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Abstract—In real-world problems, input data may be uncer-
tain or imprecise. Naı̈ve possibilistic classifiers (NPC) based on
possibility theory have been proposed for classification tasks
in this situation. However, two strong assumptions: attributes
independence and their equal importance, ignoring the de-
pendent relationship among attributes, affect the classification
performance. In this paper, three improved weighted NPC al-
gorithms are presented for classifying imprecise data efficiently
by relaxing these assumptions. We first present a weight based
on the attribute contribution in order to take the effect of
the different values of each attribute on classification into
consideration. Then, another weight is presented on the basis of
the non-specificity gain for each attribute, which measures the
significance of each attribute. Whereafter, we introduce three
improved algorithms, generated by two weights and the merged
weight respectively. Finally, we make a comparison between
three improved algorithms and the NPC. And a series of
numeric studies are performed using a broad range of data sets
for different traditional algorithms. Extensive experiments show
that three proposed algorithms all have higher classification
accuracy than NPC and other traditional algorithms in most
data sets. Even the algorithm after merging two weights has
better performance than others.

Index Terms—Classification, Possibility theory, Naı̈ve possi-
bilistic classifier, Specificity of gain, Imprecise data, Weight.

I. INTRODUCTION

CLASSIFICATION, used to predict class value for an
unknown instance, is one of the important tasks in

machine learning and data mining applications [1]. The task
is mainly divided into the training phase and testing phase.
In the training phase, one produces a classifier from a set
of training samples described by an attribute set with known
class values. Once the classifier is constructed, it can assign
the class value to new instances given the known values of
their attributes, which constitutes the testing phase.

There have been various algorithms for classification tasks,
including decision trees (TREE) [2], support vector machine
(SVM) [3], [4], neural network [5], [6], bayesian network [7],
[8], [9], and so on. Among these approaches, naı̈ve bayesian
classifier (NBC) [10], as a specific kind of bayesian network
is one of the most efficient classifiers. And its classified
performance is competitive with state-of-the-art classifiers.
NBC based on probability theory, is very effective in the
domains of uncertainty. However, it confronts problems when
faced with imperfect data.
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Almost all of classification techniques deal with the per-
fect data in which each instance is assigned to a certain class
value. In fact, compared with an accurate label, it is more
appropriate for an expert to give the possibility degree of
the label to which an instance belongs. For example, a doctor
cannot diagnose the exact disease of a patient sometimes, and
a banker cannot determine whether or not to give a loan for
a client sometimes. Hence, the inconsistency of information,
especially the uncertainty among labels, may appear if sever-
al experts are consulted. As traditional classifiers ignore such
data, there is no doubt that they are not suitable to classify
in such situation.

In order to cope with imprecise data, several theories of
uncertainty have been proposed, such as fuzzy set theory
[11], [12], rough set theory [13], [14], evidence theory [15]
and possibility theory [16]. In this paper, we are interested
in the classification approach based on possibility theory.
Possibility theory was introduced initially by Zadeh [17] and
developed by Dubois and Prade [18]. Although both of them
can deal with the uncertainty, one of the biggest differences
between them is that possibility theory can represent not
only uncertain but also imprecise information [19]. Naı̈ve
possibilistic classifiers (NPC) [20] based on possibility theo-
ry have been proposed for classification tasks. Subsequently,
Myriam Bounhas et al. have pushed the research on NPC one
step further from discrete attributes to numerical attributes
[21]. And experiments demonstrated that the NPC has a
robust behavior when coping with imprecise data. Then,
decision trees as possibilistic classifiers was proposed by
Jenhani [22]. In recent years, Baati et al. applied the NPC
for diagnosis of lymphatic diseases and studied the modified
NPC based on minimum algorithm [23]. In spite of the
fact that possibility distributions are useful for representing
imperfect knowledge, there is only little further research on
the application of using possibility theory for classification
tasks.

As a counterpart to bayesian classifier, the NPC also
estimates conditional joint possibility of a set of attributes.
In order to solve the reasoning calculation which is a NP-
hard problem, algorithm is implemented under two strong
assumptions: attributes independence and their equal impor-
tance. However, strong assumptions mentioned above are
rarely true in reality. And the NPC sometimes shows poor
classification performance in many data sets. In addition,
with the number of imprecise instances in training data
increasing, the classification accuracy gradually reduces [20].
Therefore, it is natural to improve the NPC by weakening
these strong assumptions. Tree augmented naı̈ve possibilistic
classifier (TANPC) is proposed [24], which is a modified
approach for structure extension.

To overcome the limitation, this paper focuses on feature
weighting approaches for the NPC. As is known to all, many
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feature weighting algorithms have been especially designed
for NBC, but there are only few further works for NPC. The
paper tries to propose two types of weighting techniques. The
main goal is to improve the existing NPC by relaxing strong
assumptions, making it more suitable for many real data
sets. Since the conditional possibility in NPC only considers
the proportion of each attribute value given the class value
to the whole number of this attribute value. Firstly, we
consider the contribution degree of different attribute values
for classification. Specifically, the proportion of each attribute
value given the class value to the whole number of this
class value, as the weight, is added to each conditional
possibility. Then, in order to relax the strong assumption
of equal importance, we use the specificity gain measure
to calculate the importance of each attribute as the amount
of information. Moreover, we incorporate two weights as a
weight in classification task. As a result, the paper proposes
three feature weighting algorithms for NPC. Compared to
the traditional NPC, our feature weighting approaches show
higher classification accuracy.

These algorithms not only consider the effect on classi-
fication by different attribute values, but also consider the
significance of each attribute to the classification task. The
main contributions stand out as follows:
• Take the contribution degree of different attribute values

for classification into account, to reduce the influence
of a small number of attribute values on classification
tasks.

• Use the specificity gain measure to evaluate the impor-
tance of each attribute to the class system, to relax the
equal importance assumption among attributes.

• Conduct experiments from two aspects according to the
change of imprecise degrees, namely perfect and im-
precise labeled data. Meanwhile, compare the improved
NPCs with traditional classifiers. And the final results
show the better performance of our algorithms.

The remainder of the paper is structured as follows. In
section 2, we review the basics of possibility theory. Section
3 introduces the mechanism of NPC. Section 4 proposes
feature weighting approaches for NPC. Section 5 presents
in detail the experimental setup and results about improved
classifiers for prefect and imprecise data, and shows the effi-
ciency of weighted naı̈ve possibilistic classifiers for handing
uncertainty data. Finally, section 7 makes a conclusion and
discusses some future research directions.

II. BASICS OF POSSIBILITY THEORY

In this section, we will provide a brief recalling on pos-
sibility theory. Then, the specificity gain as a counterpart of
Shannon entropy, used to represent a measure of uncertainty
information for possibility theory, is introduced.

A. Basic notions of possibility theory

Possibility theory, a non-classical theory, was initiated by
Zadeh [17] and developed by Dubois and Prade [25]. The
fundamental concept of possibility theory is possibility distri-
bution which plays the same role with probability distribution
in probability theory.

Definition 1. Let Ω = {ω1, ω2, · · · , ωn} denote an uni-
verse of discourse. A possibility distribution, denoted as π,

is defined to be a mapping from the domain of discourse Ω
to a totally ordered scale L ∈ [0, 1].

The value π(ωi) is called possibility degree, which means
to what extent ωi is consistent with the truth value of the
variable. As required, π(ωi) = 1 implicates that ωi as the
value of the variable is totally possible, π(ωi) = 0 denotes
that it is impossible that ωi is the value of the variable, and
π(ωi) > π(ωj) means that ωi is more plausible than ωj as
the value of the variable.

Possibility theory relies on two dual possibility and neces-
sity measures.

Definition 2. Possibility and necessity measures are de-
fined for an event A ⊆ 2Ω by the following formulas,
respectively:

Π(A) = max
ω∈A

π(ω), (1)

N(A) = min
ω/∈A

(1− π(ω)) = 1−Π(A), (2)

where Π(A) evaluates at which level A is consistent with
our knowledge encoded by π, namely degrees of plausibility,
while the necessity measure N(A) evaluates at which level
A is certainly implied by our knowledge represented by π,
namely degrees of belief.

Indeed, it has been proved that a possibility measure
is between probability measures and necessity measures,
namely,

∀P ∈ P (Π),∀A,Π(A) ≥ P (A) ≥ N(A). (3)

It is noteworthy that a possibility as an upper probability is
the starting point for transforming a possibility distribution
into a probability distribution and conversely [26], [27].

Conditioning is also an essential notion in possibility
theory. In various publications, different types of conditional
possibility have been introduced. Dubois and Prade [28]
defined a conditional possibility according to a counterpart
of Bayes rule.

Definition 3. Conditional possibility can be defined as
follows:

Π(A ∩B) = Π(A | B) ∗Π(B), (4)

where ∗ can be chosen as the minimum or the product
operator [29], [30]. The min operator is applied to the quali-
tative setting, while the product is suitable in the quantitative
situation. In the paper, we mainly focus on the quantitative
setting.

B. Non-specificity

In various uncertainty theories, different uncertainty mea-
sures are applied to represent different types of uncertain-
ty. As mentioned in the literature [31], [32], Higashi and
Klir proposed that possibility theory deals with a source
of uncertainty, namely, non-specificity. The non-specificity
[33], as a counterpart of Shannon entropy in probability
theory, represents a measure of uncertainty information for
possibility theory.

Let π and π′ represent two possibility distributions on Ω
respectively, and π is more specific than π′ if and only if,
for each ω ∈ Ω, π(ω) ≤ π′(ω). Obviously, the more specific
possibility distribution has, the more information it brings.
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The first measure of non-specificity was proposed by
Hartley for classical set theory [31]. Then the majority
of non-specificity measures proposed for other uncertainty
frameworks (e.g. evidence theory, fuzzy set theory, pos-
sibility theory, etc.) represent a generalization of Hartley
function. In the possibilistic setting, the measure of non-
specificity, called U-uncertainty, has the form: U : R→ IR+,
where R denotes the set of all finite and ordered possibility
distributions.

Definition 4. Given an ordered possibility distribution
π =< π1, π2, · · · , πn > such that 1 = π1 ≥ π2 ≥ · · · ≥ πn.
The U-uncertainty of π is given by the formula:

U(π) =
n∑
i=1

(πi − πi+1) log2 i, (5)

where πn+1 = 0 by convention. Note that the range of U is
[0, log2 n]. U(π) = 0 is obtained for the case of complete
knowledge (no uncertainty) and U(π) = log2 n is reached
for the case of total ignorance.

In some areas of decision-making, one can measure the
amount of uncertainty in order to decide which one is the
most informative. In the paper, we use non-specificity gain
other than the mutual information to measure the important
degree of attributes for the classification system in possibility
setting.

III. NAÏVE POSSIBILISTIC CLASSIFIER

In this section, the NPC will be presented in detail.
NPC, applying possibility theory in classification problems,
was derived from Bayesian classifiers. Therefore possibilistic
approaches classify samples on the basis of the possibilistic
version of the Bayes theorem.

A. Classification model of NPC

In classification problems, let us denote by A =
{A1, A2, · · · , An} the set of attribute variables and C =
{c1, c2, · · · , cd} the set of classes in the training set. Given an
observed vector {a1, a2, · · · , an} of X to be classified, pos-
sibilistic classifiers compute the posterior possibility π(ck|X)
for each class ck in C, and assign the instance X to the class
ck that maximizes the posterior possibility, ie

c = arg max
ck∈C

(Π(ck|X)). (6)

Use the possibilistic version of the Bayes rule in the
quantitative setting:

Π(ck|X) =
Π(ck, X)

Π(X)
. (7)

As a counterpart to bayesian classifier, NPCs estimate joint
possibility of a set of attributes, i.e., Π(ck, X). Because the
reasoning calculation is a NP-hard problem, algorithm is
implemented according to the following two assumptions:
• Suppose that it works under the strong assumption of

independence of attributes in the context of the class
value. Its model is shown in [34].

• Assume that all attributes are equally important in
assigning the class value for an unknown instance.

NPC is a simple form, once assuming the independence
of attributes, Eq.(7) can be simplified:

Π(ck|X) =
π(ck)π(a1|ck)π(a2|ck) · · ·π(an|ck)

Π(a1a2 · · · an)
, (8)

where π(ck) = 1 by convention. Each conditional possibility
π(ai|ck) in formula (8) can be estimated by using different
methods for both categorical [20] and numerical attributes
[21]. Eventually, Eq.(6) can be rewritten as:

c = arg max
ck∈C

n∏
i=1

(Π(ai|ck)). (9)

B. Conditional possibility

As mentioned above, π(ai|ck) means the conditional pos-
sibility in the context of the class node. In this section, we
mainly focus on the calculation of conditional possibility for
categorical attributes proposed by Bakhta Haouari [20].

When classes are imprecise in the training set, they com-
puted the conditional possibility by using geometric mean
function as the following formula:

π(ai|ck) = meanTr(ai,ck)π(Xj |ck), (10)

where Tr(ai, ck) means the number of training samples with
the attribute value of ai in the context of the class ck, then
π(Xj |ck) is the possibility degree of the sample Xj which
belongs to the class ck in Tr(ai, ck).

Then, a simple classification example is followed to illus-
trate the computational process of the conditional possibility.

Example1. Table 1 shows a imprecise labeled training
set, which is composed of fourteen samples characterized
by four attributes. And these training samples belong to
two classes (no, yes). Attributes are outlook, temperature,
humidity and wind, respectively. π1 denotes π(Xj |Y es) and
π2 denotes π(Xj |No). Then π(X1|Y es) = 0.2 means that
the possibility degree is 0.2 for instance X1 which belongs
to the Yes class.

Let us compute π(rainy|Y es) by Eq.(10) as follow:

π(rainy|Y es) =
(1 + 1 + 1 + 0.4 + 1 + 1 + 0)

7
= 0.7714.

Once each conditional possibility is computed, we can
predict the class value for an unknown labeled instance by
Eq.(9).

IV. FEATURE WEIGHTING APPROACHES

Two strong assumptions of NPC mentioned in section 1 do
impact on its classification performance when it is violated
in a learning task.

In practice, since the assumption of equally important
attributes is rarely satisfied, several studies have tried to
relax this assumption by assigning different weights to at-
tribute variables. The underlying principle of weighted naı̈ve
possibilistic classification is that some attributes are more
important than others in deciding the classification. This
leads to the modification of Eq.(9) given as,

c = arg max
ck∈C

n∏
i=1

(wik ∗Π(ai|ck)) (11)
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or

c = arg max
ck∈C

n∏
i=1

Π(ai|ck)wik , (12)

where wik represents the weight of each attribute’s condi-
tional possibility.

Next, two types of attribute weighting approaches are
proposed in this section to improve the NPC.

A. Attribute contribution-based feature weighting

NPCs mainly deal with imprecise data, which include
the imprecise labels in the training set and the imprecise
attributes both in the training and testing set. In our paper,
we mainly focus on the imprecise label in the training set.

Since the NPC induces a classifier from the imprecise
labeled data, each conditional possibility can be calculated
from the training data by Eq.(10). It can be seen from the
formula that the approach regards the possibilistic mean of
the attribute value aj given the class ck as the conditional
possibility π(ai|ck). In other words, it only considers the
proportion of possibility degree π(Xj |ck) to the number of
this attribute value.

However, if the number of a attribute value becomes
small, it will cause the classified result tending to the class
to which this attribute value belongs. In our paper, we
take the contribution degree of different attribute values for
classification into account, reducing the influence of a small
number of attribute values in classification task. Hence, we
define the weight wjk of each conditional possibility as

wjk =

∑
Tr(ai,ck) π(Xj |ck)∑n

i=1 π(Xi|ck)
, (13)

where n denotes the total number of samples which belong
to the class ck.

Example2. For π(rainy|Y es) in example 1, let us com-
pute the weight and weighted conditional possibility by
Eq.(13) and Eq.(11):
wrainy,Y es = (1 + 1 + 1 + 0.4 + 1 + 1 + 0)/(0.2 + 0.4 +

1 + 1 + 1 + 0.4 + 1 + 0.3 + 1 + 1 + 1 + 1 + 1 + 0) = 0.5242,
π′(rainy|Y es) = wrainy,Y es ∗ π(rainy|Y es) = 0.4043.
Next let us compute π(overcast|Y es) by Eq.(10):

π(over|Y es) =
(1 + 1)

2
= 1.

Following Eq.(13) and Eq.(11), the weight and weighted
conditional possibility is obtained, respectively,
wover,Y es = (1 + 1)/(0.2 + 0.4 + 1 + 1 + 1 + 0.4 + 1 +

0.3 + 1 + 1 + 1 + 1 + 1 + 0) = 0.1942,
π′(over|Y es) = wover,Y es ∗ π(over|Y es) = 0.1942.
We can see that π(rainy|Y es) < π(over|Y es), but

π′(rainy|Y es) > π′(over|Y es). It means greater contribu-
tion for the attribute rainy.

Considering the influence of different values on the classi-
fication as a weight, not only reflects the influence degree of
each attribute on the classification process, but also quantities
the relationships between each attribute and class values.
Therefore, we use the wjk as the weighted coefficient is
more reasonable and accurate, and it contributes to improve
the classified accuracy.

TABLE I
A LABELED IMPRECISE TRAINING SET

Sample Outlook Temp Humidity Wind π1 π2

X1 sunny hot high weak 0.2 1
X2 sunny hot high strong 0.4 1
X3 rainy hot high weak 1 0.7
X4 rainy mild high weak 1 0
X5 rainy cool normal weak 1 0.8
X6 rainy cool normal strong 0.4 1
X7 rainy cool normal strong 1 0.9
X8 sunny mild high weak 0.3 1
X9 sunny cool normal weak 1 0.3
X10 rainy mild normal weak 1 0
X11 sunny mild normal strong 1 0.2
X12 overcast mild high strong 1 0
X13 overcast hot normal weak 1 0.3
X14 rainy mild high strong 0 1

B. Non-specificity gain-based feature weighting

Actually, different attributes have different impacts on the
classification tasks in most of data sets. To weaken the equal
importance assumption, another feature weighting approach
is proposed in this section. It applies a weighted coefficient
based on the different important degree of each attribute
to classify unknown instances, thus improving the classified
accuracy of NPC.

In the paper, due to the presence of the imprecise data, we
use specificity gain other than mutual information to measure
the importance degree of each attribute to class variables.

Given a training set D, the non-specificity gain ratio
NSGR(ai, C) is defined as follows:

NSGR(ai, C) =
NSG(ai, C)

U(ai)
, (14)

where C is the class variable, NSG(ai, C) is the non-
specificity gain which assesses the amount of information of
the attribute ai to the classification system. U(ai) denotes the
amount of information about this attribute itself. The specific
calculation formula is shown as follows:

NSG(ai, C) = UC(πrep)− Uai(πrep), (15)

where UC is the non-specificity of the set of possibility
distribution in a training set D. Similarly, Uai is the non-
specificity of the set of conditional possibility distribution
given the attribute ai, which can be calculated by Eq.(5).
In addition, the possibility distribution πrep in UC(πrep)
or Uai(πrep) is defined the arithmetic mean of possibility
distributions. One can see the specific calculation formula in
[22].

Once the gain ratio NSGR(ai, C) of each attribute is ac-
quired, we can calculate the sum of all attributes’ information
gain ratios and define the weight wi of each attribute ai
(i = 1, 2, · · · ,m) as

wi =

∑m
i=1NSGR(ai, C)

NSGR(ai, C)×m
. (16)

After getting the weight value wi of each attribute ai (i =
1, 2, · · · ,m) by Eq.(16), we apply these weights to Eq.(12)
instead of Eq.(11) to improve the classification performance.
Because, we note that NSG(ai, C) ∈ [−log2(n), log2(n)].
Then the value wi can be positive or negative. Note that
each conditional possibility is between 0 and 1 in Eq.(12).
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With the value of wi increasing, the Π(ai|ck)wi decreases.
So it is more suitable to apply Eq.(12), in which we assign
a smaller value wi to a more important attribute. Its main
principle is that a feature with higher gain ratio is acquired
higher possibility degree.

C. Improve weighted naı̈ve possibilistic classifier algorithms

Let W1 denote the attribute contribution-based feature
weight, and W2 denote the non-specificity gain ratio-based
weight. Three improve algorithms for NPC are proposed in
this section.

Firstly, we only consider weight W1 for classification,
called attribute contribution-based weighted naı̈ve possibilis-
tic classifier (ACWNPC). The detailed learning process is
described as Algorithm 1.

Algorithm 1 ACWNPC
Input: a training set D, a testing set d.
Output: the class value c of the testing set d.
1 For each attribute ai(i = 1, 2, · · · ,m) from D,

calculate π(ai|ck) using Eq.(10).
2 In each conditional possibility, calculate the attribute’s

contribution degree for class ck as its weight wik using
Eq.(13).

3 For the testing set d, calculate wik ∗ π(ai|ck) and
predict its class value c using Eq.(11)

4 Return the class value c of d.

Then, we consider weight W2 for classification, called
Non-specificity gain-based weighted naı̈ve possibilistic clas-
sifier (NSWNPC)(see Algorithm 2).

Algorithm 2 NSWNPC
Input: a training set D, a testing set d.
Output: the class value c of the testing set d.
1 For each attribute ai(i = 1, 2, · · · ,m) from D,

calculate π(ai|ck) using Eq.(10).
2 For each attribute ai(i = 1, 2, · · · ,m) from D,

calculate NSGR(ai, C) using Eq.(14).
3 Let NSGR(ai, C) = 0 if and only if

NSGR(ai, C) <= p, in which p is a parameter
and the determination of p value depends on each data
set.

4 Calculate the sum of all attributes’ non-specificity gain
ratios.

5 For each attribute ai(i = 1, 2, · · · ,m), calculate its
weight wi using Eq.(16).

6 For the testing set d, calculate π(ai|ck)wi and predict
its class value c using Eq.(12).

7 Return the class value c of d.

Finally, it regards the incorporation of W1 and W2 as the
final weight denoted as following, namely, merged weighted
naı̈ve possibilistic classifier (MWNPC). The detailed learning
process is described as Algorithm 3. Merge the Eq.(12) and
Eq.(13) as following:

c = arg max
ck∈C

n∏
i=1

(wik ∗Π(ai|ck))wi . (17)

Algorithm 3 MWNPC
Input: a training set D, a testing set d.
Output: the class value c of the testing set d.
1 For each attribute ai(i = 1, 2, · · · ,m) from D,

calculate π(ai|ck) using Eq.(10).
2 In each conditional possibility, calculate the attribute’s

contribution degree for class ck as its weight wik using
Eq.(13).

3 For each attribute ai(i = 1, 2, · · · ,m) from D,
calculate NSGR(ai, C) using Eq.(14).

4 Let NSGR(ai, C) = 0 if and only if
NSGR(ai, C) <= p, in which p is a parameter
and the determination of p value depends on each data
set.

5 Calculate the sum of all attributes’ non-specificity gain
ratios.

6 For each attribute ai(i = 1, 2, · · · ,m), calculate its
weight w′i using Eq.(16).

7 Calculate the fusion value of wik and w′i, and predict
its class value c using Eq.(17) for the testing set d.

8 Return the class value c of d.

D. Algorithm complexity

We mainly concerned about the time complexity of our
algorithm in this section. In the training phase, let m and x
denote the number of training instances and class variables,
respectively. Each instance is described by y attributes,
and the number of each attribute values is denoted by
n1, n2, · · · , ny . First, the time complexity of conditional
possibilities is x ∗ (n1 + n2 + · · · + ny). Then, in order
to acquire the weighting based on attribute contribution,
algorithm also need to be implemented x∗(n1+n2+· · ·+ny)
times. For the weighting based on non-specificity gain, it
need x ∗ (n1 +n2 + · · ·+ny) + y times. Thus, the algorithm
ACWNPC performs 2 ∗ x ∗ (n1 + n2 + · · · + ny) times,
NSWNPC performs 2 ∗ x ∗ (n1 + n2 + · · ·+ ny) + y times
and MWNPC needs 3∗x∗ (n1 +n2 + · · ·+ny)+y times. In
the worst situation, both of their time complexity are O(n3).

Similarly, in the testing phase, let m′ denote the number
of instances in the testing data. Classification process needs
to be done m′ ∗ y ∗ x times. Hence, in the worst situation,
the time complexity is also O(n3). From the above analysis,
the total time complexity is O(n3), which is equal to the
NPC’s. Hence, the advantage of our algorithms which do
not increase the time complexity is highlighted.

V. EXPERIMENTS AND RESULTS

In the section, we evaluate the NPC, ACWNPC, NSWNPC
and MWNPC respectively and compare them against other
state-of-the-art classifiers to validate the classification perfor-
mance.

A. Data sets

We run our experiments on 8 widely used classification
benchmark databases from UCI [35], whose detail descrip-
tions are shown in Table 2. Instances, attributes and classes
denote respectively the total number of instances, the number
of attributes and the number of classes.
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TABLE II
DATE SETS USED IN THE EXPERIMENTS

Data set Instances Attributes Classes

Ionosphere 351 34 2
Voting 435 16 2

Balance scale 625 4 3
Breast cancer 699 9 2

Vehicle 846 18 4
Segment 2310 18 7

Wave 5000 40 3
Nursery 12960 8 5

TABLE III
EXPERIMENTS RESULTS FOR NPC AND OUR CLASSIFIERS(L = 0%)

Data sets NPC ACWNPC NSWNPC MWNPC

Ionosphere 94.60(2.9) 94.31(1.8) 95.17(2.6) 94.02(2.8)
Voting 89.63(5.5) 90.10(4.8) 90.31(3.7) 90.55(3.8)

Balance scale 90.87(3.6) 91.84(3.9) 91.52(3.8) 91.84(3.9)
Breast cancer 95.13(3.4) 95.85(3.0) 95.56(3.0) 95.99(2.9)

Vehicle 64.43(4.5) 64.32(5.2) 64.91(0.4) 64.55(4.1)
Segment 93.07(2.2) 93.33(2.0) 92.99(2.1) 93.20(1.9)

Wave 82.30(1.2) 81.62(1.4) 80.90(1.5) 80.60(1.4)
Nursery 87.94(1.4) 89.66(0.9) 87.33(0.9) 87.42 (0.8)

Average 87.24 (3.1) 87.62(2.8) 87.33(2.2) 87.27(2.7)

B. Experimental setting

Let us point out that all the continuous data are processed
with the discrete way in the preprocessing stage. Then, since
the NPC mainly deals with the imprecise data, we mainly
obtain imprecise labeled data in our experiments.

In many real-world problems, imprecise data may be met
for instance. However, there are no such data sets in the
repository of machine learning databases which could be
used for testing classifiers. Note that, imprecise data in our
paper refer to the uncertainty associated with the class in the
training set.

To artificially introduce imprecise labeling, the following
procedure is set up. We generate different levels of un-
certainty training sets from 0 to 50%. For each instance
chosen L% from training sets randomly, we have associated
a possibility degree equal to 1 with the original class and
another possibility degree which obtained in an uniform way.
For the remaining databases, we have defined a completely
consistent possibility distribution with the initial classes. In
our experiments, we generate imprecise data sets which vary
the levels of uncertainty labels L from 0 to 50.

For example, let an instance belong to one of three classes,
i.e., c1, c2, c3. In the uncertainty case, we assign an instance
three possibility degrees π(Xj |c1) = 0.2, π(Xj |c2) = 0.6,
and π(Xj |c3) = 1, respectively. It means that the degree to
which the instance belongs c3 is 1.

We use the percentage of correct classification as the
criteria of accuracy, that is

Accuracy =
N∑
i=1

δ(c′i, ci)/N,

where c′i denotes the class value obtained by the classifier
for instance i, and ci is its true value. δ(c′i, ci) = 1 if c′i = ci
and 0 otherwise, and N is the total number of classified
instances.

TABLE IV
EXPERIMENTS RESULTS FOR OUR CLASSIFIERS AND TRADITIONAL

CLASSIFIERS

Data NBC SVM TREE ACWNPC NSWNPC MWNPC

1 90.59 92.30 89.17 94.31 95.17 94.02
2 90.11 96.09 96.32 90.10 90.31 90.55
3 70.72 72.00 69.60 91.84 91.52 91.84
4 96.99 96.42 94.99 95.85 95.56 95.99
5 62.64 73.52 71.98 64.32 64.91 64.55
6 91.51 93.07 93.32 93.33 92.99 93.20
7 79.96 81.96 72.78 81.62 80.90 80.60
8 90.32 93.07 97.05 89.66 87.33 87.42

9 84.11 87.30 85.90 87.62 87.33 87.27
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Fig. 1. Experimental comparison of NBC(diamond), SVM(plus),
TREE(circle), NPC(∗), ACWNPC(square), NSWNPC(hexagram) and
MWNPC(pentagram)

C. Experiments and conclusion

This section provides experimental results of proposed
possibilistic classifiers for perfect and imperfect data. The
experimental study is divided into two parts. First, we eval-
uate the ACWNPC, NSWNPC and MWNPC methods and
compare our results to a classical NPC for perfect data. And
on the basis of it, we compare other traditional methods with
our methods. Traditional methods include NBC, SVM and
TREE (J48). Second, we test the efficiency of the proposed
classifiers to support uncertainty related to the classes.

Table 3 shows the detailed classification accuracy of NPC,
ACWNPC, NSWNPC and MWNPC on each database ob-
tained via ten runs of ten-fold cross-validation, respectively.
And the values in brackets are the standard deviation. The
averages are summarized at the bottom of the tables, which
provide a gross indication of relative performance in addition
to other statistics.

By comparing Table 3, we can see the results of our
classifiers are better than the NPC in most data sets: (a)the
ACWNPC, NSWNPC and MWNPC methods all obtain five
wins and have competitive performance with NPC in other
three data sets; (b)if compared with the standard deviation,
we note that our methods perform better stability than the
NPC in most of the data sets; (c)in average, the ACWNPC,
NSWNPC and MWNPC methods obtain better results.
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Fig. 2. Average accuracy results for the comparison between improved
algorithms and traditional algorithms

TABLE V
EXPERIMENTS RESULTS FOR NPC AND OUR CLASSIFIERS(L = 10%)

Data sets NPC ACWNPC NSWNPC MWNPC

Ionosphere 88.30(6.9) 90.60(5.0) 91.16(4.9) 91.73(4.5)
Voting 88.95(5.6) 89.64(4.3) 88.74(4.5) 89.89(3.4)

Balance scale 88.31(4.2) 89.11(3.7) 88.47(4.0) 89.43(4.1)
Breast cancer 95.71(1.3) 96.71(1.9) 96.42(1.5) 96.71(1.6)

Vehicle 62.89(5.1) 62.89(6.1) 62.30(5.2) 63.01(6.2)
Segment 88.18(1.5) 88.18(1.5) 87.92(1.5) 87.92(1.5)

Wave 81.88(2.7) 81.06(2.3) 80.24(2.3) 79.52(2.2)
Nursery 88.48(1.0) 89.54(0.8) 85.93(1.1) 85.74(1.1)

Average 85.33(3.5) 85.96(3.2) 85.14(3.1) 85.49(3.0)

TABLE VI
EXPERIMENTS RESULTS FOR NPC AND OUR CLASSIFIERS(L = 20%)

Data sets NPC ACWNPC NSWNPC MWNPC

Ionosphere 87.75(4.2) 90.31(4.3) 90.60(5.0) 91.16(4.3)
Voting 89.20(4.2) 89.19(3.7) 89.64(4.3) 91.01(4.2)

Balance scale 81.78(6.1) 86.41(5.5) 80.98(7.3) 87.52(3.3)
Breast cancer 95.56(2.3) 97.14(1.7) 96.71(2.1) 97.28(1.5)

Vehicle 60.05(5.1) 60.87(6.0) 61.11(5.1) 61.70(5.2)
Segment 86.62(2.6) 86.41(2.9) 86.36(2.3) 86.36(2.3)

Wave 81.04(2.5) 80.02(2.4) 79.42(2.2) 78.90(2.0)
Nursery 77.33(2.3) 84.98(0.8) 81.66(1.8) 83.16(1.1)

Average 82.41(3.6) 84.41(3.4) 83.31(3.7 84.63(2.9)

Compared with the traditional NBC, SVM and TREE(J48)
methods, the experimental results are given in Table 4 (from
1 to 8, they represent data sets: Ionosphere, Voting, Balance
scale, Breast cancer, Vehicle, Segment, Wave and Nursery in
turn. And 9 represents the average). The results show that:
(a)the ACWNPC method outperforms the NBC in five data
sets and have competitive performance with NPC in other
three data sets; NSWNPC and MWNPC both obtain six wins
vs. two losses; (b)our proposed methods obtain three wins
and have competitive performance with SVM in other data
sets; (c)improved algorithms significatively outperform the
TREE(J48) in four data sets and significatively beaten by it
in three data sets. And in the Segment, our classifiers and
the TREE(J48) have competitive performance; (d)in average,
our improved algorithms are superior to the traditional algo-
rithms.

TABLE VII
EXPERIMENTS RESULTS FOR NPC AND OUR CLASSIFIERS(L = 30%)

Data sets NPC ACWNPC NSWNPC MWNPC

Ionosphere 87.78(8.5) 90.32(6.4) 90.05(7.1) 91.17(5.9)
Voting 88.53(4.7) 89.19(3.1) 89.67(3.7) 89.89(5.0)

Balance scale 79.05(5.9) 84.17(5.4) 79.37(6.8) 84.65(4.9)
Breast cancer 95.28(2.1) 97.14(1.1) 96.28(1.8) 97.14(1.3)

Vehicle 61.72(7.0) 62.31(5.6) 61.72(6.0) 62.90(4.8)
Segment 84.76(4.0) 84.81(3.6) 84.33(4.1) 84.64(3.9)

Wave 79.30(2.7) 78.98(2.6) 78.40(2.4) 78.20(2.2)
Nursery 79.29(2.3) 85.81(1.4) 81.06(0.9) 84.38(1.4)

Average 81.96(4.6) 84.09(3.6) 82.61(4.1) 84.12(3.6)

TABLE VIII
EXPERIMENTS RESULTS FOR NPC AND OUR CLASSIFIERS(L = 40%)

Data sets NPC ACWNPC NSWNPC MWNPC

Ionosphere 87.19(6.0) 90.32(3.8) 89.46(5.2) 91.45(3.5)
Voting 88.28(5.8) 89.20(4.4) 89.19(4.5) 89.55(5.1)

Balance scale 76.43(7.4) 83.33(5.1) 77.40(7.1) 84.60(7.4)
Breast cancer 95.28(2.5) 96.85(2.2) 95.70(2.8) 97.28(1.7)

Vehicle 60.77(5.4) 61.95(5.2) 61.83(4.6) 62.66(4.2)
Segment 84.03(3.7) 83.98(3.5) 84.07(3.5) 84.11(3.4)

Wave 79.52(2.0) 79.00(2.0) 78.36(2.0) 78.18(2.0)
Nursery 73.88(2.4) 82.04(1.9) 79.10(2.2) 82.27(1.1)
Average 80.67(4.4) 83.33(3.5) 81.88(3.9) 83.76(3.5)

TABLE IX
EXPERIMENTS RESULTS FOR NPC AND OUR CLASSIFIERS(L = 50%)

Data sets NPC ACWNPC NSWNPC MWNPC

Ionosphere 86.62(5.3) 89.75(5.2) 88.05(4.5) 90.90(5.1)
Voting 88.75(3.4) 88.53(3.8) 90.36(4.9) 89.20(5.1)

Balance scale 77.13(7.9) 83.84(6.3) 77.28(8.1) 83.68(6.9)
Breast cancer 94.71(2.7) 96.86(2.1) 95.28(2.7) 97.14(2.4)

Vehicle 60.63(3.7) 60.87(3.9) 61.58(4.5) 62.56(4.3)
Segment 83.46(3.4) 83.51(3.2) 83.51(3.4) 83.51(3.4)

Wave 79.40(2.3) 78.84(1.8) 78.46(1.9) 77.90(1.8)
Nursery 66.37(1.2) 75.52(1.0) 75.64(1.5) 79.77(1.2)
Average 79.63(3.7) 82.31(3.4) 81.27(3.9) 83.08(3.7)

1) Experiments for the perfect data: In Fig.1, the im-
proved classifiers are represented by the solid lines and the
traditional classifiers are represented by the dotted lines. And
we can see that improved classifiers obtained better results
than the traditional classifiers because the solid lines are
above the dotted lines on most data sets. In order to make
the results intuitive and clear, the average accuracy results for
the comparison between improved algorithms and traditional
algorithms are displayed in Fig.2.

2) Experiments for the imperfect data: We preform the
experiment six times for each method, since it generates
imprecise data which varies the levels of uncertainty labels
L from 0 to 50 for each database. Thus, Table 5-9 report the
results after varying the training sets’ level of uncertainty L
from 10 to 50 for each database, respectively. Note that there
is no comparison with the traditional classification method
mentioned above, such as NBC, TREE and SVM. It is
because these methods are only used in certain environments
while the NPC approach and improved weighted algorithms
deal with both certain and uncertain environments.

In order to make the results intuitive, the accuracy results
for each data are displayed in Figs.3 and Figs.4. Figs.3(a)
shows four lines of the accuracy for different algorithms over
imprecise degree and is the same with other figures.
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Fig. 3. The classified accuracy on different datasets from the L = 0% to L = 50%

As we can see from Figs.3 and Figs.4, almost all proposed
algorithms in our paper, i.e., ACWNPC, NSWNPC and
MWNPC, have better performance than the NPC: (a)the lines
denoted MWNPC are above the other lines in six data sets;
(b)these lines denoted ACWNPC, NSWNPC and MWNPC
are above the NPC line in seven data sets; (c)with the
increase of imprecise degree, the accuracy increases more
remarkably than other imprecise groups.

Fig.5 mainly shows that the variations with respect to
standard deviation over algorithms on the average values of
all databases. It reflects that the improved algorithms perform
better than the traditional NPC not only in accuracy but also
in stability.

We use the Wilcoxon Matched-Pairs Signed-Ranks Test
[36] to compare four classifiers. It is a non-parametric
alternative to the paired t-test which has the advantages of not
having to assume the data distribution. And it enables us to
compare two classifiers over multiple data sets. Comparison
results given in Table 10 show that the ACWNPC and
MWNPC have competitive performance and they are always
significantly better than the NPC (p− value < 0.05).
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Fig. 5. Average accuracy and standard deviation of NPC and our classifiers
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Fig. 4. The classified accuracy on different datasets from the L = 0% to L = 50%

TABLE X
RESULTS FOR THE WILCOXON MATCHED-PAIRS SIGNED-RANKS TEST

ACWNPC vs NPC ACWNPC vs NSWNPC ACWNPC vs MWNPC

p ≤ 0.028 p ≤0.028 p ≤ 0.600

NSWNPC vs NPC MWNPC vs NSWNPC MWNPC vs NPC

p ≤ 0.075 p ≤0.046 p ≤0.028

From these experimental results, we can see that our
proposed feature weighting approaches rarely degrade the
quality of original naı̈ve possibilistic classifiers and, in many
cases, improve them remarkably.

Now, we summarize the highlights as follows:
• Our algorithms improve the accuracy and do not in-

crease its computation complexity, as is shown in sec-
tion 4.

• As the level of uncertainty increases, classification accu-
racies of the NPC, ACWNPC, NSWNPC and MWNPC
decrease in most of the data sets. It can be explained
by the fact that the higher the level of uncertainty is,
the less information it leads.

• Almost all proposed algorithms, i.e., ACWNPC, N-
SWNPC and MWNPC, have better performance than
the NPC, NBC, SVM and TREE in most of the data
sets. In the other cases, our classifiers have competitive
performance with the SVM and TREE.

• The difference between the merging weighted algorithm
MWNPC and NPC is statistically significant in most of
the data sets.

• Even, with the increase of imprecise degree, the accu-
racy increases more remarkably than other imprecise
groups.

• Comparing with the standard deviation, we note that
improved algorithms perform better in stability than the
NPC for a majority of data sets.

VI. CONCLUSION

The main purpose of the paper is to overcome the lim-
itation of the strong assumptions for the traditional NPC.
We study two feature weighting approaches to improve
standard naı̈ve possibilistic classifiers. In the paper, we adapt
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two simple and effective feature weighting approaches to
the NPC. One is the attribute contribution-based feature
weighting approach, and the other is the non-specificity gain
ratio-based feature weighting approach. These algorithms not
only consider the effect on classification by the different
attribute values, but also consider the significance of each
attribute to the classification task.

In the paper, three improved algorithms are proposed,
namely, ACWNPC, NSWNPC and MWNPC. The experi-
mental study is divided into two parts. First, we evaluate the
ACWNPC, NSWNPC and MWNPC methods and compare
our results to a classical NPC for perfect data. And on the
basis of it, we compare other traditional methods with our
methods. Second, we test the efficiency of the proposed
classifiers to support uncertainty related to the classes.

Experimental results show that our proposed feature
weighting approaches rarely degrade the quality of original
NPC and, in many cases, improve them remarkably. First,
proposed methods improve the accuracy and do not increase
its computation complexity. Second, the ACWNPC, NSWN-
PC and MWNPC have better performance than the NPC
and traditional classifiers in most of the data sets. Third,
compared with the standard deviation, improved algorithms
perform better in stability than the NPC for a majority of data
sets. Finally, the experimental results on a large number of
data validate their efficiency in terms of classified accuracy.

It is well known that the feature selection can be regarded
as a special feature weighting method, and studying feature
selection is significative in classification tasks. In the future,
we will try to do more works following the idea of feature
selection for imprecise data.
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