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Abstract—The lattice Boltzmann method (LBM) has become
an attractive and promising approach in computational fluid dy-
namics (CFD) which can be applied in a wide variety of complex
fluid simulations including incompressible flow, compressible
flow, microscale gas flow, single flow and multiphase flow. In
this paper, the parallel algorithm of D3Q19 finite-difference
LBM (FDLBM) is presented to simulate 3D lid-driven cavity
flow and flow past a sphere. A 3D domain decomposition
method and data exchange strategy are proposed to improve the
parallel performance. Details of domain decomposition method
are devised based on load balancing on large scale cluster.
The numerical results on large scale cluster indicate that the
presented algorithm has very good scalability and efficiency.
The efficiency can achieve 86.1% on 3072 cores.

Index Terms—finite difference method, lattice Boltzmann
method, MPI, domain decomposition method.

I. INTRODUCTION

DURING the past two decades, the standard lattice Boltz-
mann method (SLBM) has attracted much attention in

fluid simulations. It has become an alternative method of
CFD for fluid simulations [2], [3], [4]. There are several
variations of SLBM including lattice Bhatnagar-Gross-Krook
(LBGK) model[5] or single-relaxation-time (SRT) model[6],
two-relaxation-time (TRT) model[7], entropic model [8] and
multiple-relaxation-time (MRT) model[9]. SLBM describes
the evolution of the single particle distribution functions
(PDFs) containing two steps: collision and propagation. In
the collision step, PDFs are updated locally, and in the
propagation step, PDFs are shifted with adjacent lattice
nodes. Owing to parallel nature of collision and propagation
steps, SLBM is easier implemented on large scale clusters
compared with other traditional CFD methods such as finite
difference method (FDM), finite element method (FEM)
and finite volume method (FVM). However, because the
PDFs can only be shifted between adjacent lattice nodes,
the Courant-Friedrichs-Lewy (CFL) number of LBM has to
be 1. The time step is severely limited by the CFL number
which is not suitable for high resolution simulations.

In order to overcome the defects of SLBM, several discrete
Boltzmann equation (DBE) methods have been proposed
based on direct discretization of DBE in space and time using
FDM [10], [11], FEM [12] and FVM [13], [14]. The Lax-
Wendroff scheme finite difference LBM is employed in our
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study [15], [16] which is an explicit scheme with two order
accuracy. Owing to the dimension of the problems treated
with the LBM, high computing power and large memory
space are required. Therefore, this phenomenon naturally
calls for parallel strategies. [18], [19]. In this paper, a
detailed parallel algorithm of Lax-Wendroff scheme FDLBM
is presented.

The rest of the paper is organized as follows. In Section
II, a description of Lax-Wendroff scheme finite difference
LBM and boundary condition are given. The detailed parallel
strategy is presented in Section III. Next, the numerical
results are discussed in Section IV. Finally, the conclusions
are summarized in Section V.

II. FINITE DIFFERENCE LATTICE BOLTZMANN METHOD

A. Lax-Wendroff scheme FDLBM
The discrete Boltzmann equation for nearly incompressible

single phase flows with a single relaxation time collision
operator can be written as

∂fα
∂t

+ eα · ∇fα = − 1

λ
(fα − feq

α ), (1)

where fα are the PDFs, t is the time, and λ is the relaxation
parameter [15], [16], [17]. For the D3Q19 lattice model (Fig.
1) [20] used in our research, the microscopic velocity set is
given as

eα=

 (0, 0, 0), α=0,
(±1, 0, 0), (0,±1, 0), (0, 0,±1), α=1 ∼ 6,
(±1,±1, 0), (0,±1,±1), (±1, 0,±1), α=7 ∼ 18.

(2)

Fig. 1. D3Q19 lattice model

and the equilibrium distribution functions (EDFs) are

feq
α = ρωα

[
1 +

eα · u
c2s

+
(eα · u)2

2c4s
− u2

2c2s

]
, (3)
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where cs = 1√
3

is the lattice speed of sound. the weight
coefficients are

ωα =


1
3 , α = 0,
1
18 , α = 1 ∼ 6,
1
36 , α = 7 ∼ 18.

(4)

The density, velocity and pressure can be calculated as
follows,

ρ =
∑
α

fα, u =
1

ρ

∑
α

fαeα, p = ρc2s. (5)

According to the referenece[15], the DBE can be divided
into two separate steps: collision

f̂α = fα − fα − feq
α

τ + 0.5
, (6)

and propagation

∂f̂α
∂t

+ eα · ∇f̂α = 0, (7)

where τ = λ
∆t is the dimensionless relaxation time and

∆t is the time step. Because of the Eulerian nature of the
propagation step, temporal and spatial discretizations are
decoupled so that different spatial resolutions irrespective
of the time step are possible. In Eq. (7), central difference
is used to discretize the first and second derivatives along
characteristic lines, the following Lax-Wendroff scheme with
second-order accuracy in time and space can be obtained
[15], [16], [21]:

f̂α(x, t+∆t) = −σ(1−σ)
2 f̂α(x+∆xα, t)

+σ(1+σ)
2 f̂α(x−∆xα, t)

+(1− σ2)f̂α(x, t),

(8)

where σ = |eα|∆t
∆xα

is the CFL number.
It can be seen from Eq. (8), when σ = 1, the Lax-Wendroff

approximation of the propagation is the LBGK propagation
in which the spatial resolution is at its finest level.

In the limit of low Mach number, the incompress-
ible Navier-Stokes equations can be obtained through the
Chapman-Enskog expansion.

∂ρ
∂t

+∇ · (ρu) = 0

∂ρu
∂t

+∇ · (ρu · u) = −∇p+∇ · [ρν(∇ · u+ u · ∇)]
(9)

B. Boundary condition

In our numerical simulations, a non-equilibrium extrapo-
lation method (Fig. 2) is employed for the non-slip static
straight wall [22]. It divide the distribution function f̂α
xb at the boundary into two parts: equilibrium and non-
equilibrium:

Fig. 2. Non-equilibrium extrapolation method

Fig. 3. Illustration of Curved Boundary

f̂α(xb, t) = f̂α
eq
(xb, t) + f̂α

neq
(xb, t), (10)

where the f̂α
eq
(xb, t) is the equilibrium part and it can be

got by Eq. (3). The non-equilibrium part f̂α
neq

(xb, t) can be
approximated by its nearest lattice node xf .

f̂α(xb, t)
neq = f̂α(xf , t)− f̂α

eq
(xf , t). (11)

In our present work, a unified boundary treatment for
curved boundary is adopted to model non-slip curved bound-
ary condition [23]. In Figure 3, the solid and hollow circles
are the solid and fluid nodes respectively. A curved wall
separates the solid nodes from the fluid nodes. xf is noted
as lattice node on the fluid side of the boundary and xb on
the solid side. xff is the adjacent fluid node of xf . The filled
small rhombus on the boundary wall xw is the intersections
of the wall with various lattice links. The boundary velocity
at xw is noted as uw. The curved boundary scheme can be
written as

fᾱ(xf , t+ δt) =
1

1+q [(1− q)f+
α (xff , t)

+qf+
α (xf , t) + qf+

ᾱ (xf , t)],
(12)

where ᾱ is the opposite direction of α, and q is the fraction
of an intersected link in the fluid region, that is written by

q =
|xf − xw|
|xf − xb|

, 0 ≤ q ≤ 1. (13)

III. PARALLEL STRATEGY

A. Data parallelism

In the uniform grids, the lattice nodes can be distributed in
a simple way among all MPI processes by dividing equally
computational domain. The computational domain can be
decomposed into sub-domains and distributed to each process
in 1D, 2D or 3D ways (See Fig. 4, 5 and 6) in which the fluid
domain is decomposed along one, two or three directions.

It can be seen from references [25] the 3D way has the best
scalability and efficiency when running on large scale cluster.
Therefore, the 3D way is adopted in our parallel strategy. In
the 3D way, each MPI process deals with a sub-domain, and
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Fig. 4. 1D

Fig. 5. 2D

Fig. 6. 3D

the process can be noted as a triple (i, j, k) according to the
MPI process rank id. The triple can be obtained by

i = mod(mod(id, px× py), px),

j =
mod(id, px× py)

px
,

k =
id

px× py
.

(14)

where px and py denote the number of domain decompo-
sition along x and y respectively. Then, the computational
part along x direction of process id can be got by

xBeg = i× numX

px
+minInt(i,mod(numX, px)), (15)

xEnd =


xBeg +

numX

px
− 1, mod(numX, px) ≤ i,

xBeg +
numX

px
, mod(numX, px) > i.

(16)

where numX is the lattice node along the x direction. xBeg
is the start lattice node along x direction, and xEnd is the
end one. The range of y and z directions can be calculated
in the same way.

B. Data exchange

Based on Eq. (6) and (8), the only communication occurs
in the propagation step. After collision, each MPI process
needs to exchange the interface between neighbor MPI pro-
cesses. In 3D, each MPI process (i, j, k) have to send data of
6 surfaces and 12 edges and receive data of 6 surfaces (Fig. 7)
and 12 edges (Fig. 8). When transferring data f̂α(x−∆xα, t)

or f̂α(x + ∆xα, t), there is no need to transfer all lattice
data of f̂α, only the expected in propagation operation are
required along the direction. For example, Only the data of
f̂1, f̂7, f̂9, f̂11, f̂13 are expected when transferred from MPI
process (i, j, k) to (i+ 1, j, k).

Fig. 7. Surfaces needed to be exchanged

Fig. 8. Edges needed to be exchanged

C. The framework of parallel algorithm of finite difference
lattice Boltzmann method

There are two propagation schemes: out-of-place prop-
agation in which the collision step is carried out before
the propagation step and in-place propagation in which the
collision step is executed after the propagation step [26].
Here out-of-place propagation is taken which is suitable for
homogeneous computing environment.

The framework of FDLBM can be described as Algorithm
1. After initializing the flow field information, parallel itera-
tive computation begins in which out-of-place propagation is
adopted. Between collision and propagation operation, MPI
processes have to exchange data with neighbor processes.
When propagation operation is finished, macroscopic quan-
tities and boundary condition should be handled.

IV. NUMERICAL RESULTS

The lid-driven cavity flow (Fig. 9) in 3D is used as a test
case to observe the parallel efficiency of FDLBM. The 3D
lid-driven flow prescribed by the 3D incompressible Navier-
Stokes equation on a square domain Ω := (x, y, z) ∈ [0, L]×
[0, L]× [0, L] = [0, 1]× [0, 1]× [0, 1] is
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Algorithm 1 Parallel Algorithm of finite difference LBM.
1: Initialize the flow field information;
2: Parallel iterative computation of collision and propaga-

tion until satisfying the convergence condition;
(a) Collision operation, as shown by Eq. (6);
(b) Exchange data with neighbor MPI processes;
(c) Propagation operation through Eq. (8);
(d) Calculate the macroscopic variables: density ρ , speed
u, and pressure p based on the lattice nodes using Eq.
(5);
(e) Deal with boundary conditions.

3: Output the result.



∂tu+ u · ∇u = −∇p+ ν∇2u,
∇ · u = 0
u(x, y, 1) = (U, 0, 0)
u(x, y, 0) = 0
u(0, y, z) = u(1, y, z) = 0
u(x, 0, z) = u(x, 1, z) = 0

(17)

Fig. 9. Sketch map of lid-driven cavity

where p(x, t) and u(x, t) are the pressure and velocity
field at site x and time t respectively. U is the sliding velocity
of top wall. The Reynolds number of the flow is defined by
U , the dimension L, and the viscosity ν, that is, Re = UL

ν .

A. Numerical validation

In our experiment, the lattice scale is 192 × 192 × 192,
the flow with Re = 1000 are simulated. The criterion for
reaching steady state in the simulations is given by∑

i ||u(xi, t+ δt)− u(xi, tn)||2∑
i ||u(xi, tn)||2

< 10−6, (18)

where ||u||2 represents the L2 norm of u.
Fig. 10 shows the vortical structure of 3D cavity flow, Fig.

11 and Fig.12 show the streamlines of x-z and y-z planes
respectively, and Fig. 13 shows the value of u along the line
of x = 0.5 and y = 0.5. The simulation results agree well
with reference [27].

Fig. 10. Vortical structure of 3D cavity flow

Fig. 11. Streamlines of x-z plane (y=0.5)

Fig. 12. Streamlines of y-z plane (x=0.5)
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B. Parallel performance

The performance of our parallel algorithm is addressed
on Sunway Blue Light MPP supercomputer in National
Supercomputing Center in Jinan (NSCC-JN). The super-
computer is completely built with Chinese-designed and
manufactured Shenwei processors. It is equipped with 8,700
ShenWei SW1600 processors and each processor has sixteen
cores, 1.0-1.1GHz, 128 Gflops, and 16GB RAM. Its peak
performance is 1.07 Pflops/s and LINPACK efficiency is
74.37% with the sustained performance of 795.9 Tflop/s.

The test problem is the lid driven cavity flow at Reynolds
number being 1000. Each test case executes 1000 iterations.
The grid size with 128×128×128, 192×192×192, 256×
256× 256, 384× 384× 384 is tested respectively.

Figure 14 and Figure 15 show the comparison of speedup
and efficiency among different grid size respectively. It can
be seen that the larger the grid size is, the better the speedup
and efficiency are. The speedup and efficiency improve when
the grid size increases. when the grid size is 384×384×384
and the cores are 3072, the efficiency can achieve 86.1%.

In order to compare the efficiency with the same scale
(8192 lattices) on each core, the grid size of 128 × 128 ×
128, 192 × 192 × 192 and 384 × 384 × 384 are executed
on 256(8, 8, 6), 1296 (12, 12, 9) and 3072(16, 16, 12) cores
respectively. Figure 16 denotes the efficiency comparison.
When the cores increase, the presented algorithm has a good
scalability.

Table I give the computation time and communication time
among different cores. As the cores increase, the communi-
cation time decreases.

C. Flow past a sphere

In this subsection, a 3D incompressible flow around
a sphere with a constant velocity profile, u = U∞ =
{0.1Ma, 0, 0}, was simulated as a numerical example. The
sphere radius D = 20 are taken. Figure 17 shows the flow
geometry, coordinate system, and computational domain. In
order to eliminate the effect of boundaries, the length of
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Fig. 14. Speedup comparison of difference scale
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Fig. 15. Efficiency comparison of difference scale

TABLE I
COMPUTATION AND COMMUNICATION TIME WHEN GRID SIZE IS 384×

384× 384

Cores computation time(s) communication time(s)

3072 (16, 16, 12) 465.893 7.93875

2048 (16, 16, 8) 676.692 8.34563

1536 (16, 12, 8) 877.413 8.52875

1024 (16, 8, 8) 1276.91 7.31812

512 (8, 8, 8) 2474.9 9.28844

256 (8, 8, 4) 4828.46 32.6103

the computational domain is 51.2D, the width is 12.8D
and the height is 12.8D. The lattice scale is 1024 × 256
× 256. Figure 18 and Figure 19 show the streamlines of
the simulation result when Re=100 and Re=200 respectively
which are feasible and correct.
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Fig. 16. Efficiency comparison of same scale

Fig. 17. Flow geometry, coordinate system, and computational domain

Fig. 18. Streamlines of a slice of simulation result (Re=100)

Fig. 19. Streamlines of a slice of simulation result (Re=200)

V. CONCLUSIONS

The present work has studied the parallel algorithm of
FDLBM including domain decomposition method and data
exchange strategy. The only communication occurs after
collision during executing entire algorithm. It is a best choice
to choose the 3D DDM, because others are not suitable for
large scale cluster. According to the numerical results in the
cluster of NSCC-JN, the presented algorithm are efficient
and scalable.

ACKNOWLEDGMENT

The authors thank Dr. Meng Guo in the NSCC-JN for
his good advice and help. The authors are also grateful to
the reviewers for their thoughtful comments and valuable
suggestions. This research was supported by the Major
Research Plan of NSFC [No. 91330116] and [No. 91630206].

REFERENCES

[1] N. Meghanathan and G. W. Skelton, “Risk Notification Message Dis-
semination Protocol for Energy Efficient Broadcast in Vehicular Ad hoc
Networks”, IAENG International Journal of Computer Science, vol. 37,
no. 1, pp. 1-10, 2010.

[2] A. Dadvand, M. Baghalnezhad, I. Mirzaee, B. C. Khoo and S. Ghor-
eishi, “An immersed boundary-lattice boltzmann approach to study the
dynamics of elastic membranes in viscous shear flows”, Journal of
Computational Science, vol. 5, no. 5, pp. 709-718, Sep. 2014.

[3] L. AJC, “Lattice-Boltzmann methods for suspensions of solid particles”,
Molecular Physics, vol. 113, no. 17-18, pp. 2531-2537, Sep. 2015.

[4] W. Wang and J.-G. Zhou, “Lattice Boltzmann method for axisymmetric
turbulent flows”, International Journal of Modern Physics C, vol. 26,
no. 9, pp. 54-67, Sep. 2015.

[5] Y. H. Qian, D. D’Humières and P. Lallemand, “Lattice BGK models
for Navier-Stokes equation”, Europhysics Letters, vol. 17, no. 6, pp.
479-484, Feb. 1992.

[6] S. Chen, H. Chen, D. Martnez and W. Matthaeus, “Lattice Boltzmann
model for simulation of magnetohydrodynamics”, Physical Review
Letters, vol. 67, no. 27, pp. 3776-3779, Dec. 1991.

[7] S. Ansumali and I. V. Karlin, “Entropy Function Approach to the Lattice
Boltzmann Method”, Journal of Statistical Physics, vol. 107, no. 1-2,
pp. 291-308, Dec. 2002.

[8] I. Ginzburg, F. Verhaeghe and D. d’Humières, “Two-relaxation-time
lattice Boltzmann scheme: about parametrization, velocity”, Commu-
nications in Computational Physics, vol. 3, no. 2, pp. 291-308, Feb.
2008.

[9] Pierre Lallemand and Li-Shi Luo, “Theory of the lattice Boltzmann
method: Dispersion, dissipation, isotropy, Galilean invariance, and sta-
bility”, Physical Review E, vol. 61, no. 26, pp. 6546-6562, Jan. 2000.

[10] N. Cao, S.-Y. Chen, S. Jin and D. Martinez, “Physical symmetry and
lattice symmetry in the lattice Boltzmann method”, Physical Review E,
vol. 55, no. 1, pp. R21-R24, Jan. 1997.

[11] Z. L. Guo and T. S. Zhao, “Explicit finite-difference lattioce Boltzmann
method for curvilinear coordinates”, Physical Review E, vol. 67, no. 6,
pp. 066709, Jun. 2003.

[12] T. Lee and C.-L. Lin, “A characteristic Galerkin method for discrete
Boltzmann equation”, Journal of Computational Physics, vol. 171, no.
1, pp. 336-356, Jul. 2001.

[13] F. Nannelli and S. Succi, “The lattice Boltzmann-equation on irregular
lattices”, Journal of Statistical Physics, vol. 68, no. 3-4, pp. 401-407,
Aug. 1992.

[14] D. V. Patila, K. N. Lakshmish, “Finite volume TVD formulation
of lattice Boltzmann simulation on unstructured mesh”, Journal of
Computational Physics, vol. 228, no. 14, pp. 5262-5279, Aug. 2009.

[15] T. Lee, C.-L. Lin, “An Eulerian description of the streaming process
in the lattice Boltzmann equation”, Journal of Computational Physics,
vol. 185, no. 2, pp. 445-471, Mar. 2003.

[16] A. Fakhari and T. Lee, “Finite-difference lattice Boltzmann method
with a block-structured adaptive-mesh-refinement technique”, Physical
Review E, vol. 89, no. 3, pp. 033310, Mar. 2014.

[17] A. Fakhari and T. Lee, “Numerics of the lattice boltzmann method
on nonuniform grids: Standard LBM and finite-difference LBM”, Com-
puters & Fluids, vol. 107, pp. 205-213, Jan. 2015.

[18] J. V. Tembhurne and S. R. Sathe, “Multiple Precision Integer GCD
Performance Analysis on Parallel Architectures”, IAENG International
Journal of Computer Science, vol. 42, no. 4, pp. 296-304, 2015.

[19] H.-Y. Li, J. Teng, Z.-H. Li and L. Zhang, “Nonlinear Dynamic
Analysis Efficiency by Using a GPU Parallelization”, Engineering
Letters, vol. 23, no. 4, pp. 232-238, 2015.

[20] L.-S. Luo, W. Liao, X.-W. Chen, Y. Peng and W. Zhang, “Numerics of
the lattice boltzmann method: Effects of collision models on the lattice
boltzmann simulations”, Physical Review E, vol. 83, no. 5, pp. 056710,
May 2011.

[21] V. Sofonea and R. F. Sekerka, “Viscosity of finite difference lattice
Boltzmann models”, Journal of Computational Physics, vol. 184, no.
2, pp. 422-434, Jan. 2003.

[22] Z. Guo, C. Zheng and B. Shi, “Non-equilibrium extrapolation method
for velocity and pressure boundary conditions in the lattice Boltzmann
method”, Chinese Physics, vol. 11, no. 4, pp. 365-374, Apr. 2002.

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_14

(Advance online publication: 20 November 2017)

 
______________________________________________________________________________________ 



[23] D. Yu, R. Mei, W. Shyy, “A Unified Boundary Treatment in Lattice
Boltzmann Method”, 41st Aerospace Sciences Meeting and Exhibit,
(2003)

[24] C. Schepke, N. Maillard and P. O. A.Navaux, “Parallel Lattice
Boltzmann Method with Blocked Partitioning”, International Journal
of Parallel Programming, vol. 37, no. 6, pp. 593-611, Dec. 2009.

[25] X. Wang and A. Takayuki, “Multi-GPU performance of incompressible
flow computation by lattice Boltzmann method on GPU cluster”,
Parallel Computing, vol. 37, no. 9, pp. 521-535, Sep. 2011.

[26] C. Obrecht, F. Kuznik, B. Tourancheau and J.-J. Roux, “The TheLMA
project: Multi-GPU implementation of the lattice Boltzmann method”,
International Journal of High Performance Computing Applications,
vol. 25, no. 3, pp. 521-535, Aug. 2011.

[27] R. Iwatsu, J. M. Hyun and K. Kuwahara, “Analyses of three dimen-
sional flow calculations in a driven cavity”, Fluid Dynamics Research,
vol. 6, no. 2, pp. 91-102, Jul. 1990.

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_14

(Advance online publication: 20 November 2017)

 
______________________________________________________________________________________ 




