

Parallelization for Multi-dimensional Loops with

Non-uniform Dependences

Abstract—This paper presents two enhanced partitioning

algorithms in order to improve parallelization of multi-

dimensional loops with flow and anti-dependences Using distance

of the first dependence, we show the first general enhanced

algorithm of single-loops with both flow and anti-dependences.

Using the first algorithm, loop interchanging method, and cycle

shrinking method, we present parallelization of nested loops with

simple subscripts. Using the second algorithm, we also present

parallelization to multi-dimensional loops with both flow and

anti-dependences. Our two presented algorithms show enhanced

loop parallelization of multi-dimensional loops with both

dependences. We will improve our proposed algorithms for

multi-dimensional space with multiple dependences.

Index Terms—Parallelizing Compiler, Multi-dimensional

Loops, Multiple Dependences, Loop Transformation, Non-

uniform Dependence

Ⅰ. INTRODUCTION

parallelizing compiler is the good solution for

parallelization for software engineers. Tasking serial

programs, it gives parallelization opportunities, executes

source code transformations results[1]. A lot of actual

software spends many times to the execution of DO loops[2].

In computationally expensive programs, concentrating on the

parallelization in a loop is an enhanced approach for

exploiting parallelization[3]. The loop transformation requires

accurate data dependence analysis[4,5]. Accurate dependency

analysis helps identify the dependent / independent iteration of

the loop. In order to achieve maximum parallelism, the

appropriate dependence analysis is important. We review

several data dependence tests about the dependency of one-

dimensional loops[6,7]. First of all, we generally applied GCD

test because it is simple. Second, the separability test is

applied. And it is possible to obtain additional information

through the test. When we are considering approaches to

single-loop, we can exanimate two splitting methods such as

fixed splitting method with minimum distance and variable

splitting methods[8].

Manuscript received June 15, 2017, revised August 22, 2017

S. J. Jeong is with Division of Information and Communication

Engineering, Baekseok University, #76, Munam-ro, Cheonan, Chungnam,

330-704, Korea (e-mail: sjjeong@bu.ac.kr)

But, some parallelization unexploited is leaved. Chapter two

will introduce some splitting methods such as

Polychronopoulos’ technique and splitting technique by

thresholds. In chapter three, we propose two enhanced loop

transformation algorithms to exploit loop parallelization of

multi-dimensional loops with non-uniform dependences. The

conclusion is made in chapter four.

Ⅱ. RELATED WORKS

DO I = p, q

 A(a1 * I + a2) = ∙ ∙

 ∙ ∙ = A(b1 * I + b2)

Fig. 1. Single-loop model

Figure 1 shows a general form of single-loop. In single-loop,

there are two variables and those loop variables are

components of one dimensional array for data-dependence.

We introduce two splitting methods of single-loops now. We

can present some parallelization available in a single-loop

given in Figure 1. We can classify four cases for integer a1

and integer b1, which are coefficients of the index variable I

given by equation (1).

Case I: a1 = b1 = 0 ;

Case II: a1 = 0; b1 ≠ 0 or a1 ≠ 0; b1 = 0 ;

Case III: a1 = b1 ≠ 0 ;

Case IV: a1 ≠ 0; b1 ≠ 0 ; a1 ≠ b1 ; (1)

2. A Loop partitioning technique using thresholds

Loop partitioning technique using threshold was first

published by Allen and Kennedy. They proposed two loop

splitting methods, that are loop partitioning technique using

cross threshold and loop partitioning technique using constant

threshold. Loop partitioning technique using cross threshold is

applied the case IV of equation (1). Loop splitting method

using constant threshold is applied the case III of equation (1).

2. B Polychronopoulos' loop partitioning technique

When a1 * b1 => 0, we can make use of any parallelization

for the case IV of equation (1). We will consider three cases

whether it exists both dependences. Let regard (i, j) as an

Sam-Jin Jeong

A

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_04

(Advance online publication: 10 February 2018)

__

integer to equation (1). If the first distance of i in equation (2)

is positive, there is flow dependence. If the second distance of

j in equation (3) is positive, there is anti-dependence. If (x, x)

has a solution of equation (1), equation d(x) = 0 and da(x) = 0,

and there are both dependences after and before i = x.

Equation A(a1i + a2) cannot be expended before d(i), and it

means which d(i) can perform in parallel for each value of i.

d(i) = j – i, d(i) = D(i)/b1; where D(i) = (a2 - b1) i + (a2 -

b1) (2)

da(j) = i – j, da(j) = Da(j)/a1; where Da(j) = (b1 - a1) j + (b2 -

a2) (3)

Ⅲ. PARALLELIZATION FOR NESTED LOOPS

Using distance of the first dependence, we offer

general enhanced algorithm of multi-dimensional loops

with both flow and anti-dependences as follows.

A Transformation of Single-loops

Procedure LoopSplit presents the parallelization of

single-loops[9]. The Procedure LoopSplit2 shows how to

split single-loops.

Procedure LoopSplit2

BEGIN

Step 1: Data dependence testing.

Step 2: Data transformation

Step 3: The case satisfying IV of equation (1)

Step 4: The case with one dependence

Step 5: Call LoopSplit(a);

Step 6: The case with both dependences

Step 7: Call LoopSplitb(b);

Step 8: Call LoopSplitc(c);

Step 9: Merge two splitted blocks;

END LoopSplit2

 In step 5-6, if there exists both dependances, Procedure

LoopSplit divides the loop two parts, and transforms each of

parts.

B. Transformation of Loops with Multiple Dependences

In the section 3.1, we considered only the case with

dependence in single-loops. In this section, by extending the

transformation method of the case with dependence in single-

loops, a transformation of loops with multiple dependences is

presented. If we suppose there are m non-uniform

dependences in a single-loop, then Procedure MultiSplit

shows the algorithm to exploit parallelization in single-loops

with multiple dependences.

Procedure MultiSplit (l, p, sd[], α[], β[])

/* parallelization of single-loops with multiple dependences */

BEGIN

/* Find the first one in the ith block.

St[k]: the first source iteration in any block of each of m dependences.

dk(i): the distance at any iteration I for each of m dependences.

Sd[k]: the difference between two adjacent source iterations for each of m

dependences.

α[k], β[k]: the iteration and distance of the first source for each of m

dependences computed by the separability test, respectively */

Step 1: i = 1; St[1] = l;

 Sr[k] = α[k] and dk(Sr[k]) = β[k] for 1 ≤ K ≤ m;

Step 2: St[i+1] = min {Sr[k] + dk(Sr[k]} for 1 ≤ K ≤ m;

 If St[i+1] ≥ p, then {St[i+1] = p + 1; goto Step 5};

Step 3: Sr[k] = St[I+1] + q[k] for 1 ≤ K ≤ m,

 Where 0 ≤ q[k] ≤ Sd[k] and q[k] = (α[k] – St[k+1]) mod Sd[k];

Step 4: Compute dk[k](Sr[k]) for 1 ≤ K ≤ m;

 i = i + 1; goto Step 2;

Step 5: /* split the loop into blocks with variable sizes, St[i+1] – St[i]. */

END MultiSplit

C. Transformation of Nested Loops with Simple Subscripts

In previous sections, we proposed a generalized and optimal

method for single-loops only. This section discusses the

extension of the first method, in order that it can be applied to

present parallelization of nested loops with simple subscripts.

However, it is difficult to apply this method to nested loops

with coupled subscripts. If we consider nested loops with

simple subscripts as given in Figure 2, we can present an

enhanced method for these loops by extending the first

method, based on cycle shrinking [8,10] and loop

interchange[11].

DO I1 = p1, q1

 DO I2 = p2, q2

 ∙∙∙

 DO In = pn, qn

 A(f1(I1), ∙∙∙ , fn(In)) = ∙∙∙

 ∙∙∙ = A(g1(I1), ∙∙∙ , gn(In))

 END

 ∙∙∙

 END

END

Fig. 2. A type of nested loop with simple subscripts

Since our loop model given in Figure 2 is the type of nested

loop with simple subscript, here the data dependence is

considered separately for each individual loop in the nest.

Each loop of this nested loop transfers cross-iteration

dependences if there is two integers (i, j) satisfying

inequalities (5) and Diophantine equations (4).

fk(Ik) = gk(Ik) ak1Ik + ak2 = bk1Ik + bk2 for 1 ≤ k ≤ n (4)

lk ≤ i ≤ uk and lk ≤ j ≤ uk (5)

If each component of the distance vector (6) is positive, there

is a flow dependence, and if value of dak(j), equation (7), is

positive, there is an anti-dependence. And, if equation (4) has

a solution, dk(x) = 0 and dak(x) = 0, and there are both

dependences.

dk(i) = j – i = Dk(i)/bk1, Dk(i) = (ak1 – bk1)i + (ak2 – bk2) (6)

dk(j) = j – i = Dak(j)/ak1, Dak(j) = (bk1 – ak1)i + (bk2 – ak2)

(7)

We can briefly present our proposed method as follows. First,

using the procedures in section 3.1, the number of blocks

which can be splitted form iteration space is computed for

each loop in the nest starting with outermost loop. Next, kth

loop which has minimum number of blocks in the nested loop,

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_04

(Advance online publication: 10 February 2018)

__

and the kth and the outermost loops (Lk and L1) are

interchanged for maximizing parallelization available in the

loop 10. Then the outermost loop interchanged (old Lk) is

blocked, and all loop nested inside the outermost loop are

transformed to DOALL’s. Even if only a loop in the nest does

not have the dependence, all loops can be transformed to

DOALL’s. We can consider the proposed method in two

cases: one is that one type of dependence exists in the loop

and the other is that both flow and anti-dependence exist in the

loop. Here, the number of blocks Bk for each loop in the nest

can be computed by Procedure Compute_NB. When there

exists a loop-independent dependence in the kth loop.

Procedure Compute_NB

/* Computation of the number of blocks for each loop in the nested loop */

BEGIN

 k = 1 ;

 While k ≤ n Do

If (ak1 = bk1 = 0) then {Bk = 1 ; Fk = 0} ;

Orif (ak1 = 0, bk1 ≠ 0 or a k1 ≠ 0, bk = 0) then {

 If (lk ≤ i ≤ uk where i = (bk2 – ak2)/ak1 (if ak1 ≠ 0) or

(ak2 – bk2)/ak1 (if bk1 ≠ 0))

then Bk = 3 else Bk = 2; Fk = 1};

Orif (ak1 = bk1 ≠ 0) then{

 If(ak2 = bk2) then Bk = 1

else Bk = ⌈(uk – lk)/(ak2 – bk2)/bk1⌉ (if (ak2 - bk2)/bk1 > 0) or

⌈(uk – lk)/(bk2 – ak2)/ak1⌉ (if (bk2 - ak2)/ak1 > 0); Fk = 0};

Orif (ak1*bk1 < 0) then { Bk = 2; Fk = 0};

Orif (∃ only a flow or anti-dependence in the kth loop) then {

 Compute Bk by step 1-4 in Procedure LoopSplit; Fk = 0 }

else {Compute Bk by step 5-7 in Procedure LoopSplit2; Fk = 1}

 k = k+1;

Endwhile

END Compute_NB

First, in case that one type of dependence exists in each loop

of a nested loop with simple subscripts, Procedure

LoopSplit_3 can transform a nested loop into partial parallel

loops. As an example, let’s consider the loop shown in Figure

6. There is one type of dependence exists in each loop of this

nested loop. The number of blocks of L2 is 4 and one of L3 is

3. Hence, L3 is interchanged with the outermost loop L1 for

maximizing parallelization.

Procedure LoopSplit_3

/* Transformation of nested loops with simple subscripts */

BEGIN

Step 1: Compute the number of blocks Bk by Procedure Compute_NB for

each loop Lk such that the dependence distance dk > 1 for 1 ≤ k ≤ n;

Step 2: Find L1 such that Bi = min(Bk) for 1 <= k <= n;

Step 3: If i > 1, then interchange the first loop L1 with the ith loop Li ;
Step 4: If the dependence distance of the outermost loop is constant

then split the outermost loop into partial parallel loops by the reduction

factor λ (assuming the outermost loop is Li, λ = ⌈(ai2 – bi2)/bi1⌉ (if di(i) >

0) or ⌈(bi2 – ai2)/ai1⌉ (if dai(j) > 0))

else split the outermost loop by Procedure LoopSplit_1;

Transform all loops nested inside the outermost loop, i.e., from the

second loop to the nth loop, to DOALL’s;

End LoopSplit_3

D. Transformation of Multi-dimensional Loops with Non-

uniform Dependences.

Now, let’s consider a case which there exist both

dependences in the loop. A loop-independent dependence in a

single-loop does not cause any problem for parallelizing a

loop. Namely, Li+1 may cause to take place a cross-iteration

dependence at the iteration where a loop-independent

dependence exists in () in the nest. In case of the loop in

Figure 3, loop-independent dependence exist in L1 at I1 = 5and

in L3 at I3=3 as shown in Figure 5 shows the unrolled version

of the loop in Figure 3, when I1 = 5, and there exist flow (anti-)

dependences represented as arrows. However, if we splitL2,

the inner loop of L1, as shown in Figure 5, we can remove this

dependences. Then, when the distance of the inner loop is

zero, we cannot split the nested loop at this iteration. And, as

mentioned above, we can interchange the outermost loop with

the loop which has the minimum number of blocks for

maximizing parallelization.

 DO I1 = 1, l

DO I2 = 1, m

DO I3 = 1, n

A(2*I1, 3*I2, 2*I3) = . .

. . = A(I1+5, I2+11, I3+3)

END

END

END
Fig. 3. An example of nested loop with both flow and anti-dependences

I1 A(2*I1) A(I1+5)I3 I3 A(2 I3) A(I3+3)

1 A(2) A(6) 1 A(2) A(4)

2 A(4) A(7) 2 A(4) A(5)

3 A(6) A(8) 3 A(6) A(6)

4 A(8) A(9) 4 A(8) A(7)

5 A(10) A(10) 5 A(10) A(8)

6 A(12) A(11) 6 A(12) A(9)

7 A(14) A(12) 7 A(14) A(10)

8 A(16) A(13) 8 A(16) A(11)

9 A(18) A(14) 9 A(18) A(12)

10 A(20) A(15) 10 A(20) A(13)
Fig. 4. The unrolled versions of L1 and L3 of the loop in Figure 3

I2 A(2 I1, 3 I2,2 I3)I3 A(I1+5, , I2+11, I3+3)

1 (10, 3, *) (10, 12, *)

2 (10, 6, *) (10, 13, *)

3 (10, 9, *) (10, 14, *)

4 (10, 12, *) (10, 15, *)

5 (10, 15, *) (10, 16, *)

6 (10, 18, *) (10, 17, *)

7 (10, 21, *) (10, 18, *)

8 (10, 24, *) (10, 19, *)

9 (10, 27, *) (10, 20, *)

10 (10, 30, *) (10, 21, *)

(note) * : any integer in 1 ≤ * ≤ 10
Fig. 5. The unrolled versions of the loop in Figure 3 when I1 = 5

Procedure LoopSplit_4 generalize how to partition the general

loop to partial parallel loops as shown in Figure 3.

Procedure LoopSplit _4

/* Transformation of nested loops with simple subscripts to parallel loops */

BEGIN

Step 1: /* To test for data dependence and computer the number of blocks Bk

for each loop in the nest */

k=1 ;

While k ≤ n Do

If GCD is not true, then transforms nested loops to parallel loops;

If separability test is not true, then transforms nested loops to parallel

loops;

Compute Bk and Fk by Procedure Compute_NB ;

k = k + 1 ;

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_04

(Advance online publication: 10 February 2018)

__

Endwhile

Step 2: /* To find the loop Li which will be interchanged with the outermost

loop L1. */

i =0 ;

Find Li such that Bi = min(Bk) for 1 ≤ k ≤ n & Bk > 1 ;

If i = 0 then transforms nested loops to parallel loops; /* The absence of Li

in the loop. */

If Fi = 0 then go to Step 3; /* The absence of a loop-independent

dependence (LID) in the loop. */

j = 0 ;

Find Lj such that Bj = min(Bk) for 1 ≤ k ≤ n & k ≠ I & Bk > 1 ; /* To find

the loop Lj such that Bj is the smallest except Bi in the nest */

Bi = Bi + Bj – 1 ;

m = 0 ;

Find Lm such that Bm = min(Bk) for 1 ≤ k ≤ n & k ≠ I & Bk > 1 &Fk = 0 ; /*

To find the loop Lm except Li in which LID does not exist. */

If m = 0 then go to Step 3 ; /* The absence of Lm. */

Find Li such that Bi = min(Bi, Bm) /* To find again the loop Li which will

be interchanged with the outermost loop L1. */

If Fi = 1 & j ≠ 2 then interchange L2 with Lj ;

Step 3: If i> 1 then interchange L1 with Li ;

Step 4: If LID does not exist in the outermost loop (i.e., when Li is the

outermost loop, Fi = 0) then the same as Step 4 in Procedure LoopSplit_3

Step 5: else { split the outermost loop by the same as Step 4 in Procedure

LoopSplit2 ;

for all splitted blocks of the outermost loop except the block

where LID exists, transforms all loops nested inside the outermost

loop to DOALL’s ;

for the block where LID exists,

If j = 0 then leave all loops nested inside the outermost loop as

they are original loops

else { split the second loop by the same as Step 4 ;

transform all loops nested inside the second loop to DOALL’s } }

;

Stop ;

/* The results of the loop in Figure 4.4 transformed by Step 4-5

(1) The absence of LID in Li (2) The presence

of LID at x in Li

DO Ii’ = li, ui, λi DO Ii’ = li, x-1,

λi

DOALL I1 = Ii’, min(ui, Ii’+λi-1) DOALL Ii =

Ii’, min(x-1, Ii’+λi-1)

DOALL I2 = l2, u2 DOALL

DOALL I1 = l1, u1 DO Ii’ = x, x

 DOALL Ii+1 = li+1, ui+1 DO I2’ = l2, u2,

λ2

 . . . DOALL I2

= I2’, min(u2, Ii’+λ2-1)

 DOALL In = ln, un . . .

 . . . DO Ii’ = x+1, ui,

ii

 ENDDO DOALL Ii = Ii’,

min(ui, Ii’+λi+1)

 . . . DOALL

 . . .

END LoopSplit_4

Figure 6 shows the result of the loop in Figure 3 transformed

by Procedure LoopSplit_4. In step 2, Bis are computed as B1 =

5, B2 =5 and B3 = 4. The third loop can be splitted as the

smallest number of blocks of them. However, since there is a

loop-independent dependence in L3, L2 without a loop-

independent dependence is selected as the outermost loop (B2

= 5 < B3 = B3 +B1 = 9).
. . .

Fig. 6. The result of the loop in Figure 3 transformed by Procedure

LoopSplit_4

Ⅳ. Conclusion

In this research, we have presented the parallelization of

multi-dimensional loops with both dependences and nested

loops with simple subscripts in order to improve

parallelization. For single-loops, we introduce two partitioning

techniques such as loop partitioning technique by thresholds

and Polychronopoulos' loop partitioning technique. But, some

parallelization unexploited is leaved, and the second one has

some dependence restrictions. Therefore, we proposed two

generalized enhanced algorithms in order to improve

parallelization. Using distance of the first dependence, we

show the first enhanced algorithm for single-loops with both

flow and anti-dependences. Using the first algorithm, loop

interchanging method, and cycle shrinking method, we present

the second generalized algorithm for parallelization of nested

loops with simple subscripts. Using the second algorithm, we

also present parallelization for multi-dimensional loops with

both dependences. Our two presented algorithms show

enhanced loop parallelization of multi-dimensional loops with

both dependences. We will improve our proposed algorithms

for multi-dimensional space with multiple dependences.

 ACKNOWLEDGMENT

This WORK is supported by 2017 Research fund from

Baekseok University.

REFERENCES

[1] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of

Lipschitz-Hankel type involving products of Bessel functions,” Phil.

Trans. Roy. Soc. London, vol. A247, pp. 529-551, Apr. 1955.

[2] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol.

2. Oxford: Clarendon, 1892, pp. 68-73.

[3] I. S. Jacobs and C. P. Bean, “Fine particles, thin films and exchange

anisotropy,” in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New

York: Academic, 1963, pp. 271-350.

[4] T. L. Gilbert, Formulation, Foundations and Applications of the

Phenomenological Theory of Ferromagnetism, Ph.D. dissertation,

Illinois Inst. Tech., Chicago, IL, 1956, unpublished.

[5] D. P. Arnold, “Review of microscale magnetic power generation,”

submitted for publication.

[6] S. O. Demokritov and V. E. Demidov, “Micro-Brillouin light scattering

spectroscopy of magnetic nanostructures,” IEEE Trans. Magn., to be

published.

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_04

(Advance online publication: 10 February 2018)

__

[7] C. J. Kaufman, Rocky Mountain Research Laboratories, Boulder, CO,

private communication, 2004.

[8] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy

studies on magneto-optical media and plastic substrate interface,” IEEE

Transl. J. Magn. Jpn., vol. 2, pp. 740-741, August 1987 [Dig. 9th

Annual Conf. Magn. Jpn., p. 301, 1982].

[9] M. Young, The Technical Writer’s Handbook. Mill Valley, CA:

University Science, 1989.

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_04

(Advance online publication: 10 February 2018)

__

