

A New Mobile Agent-based Middleware System
Design for Wireless Sensor Network

Yuechun Wang, Ka Lok Man, Steven Guan, Danny Hughes

 Abstract – Wireless Sensor Network is playing a crucial role in
daily life because of its distributed sensing ability in combination
with wireless communication techniques and self-organising
deployment approaches. To satisfy requirements of easily
matching diversified dynamic sensing applications and highly
heterogeneous sensor platforms from perspective of logistics, a low
budget but high-efficient wireless sensor network middleware is in
dire need. To maximise commercial benefits, a WSN middleware
is designed in order to increase efficacy and return on investment.
This paper presents a design of an inventive mobile agent-based
middleware, which could optimally achieve the intensive
requirements of a WSN middleware. The middleware proposed in
this paper has considered resources limitation issues that are
commonly addressed on normal sensor nodes, meanwhile it
provides a possibility of platform independence as well as
programming language independence. In addition, a mobile agent-
based system can reduce network payload and dynamically adapt
to environmental changes. Therefore, the middleware presented in
this paper has ability of perceiving changes in operating
environment and ability to automatically response to these
changes.

Index terms -- Mobile Agent, Code Mobility, Component
Infrastructure, Middleware, Wireless Sensor Network

I. INTRODUCTION

S one of the large-scale Internet of Things (IoT) system’s
application, Wireless Sensor Networks (WSN) enable
sensing systems moving out of laboratories into real world

and having a rapid development with a growing range of
application scenarios. With features of self-organisation,
flexibility, as well as combination of environmental sensing
ability and wireless communication techniques, WSN is widely
used in tracking, monitoring, and creature-unfriendly space
exploration [1]. However, the complexity of current sensor
programming approaches and highly heterogeneous third party
platforms are leading to a waste of resources with increasing
number of sensing applications appeared. A dynamic WSN
middleware [2], which should bridge the gap efficiently
between two key stakeholders in the WSN value chain: sensing
application developers and sensing platform providers, is

Yuechun Wang is with Xi’an Jiaotong-Liverpool University, China (email:
yuechun.wang@xjtlu.edu.cn)
Ka Lok Man is with Xi’an Jiaotong-Liverpool University, China; and
Swinburne University of Technology Sarawak, Malaysia (email:
ka.man@xjtlu.edu.cn);
Steven Guan is with Xi’an Jiaotong-Liverpool University, China (email:
steven.guan@xjtlu.edu.cn)
Danny Hughes is with IBBT-DistriNet, KU Leuven, Leuven, B-3001, Belgium
(email: danny.hughes@cs.kuleuven.be)

 therefore urgent demanded.
In this paper, an new WSN middleware is proposed to reduce

development overhead for both platform providers and
application developers. Being motivated from the perspective
of logistics and transportation, we have noticed that
contemporary logistics sensor platforms shape roadblocks to
application developers in mainly two aspects: one is at
hardware level, a wide range of sensing, computing and
networking facilities are offered by platforms; another is at
software level, sensor nodes run a variety of operating systems
and middleware. Besides, current logistics sensor platforms are
also highly distributed with third-party sensing infrastructure
deployed in geographically distributed trucks, trailers and
warehouses that should come together as required to enact a
sensing application. Due to the application-specific nature of
WSN, sensor nodes are required to have various capabilities to
handle multiple applications. It is difficult to store all the
potential applications in the local memories of sensor nodes
economically. Therefore, an new and creative approach to
dynamically deploying of new applications is in demand.

To overcome the barriers, a mobile agent-based middleware
for WSN is presented in this paper. The core idea of this
middleware system is to optimise the allocation of resources
while taking the compatibility of heterogeneous platform into
account. The middleware is duplex-friendly to both users and
platforms suppliers. For users, the middleware provides an all-
purpose network without preinstalled applications. Agents are
injected to sensor nodes cooperatively in order to implement
functions that are previously achieved by applications.
Application-level inductions are provided to users for the
development of agents as well as configuration of local
components on sensor nodes. For platforms suppliers, this
middleware provides heterogeneous platforms assistance as
well as runtime components binding and test through a loosely-
coupled component infrastructure. Based on this infrastructure,
distributed concerns are cleanly separated from component
implementation, also the application-level interoperability
between heterogeneous WSN platforms is well supported.

The remainder of this paper is organised as follows. Section
II introduces the background of our research, which consists of
application scenarios of agent-based WSN system and
requirement analysis. Section III presents the related work of
the research that includes loosely-coupled component
infrastructure and feasibility analysis of achieving the designed
system. Detailed system design and implementation are
proposed in Section IV. Concluding remarks of this paper and
research future work are given in Section V.

A

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_18

(Advance online publication: 20 November 2017)

__

II. BACKGROUND
In this section, research background is presented in two

segments: (1) two basic application scenarios of agent-based
WSN system and (2) requirement analysis of an agent based
WSN middleware.

A. Application scenarios of agent-based WSN system
A Mobile Agent (MA) [3], which is described as a special

software that includes executed codes, can migrate among
sensor nodes in a monitoring area to collect target data. This
definition indicates that MA is an application-specific software
and has high mobility. Its ability of data processing decides that
WSN system with MA can significant extend lifespan of
terminal resources sensor nodes by reducing the energy
consumption of data processing on local sensor nodes. An
example of sensor network that involved agents is shown in
Figure 1.

 According to the periodicity of tasks, area monitoring and
goods tracking are two basic application scenarios of agent-
based WSN system [4]. In the case that agents are activated and
migrated periodically, the agent system is applied to monitor.
In case the system is applied to track goods, agents will be
activated based on action of target tracking goods which is
aperiodic.

When dealing with monitoring-based tasks, mobile agents
cooperate with local processor in two approaches to optimise
resource usage [5]. One approach is that mobile agents carry
only execution codes related to specific required application so
that processor deals with only part of raw datum instead of
dealing the whole data, which will dramatically reduce amount
of data to be transmitted. Once agents migrate among sensor
nodes, which are geographically close by, it will be in high
probability that data collected by these nodes are repeated. Thus,
another approach is that the local data redundancy can be

eliminated through data aggregation codes brought by mobile
agents. When dealing with tracking-based tasks, such as fire
track [6], agent activating and migrating are always triggered
aperiodic. Agilla [3] and its latest version [7] [8] are one of the
classic mobile agent-based middleware that are designed for
tracking issues.

B. Requirements analysis
In an agent-based system, applications are divided into

functional separated pieces to facilitate injection and
distribution by MA through the network. To clarify the
requirements of designing an agent-based middleware,
functionalities of principal agents and agent execution platform
should be clearly analysed.

An agent is described as a special software that includes
unique ID, states, execution codes, as well as datum. It owns
executive resources such as stack, heap, register, and counter.
Code execution will be supported by accessing virtual machine,
meanwhile data can be stored by accessing memory on local
nodes.

A backup platform in an agent system is the operation
environment of agents. The platform provides a public memory
for agents execution; at the same time, it can allocate and
manage those memories. Besides, functions of the virtual
machine are achieved on platforms, which include executing
variety of instructions and managing executive resources at
runtime. Cooperation among agents is supported by platform as
well. On a single sensor node, multiple agents can be executed
concurrently and exchange data through public memories that
provided by the platform; Agents can be migrated to remote
sensor nodes that have the same platform.

The management of agents is therefore a necessary function
that should be achieved by an agent-based middleware, which
should cover but not limit to agent clone, agent execute, and
agent kill. Meanwhile, agent message packaging, transmitting,
receiving, and debagging are implemented through calling the
message interface on underlying OS.

Apart from the basic functions introduced above, a WSN
middleware should also provide network management. For
instance, topology management and neighbor list management.
The agents should have ability to acquire network information
as well.

For users of this system, the middleware should provide the
instruction set for agent control and network management.

The dynamical deployment of agent applications can be
implemented by adding an agent generating module and a
migration message transceiver [9].

III. RELATED WORK
Refer to our previous work [10], this section presents an

overview of footstone of our research: component infrastructure
as well as the feasibility analysis of our approach.

Figure 1. An example of WSN with agent system applied in. The
little circles denote sensor nodes while the large ellipse in dash
line denotes monitoring area. Numbered sensor nodes denote
agent migration order and arrows denote one hop of agents among
sensor nodes respectively.

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_18

(Advance online publication: 20 November 2017)

__

A. Loosely-coupled component infrastructure
The Loosely-coupled Component infrastructure (LooCI) as

presented in [11] is a state-of-the-art middleware system that
bridges the gap between distributed WSN applications and
diverse platforms. As described in its name, LooCI is composed
of a reconfigurable component model, a hierarchical system,
and a distributed event bus. These features denote that LooCI
can support a separation of distributed applications from
component implementation. Operating system that could
support LooCI currently includes OSGi, Contiki, Squawk, and
Android.

Several core definitions in LooCI are listed as follows.
Events. Events are the unit of networked communication

and flow between components.
Components. Components are the unit of execution and run

in the component runtime environment, which do not interest in
where the source and destination of events are.

Codebases. Codebases describe functionality of
components, which indicates that each codebase can spawn
multiple components.

Event bus. Event bus is an entirely decentralized publish-
subscribe communication medium, which can be seen as a
distributed implementation of the mediator pattern.

Wires. Wires can be seen as connections between two
components.

B. Feasibility analysis
As a component infrastructure and event driven middleware

system, LooCI is a good option as the infrastructure to achieve
MA. The analysis of LooCI operating principle connected with
functional requirements of an agent-based middleware is as
follows.

Three core concepts of LooCI are codebase and component,
event, and wires. Codebase is an executable code file with a
node unique ID that can be deployed to a node while component
is a runtime unit which executes the functionality of codebase.
In other words, codebases provide executable code and
components are the instantiation of codebases, which means all
the manager modules (will be presented in coming sections) can
be achieved by declaring new codebases and components in
LooCI. Components communicate by exchanging events
through two interfaces – provided interface, which is for
publishing; and required interface, which is for subscribing.
These two interfaces can achieve the message exchange among
four modules on supporting platform layer: control messages,
status of agent, neighbour list, etc. An event is the basic unit for
network communication. Events are delivered between sensor
nodes, which are similar to the role of mobile agents. Every
event contains an event ID and payload, which indicate the
agent ID as well as storage space for both data and code on
agents that could be achieved. Wires are the medium for
component communication. Events that have been delivered
among diverse components on local or remote sensor nodes
which are transmitted through wires.

Table 1. LooCI-based agent middleware and typical agent-based middleware comparison

LooCI-based agent middleware Typical agent middleware
Each codebase can spawn multiple components Agents can be spawned on node
Event manager stores the information of event source and
destination in the form of wirings

Have a neighbor list on node

Standard predefined events should work together regardless of
the platform and location. Components which use these standard
events should adhere to the format and meaning of the events

-

LooCI have local wires, outgoing wires and incoming wires. An
event matches a wire, if all the source attributes the match.

The agent needs to provide a template that matches the tuple to
extract a tuple from a tuple space.

 Tuple space provide some operation commands
Application software is realised in the form of ‘compositions’ of
reusable components.

An Agilla application consists of numerous autonomous
agents, possibly of different types, scattered throughout a
network.

LooCI allows individual components to be developed on motes at
runtime

Agilla allows agents to be injected on nodes at runtime.

Components are managed by a reconfiguration manager Agents are managed by an agent manager
Components are uniquely identified by a <node address,
component ID> tuple

A tuple is an ordered set of fields where each field has a type and
value

Wildcards represent no-specific values for the arguments used
during reconfiguration and inspection of a LooCI runtime. Their
values will never refer to a single, specific instance of their
respective argument type.

Templates are unique in that their fields may contains wildcards
that match by type

Components, applications, and all the other participants interact
through events.

Agents migrate carrying their code and state, but no tuple spaces.

In LooCI, using introspection one can discover which
components are present on a node along with their interfaces,
current state and bindings.

-

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_18

(Advance online publication: 20 November 2017)

__

To clearly show the possibility of implementing an agent-
based middleware based on the infrastructure we proposed, a
comparison between LooCI-based agent middleware and
typical agent middleware is illustrated in Table 1.

In the comparison, several core definitions in a typical agent-
based middleware are needed to be specified. Two core
components are agent and tuple space, which have definition as
follows.

Agent. In classic agent-based system, agents are actually
belong to the application layer. ‘An Agilla application consists
of numerous autonomous agents, possibly of different types,
scattered throughout a network.’ [3] This denotes that one
application creates a number of agents with interoperated
functions to achieve the overall purposes.

Tuple space. The tuple space is local and shared by the agents
residing on the node. Special instructions allow agents to
remotely access another node’s tuple space.

Left column in Table 1 lists the core features of LooCI that
are related to MA middleware system. Right column lists the
features of a classic agent-based middleware corresponding to
LooCI’s features on the left. The grids in Table 1 filled by a
hyphen mark denote that there are no specific corresponding
features.

The comparison shows not only the possibility of
implementing MA on LooCI, but also the challenge to achieve
transplantation in practical since LooCI is event-based which
has gap to a fully functional middleware to support agent
system, for instance the lack of specific tuple spaces.

In simple words, core modules of LooCI can satisfy the
functional needs of the MA middleware. The challenge is how
to declare the manager modules and set suitable properties for
the components.

IV. SYSTEM DESIGN AND IMPLEMENTATION
In this section, we present our approach in five sub-sections:

we show the overview architecture of our design followed with
detailed discussion of specific modules such as kernel managers,
agent transceiver, and agent architecture. Example codes and
implementation are presented at the end of this section.

A. Overview architecture
Figure 2 shows the basic elements in the designed

middleware. Aiming to be duplex-friendly to both users and
platforms suppliers, the middleware separate core elements into
two purposes: one for operations that relates to agents, the other
for operations that relates to local components.

The proposed middleware incorporates and extends LooCI,
which is briefly introduced in section III.A. LooCI is adapted
extensively for the support of native module in our middleware.
Individual local components are allowed to deploy on nodes at
runtime. As shown in Figure 2, components are managed by

Figure 2. Overview architecture design of the middleware.
Modules in Native block serve local component reconfiguration.
Modules in Remote block serve dynamic deployment of
applications.

Figure 3. Wires of components before adding agent. Before agent
system being added into the sensor nodes, each of the components
transmit data to sink node directly. Suppose there are three types
of sensors on local node, it demands three channels for sensing
data transmission.

Figure 4. Wires of components after adding agent. After adding
agent system into local node, agent manager will collect sensing
data based on application requirement or even aggregate data
directly on local nodes before data transmission.

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_18

(Advance online publication: 20 November 2017)

__

reconfiguration manager and exchange events through LooCI
event manager. Related working mechanism can be found in
[11]. Modules in Remote block extend our previous work in
[10]. Apart from the management of agents and related
components, tuple space and neighbour list are considered in
the overall architecture. Wires of components before and after
inserting agent system into the nodes are shown in Figure 3 and
Figure 4 separately. It can be observed that after adding agent
system into local node, agent manager will collect sensing data
based on application requirement or even aggregate data
directly on local nodes before data transmission. Bandwidth
requirement will therefore be reduced.

Functionality of core modules will be presented in the
following sections.

B. Kernel managers
Block diagrams of four managers in Figure 2 refer to our

previous research outcomes. In this section, only core part of

agent manager’s block diagram is presented for discussion. For
details of the other managers, we recommend reference [10].

In the lifecycle of an agent in agent manager as shown in
Figure 5, three fundamental functions of agent manager are
proposed: a) switch agent state; b) allocate resources (frame in
queues and memory); and c) execute agent code.

Figure 6 illustrates the basic components and related methods
of agent manager. According to the flowchart of agent manager,
two basic components that are needed to be implemented,
which include a monitor and three functional different queues.

Method extract() is one of the core methods of monitor,
which is used to extract the header, payload, purpose, etc. of the
events or messages that are received.

pushTo() is another method of monitor, which is used to push
agent body to a suitable queue. This method should be the same
for component Monitor and component Queue.

statusChange() is used to change the status of agents based
on their purpose.

positionCheck() is used to check whether there are still empty
cell in queues.

C. Agent transceiver
The mechanism of migration and receiving of agents is

referred as agent transceiver in our approach. A simple
migration process is separated into three steps: a) transmitter
judges whether destination of current agent is local node; b) if
it is not, transmitter sends it to neighbours through network; c)
neighbour nodes will deliver the agent through one-hop routing
mechanism until it arrives target node.

During the migration, transmitter module on the local sensor
node coordinates four sub-modules to achieve the migration
function as shown in Figure 7. Once migration process is
activated, coordinator will setup time-up control for delivered
parameters and then wait for response from target node.
Transmission of next parameter will be activated by a correctly
receiving expected response within the allotted time, or
coordinator will require transmitting failed parameter again. It

Figure 6. Basic components and core methods of the agent
manager

Figure 7. Agent transmitter. Migration modules for agent state,
execution codes, instruction stack and others are coordinated
together for agent migration. Agent receiver has similar structure
to the transmitter.

Figure 5. Flowchart of an agent’s lifecycle in Agent manager

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_18

(Advance online publication: 20 November 2017)

__

is the same for receiver mechanism. Once parameter is received
by target node, it will reply a specific message to source node
and then setup time-out control. Memory is re-allocated by
agent manager modules in case the time is overdue and no
further parameters will arrive.

D. Other modules
As proposed in Section II.B, a feasible architecture of agents

will influence efficiency of middleware apart from kernel
modules in the supporting platform. Table 2 illustrates an agent
packet, which consists of unique agent ID, initial code, target
node, node list, next hop, state, register, instructions, execution
code, as well as data. The upper five elements in Table 2 are
proposed to identify the migration route of the agent, while
bottom five elements are used for agent execution. Necessity of
each element in Table 2 is presented as follows.

ID. the unique ID identifies which agent is under operation.
For both multiple-agent tasks and single-agent tasks, a unique
ID is useful for synchronisation and agent identification.

Initial node. the initial node identifies where the agent comes
from. This actually makes it possible to withdraw agents that
sent by sink node.

Target node. the nodes that will execute agent codes are set
as target nodes. Once an agent arrives on the target node, it
switches to next target node on node list.

Node list. all the target nodes on agent’s route are recorded
on the node list. It will be given by sink node for monitoring
purpose.

Next hop. in case that target nodes are not close by (we refer
the nodes who can be arrived by agents within one hop as ‘close
by’), next hop of current agent is necessary for continuous
migration.

State. agent state is used to identify purpose of current agent:
to execute on local node or is needed to be delivered to other
nodes.

Register. register is used for addressing of next instruction
and recording execution status.

Instructions. instructions are commands to control the
activity of agents on the node.

Execution code. the function of applications is achieved
through these execution code carried by mobile agents.

Data. after filtering and aggregation of data collected by local
sensors, agent will carry selected datum back to sink node.

Adhere to workflow of agent transceiver and managers as
proposed in Section IV.B and IV.C, the elements listed in Table
2 have already stored in this agent after inserting an agent into
sink node by the developers. Each module that is accessed by
agents will check and store agent ID. State of agent is checked
and changed by agent manager. Followed the node list which is
predetermined, agents on node will have two operations: (a) for
the agents which have already arrived at target node and wait in

queue for execution, virtual machine will be triggered to
process instructions in the stack. (b) If current node is not the
destination of the agent, manager will push this agent into
migration queue waiting for transmission.

E. Example codes
Implementation of our proposed middleware is illustrated by

two pieces of example codes and the execution result in LooCI
management console.

Figure 8 shows part of codebase in LooCI-Java while Figure
9 shows part of component in LooCI-Java.

Codebase. besides the component name, provided interface
AGENT_EVENT and required interface AGENT_EVENT,
STOP_COMPONENT_EV are declared in codebase
agentManager(). STOP_COMPONENT_EV is pre-defined in
LooCI, which is used as control message in agent manager.
AGENT_EVENT is self-defined to identify agents.

Component. as mobile agents (LooCI event) are deposited to
the agent manager, method receive() is called to receive agents.
In this method, eventID is used to identify control messages and
mobile agents. If it is control message
STOP_COMPONENT_EV, manager will deactivate component;

1
2
3
4
5
6
7
8
9
10
11
12
13

/**

 * LooCIComponent(<agentManager>,

 * <provided interfaces>,

 * <required interfaces>);

 */

 public agentManager() {

 super("agentManager",

 //provided interface

 new short[] {EventTypes.AGENT_EVENT };

 // required interface

 new short[] {EventTypes.AGENT_EVENT,

 EventTypes.STOP_COMPONENT_EV } ;

 };
Figure 8. Example code of codebase in LooCI

1

2

3

4

5

6

7

8

9

10

11

12

13

14

public void receive(short event_id, byte[] payload) {

/**check eventID to identify

*control messages and mobile agents

*/

 if(eventID == EventTypes. STOP_COMPONENT_EV){

 System.out.println("Monitored control messages");

 deactivate();

 } else if(eventID == EventTypes.AGENT_EVENT){

 System.out.println("Monitored mobile agent");

 publish(EventTypes.AGENT_EVENT,payload);

 } else {

 System.out.println("received invalid event");

 }

 }

Figure 9. Example code of component in LooCI

Table 2. Elements in an agent

ID Initial node Target node Node list Next hop

State Register Instructions Execution
code data

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_18

(Advance online publication: 20 November 2017)

__

if it is an agent, manager will publish this agent; otherwise push
out invalid event information.

To test the implemented components, we use command
system on LooCI-OSGi. Operations of all components on
LooCI console are as shown in Figure 10. After ‘ant’ in
directory of agent and agent Manager, It can be checked by
command ‘ls’ whether all components are available. Since two
components are listed as expected, instruction ‘deploy’ is used
for deployment of agentManager.jar and it returns codebase ID
10 by default. After deploying successfully, instruction
‘instantiate’ is used for instantiating codebase and it returns
component number 10. The deployment and instantiation of
agent are the same as agent manager except for the returned
codebase ID and component number; both are 11 for the agent.
After deploying and instantiating, command ‘activate’ can
check whether it is possible to activate all components. As
shown in Figure 8, the feedback ‘SUCCESS’ appears after
‘activate’ command.

V. CONCLUSION AND FUTURE WORK
A mobile agent-based middleware design for WSN is

proposed in this paper. Core idea of our middleware is to
optimise the allocation of resources while taking the
compatibility of heterogeneous platform into account. Based on

our previous research outcome, the middleware is designed on
an event-based component infrastructure. Feasibility analysis
and requirement analysis are presented as a proof-of-concept.
The overview architecture of our design followed with detailed
discussion of specific modules such as kernel managers, agent
transceiver, and agent architecture is shown. Examples of codes
and implementation are presented by means of a simple test.

Based on the implementation and test result we currently
have, performance evaluation of our middleware system as well
as case studies are necessary to show the applicability of our
middleware in the coming future. Finally, we consider mobile
agent technique is one of the state-of-the-art techniques in WSN
but still have plenty of barriers for a commonly usage.

ACKNOWLEDGEMENT
The research presented in this paper is supported by the

Research Development Fund (#RDF14-03-12) of the Xi’an
Jiaotong-Liverpool University, Suzhou, China.

REFERENCES

[1] L. M. Borges，F. J. Velez，A. S.Lebres, “Survey on the Characterization

and Classification of Wireless Sensor Network Applications,” IEEE
Communications Surveys & Tutorials, vol. 16, no. 4, pp. 1860-1890, 2014.

[2] M.A.Clarke,M. Razzaque, A. Milojevic-Jevric，S. Palade, “Middleware for
Internet of Things: A Survey,” IEEE Internet of Things Journal, vol. 3, no.
1, pp. 70-95, 2016.

[3] C. Fok,G. C. Roman,C. Lu, “Rapid Development and Flexible Deployment
of Adaptive Wireless Sensor Network Applications,” in 25th IEEE
International Conference on Distributed Computing Systems (ICDCS'05),
2005.

[4] M. Chen, S. Gonzalez,Victor, C. M. Leung, “Applications and design issues
for mobile agents in wireless sensor networks,” IEEE Wireless
Communications, vol. 14, no. 6, pp. 20-26, 2007.

[5] N. Tziritas,T. Loukopoulos,S. Lalis,S. U. Khan,C. Z. Xu, “Coordination
Strategies for Agent Migrations in Wireless Sensor Networks,” in 2015
IEEE 21st International Conference on Parallel and Distributed Systems
(ICPADS), 2015.

[6] C.L. Fok, G.C. Roman, C. Lu , “Mobile agent middleware for sensor
networks: an application case study,” in International Symposium on
Information Processing in Sensor Networks, IEEE, 2005.

[7] K. Lingaraj,Rajashree V. Biradar, V. C.Patil,, “Eagilla: An Enhanced Mobile
Agent Middleware for Wireless Sensor Networks,” Alexandria Engineering
Journal.

[8] L. Corradetti, D. Gregori,S. Marchesani,L. Pomante,M. Santic,W. Tiberti,
“A renovated mobile agents middleware for WSN porting of Agilla to the
TinyOS 2.x platform,” in 2016 IEEE 2nd International Forum on Research
and Technologies for Society and Industry Leveraging a better tomorrow
(RTSI), 2016.

[9] A. Amel,D. Laurent,Deprez, J.Christophe, “Mobility Management for
Wireless Sensor Networks A State-of-the-Art,” Procedia Computer Science,
vol. 52, pp. 1101-1107, 2015.

[10] Y. Wang, K. Man, S. Guan, D. Hughes, “Feasibility analysis of achieving
mobile agents for wireless sensor network based on LooCI,” Lecture Notes
in Engineering and Computer Science: Proceedings of The International
MultiConference of Engineers and Computer Scientists, IMECS 2017, 15-17
March, Hong Kong, 2017, pp. 714-718.

[11] D. Hughes, K. Thoelen,J. Maerien,N. Matthys,W. Horré,J. Del Cid,C.
Huygens,S. Michiels,W. Joosen, “LooCI: The Loosely-coupled Component
Infrastructure,” in 2012 IEEE 11th International Symposium on Network
Computing and Applications, 2012.

Figure 10. Operations of agent manager and agents on LooCI
console

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_18

(Advance online publication: 20 November 2017)

__

