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Abstract—This paper presents two enhanced partitioning 

algorithms in order to improve parallelization of multi-

dimensional loops with flow and anti-dependences Using distance 

of the first dependence, we show the first general enhanced 

algorithm of single-loops with both flow and anti-dependences. 

Using the first algorithm, loop interchanging method, and cycle 

shrinking method, we present parallelization of nested loops with 

simple subscripts. Using the second algorithm, we also present 

parallelization to multi-dimensional loops with both flow and 

anti-dependences. Our two presented algorithms show enhanced 

loop parallelization of multi-dimensional loops with both 

dependences. We will improve our proposed algorithms for 

multi-dimensional space with multiple dependences. 

  

 
Index Terms—Parallelizing Compiler, Multi-dimensional 

Loops, Multiple Dependences, Loop Transformation, Non-

uniform Dependence 

 

Ⅰ. INTRODUCTION 

 

parallelizing compiler is the good solution for 

parallelization for software engineers. Tasking serial 

programs, it gives parallelization opportunities, executes 

source code transformations results[1]. A lot of actual 

software spends many times to the execution of DO loops[2]. 

In computationally expensive programs, concentrating on the 

parallelization in a loop is an enhanced approach for 

exploiting parallelization[3]. The loop transformation requires 

accurate data dependence analysis[4,5]. Accurate dependency 

analysis helps identify the dependent / independent iteration of 

the loop. In order to achieve maximum parallelism, the 

appropriate dependence analysis is important. We review 

several data dependence tests about the dependency of one-

dimensional loops[6,7]. First of all, we generally applied GCD 

test because it is simple. Second, the separability test is 

applied. And it is possible to obtain additional information 

through the test. When we are considering approaches to 

single-loop, we can exanimate two splitting methods such as 

fixed splitting method with minimum distance and variable 

splitting methods[8]. 
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But, some parallelization unexploited is leaved. Chapter two 

will introduce some splitting methods such as 

Polychronopoulos’ technique and splitting technique by 

thresholds. In chapter three, we propose two enhanced loop 

transformation algorithms to exploit loop parallelization of 

multi-dimensional loops with non-uniform dependences. The 

conclusion is made in chapter four.  

 

Ⅱ. RELATED WORKS 

 
DO I = p, q 

    A(a1 * I + a2)  =  ∙ ∙  

          ∙ ∙ = A(b1 * I + b2)  

 
Fig. 1. Single-loop model 

 

Figure 1 shows a general form of single-loop. In single-loop, 

there are two variables and those loop variables are 

components of one dimensional array for data-dependence. 

We introduce two splitting methods of single-loops now. We 

can present some parallelization available in a single-loop 

given in Figure 1. We can classify four cases for integer a1 

and integer b1, which are coefficients of the index variable I 

given by equation (1).  

 

Case I:  a1 = b1 = 0 ; 

Case II:  a1 = 0;  b1 ≠ 0 or a1 ≠ 0;  b1 = 0 ; 

Case III:  a1 = b1 ≠ 0 ; 

Case IV:  a1 ≠ 0;  b1 ≠ 0 ;  a1 ≠ b1 ;                  (1) 

 

2.  A Loop partitioning technique using thresholds  

Loop partitioning technique using threshold was first 

published by Allen and Kennedy. They proposed two loop 

splitting methods, that are loop partitioning technique using 

cross threshold and loop partitioning technique using constant 

threshold. Loop partitioning technique using cross threshold is 

applied the case IV of equation (1). Loop splitting method 

using constant threshold is applied the case III of equation (1). 

 

2.  B Polychronopoulos' loop partitioning technique 

When a1 * b1 => 0, we can make use of any parallelization 

for the case IV of equation (1). We will consider three cases 

whether it exists both dependences. Let regard (i, j) as an 
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integer to equation (1). If the first distance of i in equation (2) 

is positive, there is flow dependence. If the second distance of 

j in equation (3) is positive, there is anti-dependence. If (x, x) 

has a solution of equation (1), equation d(x) = 0 and da(x) = 0, 

and there are both dependences after and before i = x. 

Equation A(a1i + a2) cannot be expended before d(i), and it 

means which d(i) can perform in parallel for each value of i.   

 

d(i) = j –  i, d(i) = D(i)/b1; where D(i) = (a2 - b1) i + (a2 - 

b1)                                                                                         (2) 

da(j) = i – j, da(j) = Da(j)/a1; where Da(j) = (b1 - a1) j + (b2 - 

a2)                                                                                         (3) 

 

Ⅲ. PARALLELIZATION FOR NESTED LOOPS 

 

Using distance of the first dependence, we offer 

general enhanced algorithm of multi-dimensional loops 

with both flow and anti-dependences as follows. 

  

A  Transformation of Single-loops 

 

Procedure LoopSplit presents the parallelization of 

single-loops[9]. The Procedure LoopSplit2 shows how to 

split single-loops. 

 
Procedure LoopSplit2 

BEGIN 

Step 1: Data dependence testing. 

Step 2: Data transformation  

Step 3: The case satisfying IV of equation (1) 

Step 4: The case with one dependence  

Step 5: Call LoopSplit(a); 

Step 6: The case with both dependences  

Step 7: Call LoopSplitb(b); 

Step 8: Call LoopSplitc(c); 

Step 9: Merge two splitted blocks; 

END LoopSplit2 

 

 In step 5-6, if there exists both dependances, Procedure 

LoopSplit divides the loop two parts, and transforms each of 

parts.  

 

B. Transformation of Loops with Multiple Dependences 

In the section 3.1, we considered only the case with 

dependence in single-loops. In this section, by extending the 

transformation method of the case with dependence in single-

loops, a transformation of loops with multiple dependences is 

presented. If we suppose there are m non-uniform 

dependences in a single-loop, then Procedure MultiSplit 

shows the algorithm to exploit parallelization in single-loops 

with multiple dependences.  
 

Procedure MultiSplit (l, p, sd[], α[], β[]) 

/* parallelization of single-loops with multiple dependences */ 

BEGIN 

/* Find the first one in the ith block. 

St[k]: the first source iteration in any block of each of m dependences. 

dk(i): the distance at any iteration I for each of m dependences. 

Sd[k]: the difference between two adjacent source iterations for each of m 

dependences. 

α[k], β[k]: the iteration and distance of the first source for each of m 

dependences computed by the separability test, respectively */ 

Step 1: i = 1; St[1] = l; 

        Sr[k] = α[k] and dk(Sr[k]) = β[k] for 1 ≤ K ≤ m; 

Step 2: St[i+1] = min {Sr[k] + dk(Sr[k]} for 1 ≤ K ≤ m; 

        If St[i+1] ≥ p, then {St[i+1] = p + 1; goto Step 5}; 

Step 3: Sr[k] = St[I+1] + q[k] for 1 ≤ K ≤ m, 

        Where 0 ≤ q[k] ≤ Sd[k] and q[k] = (α[k] – St[k+1]) mod Sd[k]; 

Step 4: Compute dk[k](Sr[k]) for 1 ≤ K ≤ m; 

        i = i + 1; goto Step 2; 

Step 5: /* split the loop into blocks with variable sizes, St[i+1] – St[i]. */ 

END MultiSplit 

 

C. Transformation of Nested Loops with Simple Subscripts 

 

In previous sections, we proposed a generalized and optimal 

method for single-loops only. This section discusses the 

extension of the first method, in order that it can be applied to 

present parallelization of nested loops with simple subscripts. 

However, it is difficult to apply this method to nested loops 

with coupled subscripts. If we consider nested loops with 

simple subscripts as given in Figure 2, we can present an 

enhanced method for these loops by extending the first 

method, based on cycle shrinking [8,10] and loop 

interchange[11].   
 

DO I1 = p1, q1 

         DO I2 = p2, q2 

           ∙∙∙ 

             DO In = pn, qn 

                 A(f1(I1), ∙∙∙ , fn(In)) = ∙∙∙ 

                               ∙∙∙ = A(g1(I1), ∙∙∙ , gn(In)) 

              END  

           ∙∙∙ 

          END  

END  
 

Fig. 2. A type of nested loop with simple subscripts 

 

 

Since our loop model given in Figure 2 is the type of nested 

loop with simple subscript, here the data dependence is 

considered separately for each individual loop in the nest. 

Each loop of this nested loop transfers cross-iteration 

dependences if there is two integers (i, j) satisfying 

inequalities (5) and Diophantine equations (4). 

 

fk(Ik) = gk(Ik)  ak1Ik + ak2 = bk1Ik + bk2 for 1 ≤ k ≤ n          (4) 

lk ≤ i ≤ uk and lk ≤ j ≤ uk                                     (5) 

 

If each component of the distance vector (6) is positive, there 

is a flow dependence, and if value of dak(j), equation (7), is 

positive, there is an anti-dependence.  And, if equation (4) has 

a solution, dk(x) = 0 and dak(x) = 0, and there are both 

dependences. 

 

dk(i) = j – i = Dk(i)/bk1, Dk(i) = (ak1 – bk1)i + (ak2 – bk2)       (6) 

dk(j) = j – i = Dak(j)/ak1, Dak(j) = (bk1 – ak1)i + (bk2 – ak2)     

(7) 

 

We can briefly present our proposed method as follows. First, 

using the procedures in section 3.1, the number of blocks 

which can be splitted form iteration space is computed for 

each loop in the nest starting with outermost loop. Next, kth 

loop which has minimum number of blocks in the nested loop, 
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and the kth and the outermost loops (Lk and L1) are 

interchanged for maximizing parallelization available in the 

loop 10. Then the outermost loop interchanged (old Lk) is 

blocked, and all loop nested inside the outermost loop are 

transformed to DOALL’s. Even if only a loop in the nest does 

not have the dependence, all loops can be transformed to 

DOALL’s. We can consider the proposed method in two 

cases: one is that one type of dependence exists in the loop 

and the other is that both flow and anti-dependence exist in the 

loop. Here, the number of blocks Bk for each loop in the nest 

can be computed by Procedure Compute_NB. When there 

exists a loop-independent dependence in the kth loop.  

 
Procedure Compute_NB 

/* Computation of the number of blocks for each loop in the nested loop */ 

BEGIN 

  k = 1 ; 

  While k ≤ n Do 

If (ak1 = bk1 = 0) then {Bk = 1 ; Fk = 0} ; 

Orif (ak1 = 0, bk1 ≠ 0 or a k1 ≠ 0, bk = 0) then { 

      If (lk ≤ i ≤ uk where i = (bk2 – ak2)/ak1 (if ak1 ≠ 0) or 

(ak2 – bk2)/ak1 (if bk1 ≠ 0)) 

then Bk = 3 else Bk = 2; Fk = 1}; 

Orif (ak1 = bk1 ≠ 0) then{ 

      If(ak2 = bk2) then Bk = 1 

else Bk = ⌈(uk – lk)/(ak2 – bk2)/bk1⌉ (if (ak2 - bk2)/bk1 > 0) or 

⌈(uk – lk)/(bk2 – ak2)/ak1⌉ (if (bk2 - ak2)/ak1 > 0); Fk = 0}; 

Orif (ak1*bk1 < 0) then { Bk = 2; Fk = 0}; 

Orif (∃ only a flow or anti-dependence in the kth loop) then { 

       Compute Bk by step 1-4 in Procedure LoopSplit; Fk = 0 } 

else {Compute Bk by step 5-7 in Procedure LoopSplit2; Fk = 1} 

       k = k+1; 

Endwhile 

END Compute_NB 

 

First, in case that one type of dependence exists in each loop 

of a nested loop with simple subscripts, Procedure 

LoopSplit_3 can transform a nested loop into partial parallel 

loops. As an example, let’s consider the loop shown in Figure 

6. There is one type of dependence exists in each loop of this 

nested loop.  The number of blocks of L2 is 4 and one of L3 is 

3.  Hence, L3 is interchanged with the outermost loop L1 for 

maximizing parallelization.  

 
Procedure LoopSplit_3 

/* Transformation of nested loops with simple subscripts */ 

BEGIN 

Step 1: Compute the number of blocks Bk by Procedure Compute_NB for 

each loop Lk such that the dependence distance dk > 1 for 1 ≤ k ≤ n; 

Step 2: Find L1 such that Bi = min(Bk) for 1 <= k <= n; 

Step 3: If i > 1, then interchange the first loop L1 with the ith loop Li ;  
Step 4: If the dependence distance of the outermost loop is constant  

then split the outermost loop into partial parallel loops by the reduction 

factor λ (assuming the outermost loop is Li, λ = ⌈(ai2 – bi2)/bi1⌉ (if di(i) > 

0) or ⌈(bi2 – ai2)/ai1⌉ (if dai(j) > 0))  

else split the outermost loop by Procedure LoopSplit_1; 

Transform all loops nested inside the outermost loop, i.e., from the 

second loop to the nth loop, to DOALL’s; 

End LoopSplit_3 

 

D. Transformation of Multi-dimensional Loops with Non-

uniform Dependences. 

Now, let’s consider a case which there exist both 

dependences in the loop. A loop-independent dependence in a 

single-loop does not cause any problem for parallelizing a 

loop. Namely, Li+1 may cause to take place a cross-iteration 

dependence at the iteration where a loop-independent 

dependence exists in () in the nest. In case of the loop in 

Figure 3, loop-independent dependence exist in L1 at I1 = 5and 

in L3 at I3=3 as shown in Figure 5 shows the unrolled version 

of the loop in Figure 3, when I1 = 5, and there exist flow (anti-) 

dependences represented as arrows. However, if we splitL2, 

the inner loop of L1, as shown in Figure 5, we can remove this 

dependences. Then, when the distance of the inner loop is 

zero, we cannot split the nested loop at this iteration. And, as 

mentioned above, we can interchange the outermost loop with 

the loop which has the minimum number of blocks for 

maximizing parallelization. 

 
 DO I1 = 1, l 

DO I2 = 1, m 

DO I3 = 1, n 

A(2*I1, 3*I2, 2*I3) =  .  .   

.  .  = A(I1+5, I2+11, I3+3) 

END  

END  

END  
Fig. 3. An example of nested loop with both flow and anti-dependences 

 

I1      A(2*I1)        A(I1+5)I3   I3     A(2 I3)             A(I3+3) 

1     A(2)  A(6)  1     A(2)          A(4) 

2     A(4)  A(7)  2     A(4)          A(5) 

3     A(6)  A(8)  3     A(6)          A(6) 

4     A(8)  A(9)  4     A(8)          A(7) 

5     A(10) A(10)  5     A(10)          A(8) 

6     A(12) A(11)  6     A(12)          A(9) 

7     A(14) A(12)  7     A(14)         A(10) 

8     A(16) A(13)  8     A(16)          A(11) 

9     A(18) A(14)  9     A(18)          A(12) 

10   A(20) A(15)               10     A(20)         A(13) 
Fig. 4. The unrolled versions of L1 and L3 of the loop in Figure 3 

 
I2      A(2 I1, 3 I2,2 I3)I3               A(I1+5, , I2+11, I3+3) 

1       (10,  3, *)                    (10, 12, *) 

2       (10,  6, *)                    (10, 13, *) 

3       (10,  9, *)                    (10, 14, *) 

4       (10, 12, *)                   (10, 15, *) 

5       (10, 15, *)                   (10, 16, *) 

6       (10, 18, *)                   (10, 17, *) 

7       (10, 21, *)                   (10, 18, *) 

8       (10, 24, *)                   (10, 19, *) 

9       (10, 27, *)                   (10, 20, *) 

10       (10, 30, *)                   (10, 21, *) 

(note) * : any integer in 1 ≤ * ≤ 10 
Fig. 5. The unrolled versions of the loop in Figure 3 when I1 = 5 

 

Procedure LoopSplit_4 generalize how to partition the general 

loop to partial parallel loops as shown in Figure 3. 

 
Procedure LoopSplit _4 

/* Transformation of nested loops with simple subscripts to parallel loops */  

BEGIN 

Step 1: /* To test for data dependence and computer the number of blocks Bk 

for each loop in the nest */ 

k=1 ; 

While k ≤ n Do 

If GCD is not true, then transforms nested loops to parallel loops; 

If separability test is not true, then transforms nested loops to parallel 

loops; 

Compute Bk and Fk by Procedure Compute_NB ; 

k = k + 1 ; 
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Endwhile 

Step 2: /* To find the loop Li which will be interchanged with the outermost 

loop L1. */ 

i =0 ; 

Find Li such that Bi = min(Bk) for 1 ≤ k ≤ n & Bk > 1 ; 

If i = 0 then transforms nested loops to parallel loops; /* The absence of Li 

in the loop. */ 

If Fi = 0 then go to Step 3; /* The absence of a loop-independent 

dependence (LID) in the loop. */ 

j = 0 ; 

Find Lj such that Bj = min(Bk) for 1 ≤ k ≤ n & k ≠ I & Bk  > 1 ; /* To find 

the loop Lj such that Bj is the smallest except Bi in the nest */ 

Bi = Bi + Bj – 1 ; 

m = 0 ; 

Find Lm such that Bm = min(Bk) for 1 ≤ k ≤ n & k ≠ I & Bk > 1 &Fk = 0 ; /* 

To find the loop Lm except Li in which LID does not exist. */ 

If m = 0 then go to Step 3 ; /* The absence of Lm. */ 

Find Li such that Bi = min(Bi, Bm) /* To find again the loop Li which will 

be interchanged with the outermost loop L1. */ 

If  Fi = 1 & j ≠ 2 then interchange L2 with Lj ; 

Step 3: If  i> 1 then interchange L1 with Li ; 

Step 4: If LID does not exist in the outermost loop (i.e., when Li is the 

outermost loop, Fi = 0) then the same as Step 4 in Procedure LoopSplit_3 

Step 5: else { split the outermost loop by the same as Step 4 in Procedure  

LoopSplit2 ;  

for all splitted blocks of the outermost loop except the block 

where LID exists, transforms all loops nested inside the outermost 

loop to DOALL’s ; 

for the block where LID exists, 

If j = 0 then leave all loops nested inside the outermost loop as 

they are original loops 

else { split the second loop by the same as Step 4 ; 

transform all loops nested inside the second loop to DOALL’s } } 

; 

Stop ; 

/* The results of the loop in Figure 4.4 transformed by Step 4-5 

(1) The absence of LID in Li                                         (2) The presence 

of LID at x in Li 

DO Ii’ = li, ui, λi                                                       DO Ii’ = li, x-1, 

λi 

DOALL I1 = Ii’, min(ui, Ii’+λi-1)                           DOALL Ii = 

Ii’, min(x-1, Ii’+λi-1) 

DOALL I2 = l2, u2                  DOALL 

            . . .                                                                         . . . 

DOALL I1 = l1, u1                                     DO Ii’ = x, x 

          DOALL Ii+1 = li+1, ui+1                                DO I2’ = l2, u2, 

λ2 

               . . .                                                                DOALL I2 

= I2’, min(u2, Ii’+λ2-1) 

             DOALL In = ln, un                                              . . . 

                 . . .                                                    DO Ii’ = x+1, ui, 

ii 

            ENDDO                                                    DOALL Ii = Ii’, 

min(ui, Ii’+λi+1) 

                . . .                                                             DOALL 

                                                                                                               . . . 

END LoopSplit_4 

 

Figure 6 shows the result of the loop in Figure 3 transformed 

by Procedure LoopSplit_4. In step 2, Bis are computed as B1 = 

5, B2 =5 and B3 = 4. The third loop can be splitted as the 

smallest number of blocks of them. However, since there is a 

loop-independent dependence in L3, L2 without a loop-

independent dependence is selected as the outermost loop (B2 

= 5 < B3 = B3 +B1 = 9). 
. . . 

 
Fig. 6. The result of the loop in Figure 3 transformed by Procedure 

LoopSplit_4 

 

 

Ⅳ. Conclusion 

In this research, we have presented the parallelization of 

multi-dimensional loops with both dependences and nested 

loops with simple subscripts in order to improve 

parallelization. For single-loops, we introduce two partitioning 

techniques such as loop partitioning technique by thresholds 

and Polychronopoulos' loop partitioning technique. But, some 

parallelization unexploited is leaved, and the second one has 

some dependence restrictions. Therefore, we proposed two 

generalized enhanced algorithms in order to improve 

parallelization. Using distance of the first dependence, we 

show the first enhanced algorithm for single-loops with both 

flow and anti-dependences. Using the first algorithm, loop 

interchanging method, and cycle shrinking method, we present 

the second generalized algorithm for parallelization of nested 

loops with simple subscripts. Using the second algorithm, we 

also present parallelization for multi-dimensional loops with 

both dependences. Our two presented algorithms show 

enhanced loop parallelization of multi-dimensional loops with 

both dependences. We will improve our proposed algorithms 

for multi-dimensional space with multiple dependences. 
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