2. The
normalization of the expression is obtained by fixing the
value of k2 = 1. Let λ1 = λ and k2 = 1 in Eq. (46),
the slope becomes

tan θw =
k2
1 − λ2

λ2
(47)

and thesensitivity of the slope becomes

d

dλ
tan θw =

−2k2
1

λ3
(48)

This indicatesthat the minor axis of the elliptical surface
is set to unit value. Though,k1 is selected from any value
greater than 1. Variation ink1 value allows for the curvature
control of the ellipsoidal surface. Therefore, the non-linear
weight selection provides a higher sensitivity and achieves
further sensitivity improvement through the free parameter
k1. The value ofk1 can be used to control the solution
points such that the gathered solutions can be distributed
out, thus enabling an improving computational efficiency of
the technique.

V. SIMULATION AND RESULTS

The standard modified IEEE 6 and 20 units’ networks
with 2 CHP units to each of the networks were considered
to investigate the effectiveness of the SDP technique
presented in this paper. The conversion of the SDP problem
into the standard primal/dual form was achieved using
YALMIP parser [27]. However, in the generation of the
Pareto-front solution, a standard weighted sum method was
used in generating the Pareto-optimal solution between two
objectives functions. Different values of the control weight
selection parameter were used in the generation of Pareto
points.
Fifty one (51) runs were performed for each parameter
value to explore the impact of changes in control weight
selectionk1 and compare different cases. Figs. 1-9 show
the Pareto curves at the values of control weight selection
k1= 1, 5, and 10 respectively. Only less distinct points were
obtained from 51 runs with control weight selectionk1=1.
This shows that different values ofλ achieved very close
values at different runs. This is regarded as a waste of
computational effort. As the value of control selectionk1 is
increased, the Pareto points were distributed uniformly out.
As the value ofk1 further increases, a gradual progression
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Fig. 1. Pareto front at weight selectionk1=1 for total cost and total emission
functions using a modified IEEE 6 units’ network.

Fig. 2. Pareto front at weight selectionk1=5 for total cost and total emission
functions using a modified IEEE 6 units’ network.

in the spread up of the Pareto points is noticed, and the
gathering of the Pareto points stop to exit. Conversely,
it can be observed that the solutions points near to the
lower extreme point are not captured. When control weight
selectionk1=1, more points were missed from the middle
part of the curve while more spread solution points were
noticed at the middle part of the curve as thek1 is further
increased from 1. It is observed in the Pareto fronts (PFs)
solutions that for every case of control selection parameter
k1 = 10, the optimal solutions are widely distributed on
the tradeoff surface using the proposed SDP algorithm.
Therefore, the decision maker can select an appropriate
solution based on his/her choice from a generated group of
Pareto optimal solutions in the multi-objective optimization.
Also, one of the disadvantages of the weighted sum method
is its unavailability to produce uniform spread of the
solutions on the Pareto surface with uniform values of
the weight factorw [27]. The Adaptation of the weight
selection into the weighted sum method using non-linear
weight selection however, controls and improves the
distribution of Pareto points [27].

Fig. 3. Pareto front at weight selectionk1=10 for total cost and total
emission functions using a modified IEEE 6 units’ network.

Fig. 4. Pareto front at weight selectionk1=1 for total cost and power loss
functions using a modified IEEE 6 units’ network.

Fig. 5. Pareto front at weight selectionk1=5 for total cost and power loss
functions using a modified IEEE 6 units’ network.
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Fig. 6. Pareto front at weight selectionk1=10 for total cost and power
loss functions using a modified IEEE 6 units’ network.

Fig. 7. Pareto front at weight selectionk1=1 for the total cost and power
loss functions using a modified IEEE 20 units’ network.

Fig. 8. Pareto front at weight selectionk1=5 for the total cost and power
loss functions using a modified IEEE 20 units’ network.

Fig. 9. Pareto front at weight selectionk1=10 for the total cost and power
loss functions using a modified IEEE 20 units’ network.

A. Case study I: Modified IEEE six units

In this study, a modified IEEE six units, 30 bus test net-
work with 2 CHP units is considered based on the simulation
analysis obtained from [7]. Total power demand is 2.834pu
and heat demand is 0.8pu. The coefficient of variance of
all the involved random variables is chosen as 0.2, and the
correlation coefficient of each pair of random variables is set
as 0.3 [7]. The cogeneration units emissions coefficients used
are θj=0.00015,ηj=0.0015 andkj=0.2 for SO2, NOx and
CO2, respectively, and for thermal units only,πk=0.0008,
ρk=0.001 andσk=0.4. All the B-coefficients are given in per
unit (p.u.) on a 100 MVA base capacity.
The optimization results obtained from SDP technique com-
pared to the results of a modified multi-objective particle
swarm optimization (MOPSO), genetic algorithms (GA) and
the weighted aggregation (WA) reported in the literature are
shown in Table V. The cost reduction results obtained from
other methods are close, while SDP approach achieved better
computational results when compared with the results from
the literature.
It can be observed in Table VI that there is diversity of
results in the minimum values of the operational costs which
differentiated the stochastic and deterministic power dispatch
models as a result of uncertainties of the power and heat
demands. A comparison between stochastic and deterministic
models is presented in Tables VIII and IX using the results
obtained from the Pareto set, for the lowest value of each
problem objective.

B. Case study II: Modified IEEE Twenty-units system

This case study consists of eighteen thermal and two CHP
units. This system supplies a total load demand ofPD =
25.00 pu. The data table for IEEE Twenty-units system and
the B matrix of the transmission line loss coefficient are
available in [34]. More so, the stochastic and deterministic
models optimization results for modified IEEE twenty units
network obtained from the Pareto set, for the lowest value
of each problem objective are shown in Tables X and XI.

The Bij matrix of the transmission loss coefficient for
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TABLE V
COST REDUCTION ON A MODIFIED IEEE SIX UNITS’ NETWORK

INCORPORATING TWOCHP UNITS.

SDP MOPSO GA WA
P1 0.0500 0.2980 0.4597 0.0500
P2 0.6000 0.4576 0.5290 0.6000
P3 0.5260 0.6519 0.4721 0.7737
P4 1.2000 0.7826 0.8623 0.7205
Θ1 0.4629 0.3468 0.4856 0.0600
Θ2 0.0500 0.1523 0.0699 0.0600
H1 0.0000 0.2422 0.3684 0.0000
H2 0.6000 0.2330 0.1507 0.2000
T1 0.2000 0.2972 0.2309 0.5000

Cost 1275.3 1305.0 1322.4 1303.6
CO2 1.0823 1.5960 1.7212 1.6001

NOx,SO2 0.1519 0.1272 0.1285 0.1361
Power dev. 0.5265 0.4784 0.5447 0.4882
Heat dev. 0.0268 0.0309 0.0292 0.0206

TABLE VI
COST REDUCTION INCORPORATING TWOCHP UNITS CONSIDERING A

MODIFIED IEEE SIX UNITS’ NETWORK USINGSDPAPPROACH

Gen/Obj Sto. Model (SM) Det. Model (DM)
P1(P1) 0.0500 0.0828
P2(P2) 0.6000 0.6000
P3(P3) 0.5260 0.5086
P4(P4) 1.2000 1.2000
Θ1(Θ1) 0.4629 0.4493
Θ2(Θ2) 0.0500 0.0500
H1(H1) 0.0000 0.0000
H2(H2) 0.6000 0.6000
T1(T2) 0.2000 0.2000
Cost 1275.3 1274.3
CO2 1.0821 1.0836

NOx,SO2 0.1519 0.1470
Total Emission 1.2340 1.2306

Power Loss 0.0531 0.0567
Power dev. 0.5265 0.5311
Heat dev. 0.0268 0.0268

Total Power Output 2.8871 2.8907
Total Heat Output 0.8000 0.8000

TABLE VII
COST REDUCTION ON A MODIFIED IEEE TWENTY UNITS’ NETWORK

INCORPORATING TWOCHP UNITS USING SDPAPPROACH

Gen/Obj Opt. val Gen/Obj Opt. val
P1 4.3094 P16 0.8000
P2 1.8332 P17 0.6618
P3 1.3017 P18 0.8610
P4 1.0920 Θ1 1.0000
P5 0.9691 Θ2 0.6000
P6 0.5924 H1 0.0000
P7 1.0950 H2 0.6000
P8 1.2927 T1 0.2000
P9 0.9415 Cost($/pu) 58593.0
P10 0.8183 Power Loss 0.9000
P11 1.4582 Power dev. 54.4161
P12 2.7944 Heatdev. 0.0268
P13 1.4293 Total Power Output 25.9000
P14 0.2000 Total Heat Output 0.8000
P15 1.8500

TABLE VIII
MULTI-OBJECTIVE MINIMIZATION RESULTS FOR STOCHASTIC MODEL

CONSIDERING A MODIFIED IEEE SIX UNITS TEST SYSTEM USINGSDP
APPROACH

min{J̄1} min{J̄2} min{J̄3} min{J̄4} min{J̄5}
1275.3 1528.1 1422.1 1415.7 1327.9
1.2342 0.9013 1.2213 1.3585 1.3387
0.5265 0.5165 0.4567 0.5210 0.5482
0.0268 0.0416 0.0334 0.0256 0.0341
0.0546 0.1902 0.0873 0.0854 0.0267

TABLE IX
MULTI-OBJECTIVE MINIMIZATION RESULTS FOR DETERMINISTIC

MODEL CONSIDERING A MODIFIED IEEE SIX UNITS TEST SYSTEM

USING SDPAPPROACH

min{J̄1} min{J̄2} min{J̄3} min{J̄4} min{J̄5}
1274.3 1519.9 1420.4 1411.6 1345.9
1.2306 0.8881 1.2142 1.3516 1.3014
0.5311 0.5084 0.4551 0.5165 0.5287
0.0268 0.0416 0.0333 0.0256 0.0341
0.0567 0.1664 0.0907 0.0727 0.0259

IEEE six units is given by
0.1382 −0.0299 0.0044 −0.0022 −0.0010 −0.0008
−0.0299 0.0487 −0.0025 0.0004 0.0016 0.0041
0.0044 −0.0025 0.0182 −0.0070 −0.0066 −0.0041
−0.0022 0.0004 −0.0070 0.0137 0.0050 0.0033
−0.0010 0.0016 −0.0066 0.0050 0.0109 0.0005
−0.0008 0.0041 −0.0066 0.0033 0.0005 0.0244


(49)

Furthermore, Figs. 10 and 11 illustrate the performance
of SDP technique on stochastic and deterministic models
respectively by performing fifty-one (51) iterations which
were investigated on standard modified IEEE six and twenty
units’ networks with two CHP units to each of the networks.
It is established that there is significant variation in the
comparative convergence profiles for both stochastic and
deterministic models presented in both Figs. 10 and 11
using a standard modified IEEE six units’ network with
two CHP units and also, Fig. 12 shows a comparative
convergence profiles for both stochastic and deterministic
models considering a standard modified IEEE twenty units’
network with two CHP units. There is a deviation in the
results of stochastic and deterministic models presented in
Figs. 10, 11 and 12 as a result of random effect on the power
generation systems. Therefore, in real life implementation,

TABLE X
MULTI -OBJECTIVE MINIMIZATION RESULTS FOR STOCHASTIC MODEL

CONSIDERING A MODIFIED IEEE TWENTY UNITS USING SDPAPPROACH

Obj min{J̄1} min{J̄3} min{J̄4} min{J̄5}
Cost 58593.0 59285.0 60129.0 59323.0

Power dev. 54.4161 52.9812 56.5431 53.5166
Heat dev. 0.0268 0.0332 0.0256 0.0332

Power Loss 0.9000 0.7419 1.0661 0.6298

TABLE XI
MULTI-OBJECTIVE MINIMIZATION RESULTS FOR DETERMINISTIC MODEL

CONSIDERING A MODIFIED IEEE TWENTY UNITS USING SDPAPPROACH

Obj min{J̄1} min{J̄3} min{J̄4} min{J̄5}
Cost 29826 29834 29835 29834

Power dev. 8.5139 8.5139 8.5139 8.5139
Heat dev. 0.5937 0.5357 0.5297 0.5358

Power Loss 0.1436 0.1436 0.1436 0.1436
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Fig. 10. Pareto fronts for the Stochastic and Deterministic models

it is advisable to express problems in CHP as stochastic
model so as to cover the effect of the uncertain factors [7].
Figs. 13 and 14 illustrate the Pareto fronts solutions for the
simultaneous minimizations of stochastic multi-objective
problems respectively. It is shown in Fig. 13 that the lower
extreme solution produces the lowest total cost, at maximum
power loss and minimum total emission, while at the upper
extreme point generates maximum total cost at minimum
power loss and maximum total emission among all the
solutions in the Pareto front. Fig. 14 shows that the lower
extreme solution generates lowest value of total cost, at
maximum power deviation and minimum heat deviation
whereas as the total cost increases, heat deviation increases
and power deviation decreases among all the solutions in
the Pareto front. If randomness is to be considered in the
power systems, there will be increase in total cost, power
and heat deviations [1].
Also, the Pareto solutions for the simultaneous minimization
of deterministic multi-objectives functions are presented in
Figs. 15 and 16. It can be deduced from the Fig. 15 that
the lower extreme solution indicates that at minimum total
cost, maximum power loss and minimum total emission
are generated while at the upper extreme solution gives
maximum total cost, at minimum power loss and maximum
total emission among the solutions in Pareto front. On the
other hand, Fig. 16 illustrates that at minimum total cost,
maximum power deviation and minimum heat deviation are
generated at the lower extreme solution.

VI. CONCLUSION

The proposed SDP method performed well in accuracy of
results and provides lower operational cost in the Pareto set
produced. The results for the multi-objectives formulation
problems are presented using SDP approach, indicating that
the decision maker can choose his/her preferred solution
while satisfying multiple criteria. The SDP method solves
a stochastic problem by minimizing the expectation of the
multi-objective functions using the statistics of Gaussian
distribution. Also, further investigations were performed
on the comparison of the stochastic model for the multi-
objective functions and the deterministic approach, resulting
to diversity in total operational cost which covers the

Fig. 11. Pareto fronts for the Stochastic and Deterministic models

Fig. 12. Pareto fronts for the Stochastic and Deterministic models

Fig. 13. Pareto front Solution for the Stochastic objective functions
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Fig. 14. Pareto front Solution for the Stochastic objective functions

Fig. 15. Pareto front Solution for the Deterministic objective functions

Fig. 16. Pareto front Solution for the Deterministic objective functions

uncertainties ofpower and head demand.
It is obvious that the adaptation of weight selection
k1 into the weight sum method achieves more uniform
distribution of the solution points as thek1 value increases.
An optimal selection of k1 parameter that generates
a comparative uniform spread out of the algorithm is
practically determined.
Future work can be conducted in the implementation of
chance constraints to capture the stochastic characteristic of
the power system generation and distribution which is more
practical than the deterministic constraints.
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