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Abstract—The computer simulation in cardiac models has

become an increasingly powerful tool in the study of cardiac

electrophysiology. To precise analysis the electrophysiological

mechanism, it not only demands a significant computing ca-

pacity due to its heavy workload, but also has to be available

and convenient in many medical experiments, which seems

to be contradictory in a conventional computer perspective.

However, with the emergence of new heterogeneous computing

platforms, a surging number of scientific applications are

dramatically improving upon the energy efficiency of existing

solutions. Under such circumstances, this paper presents a

metric method for energy efficiency and several optimizing

strategies, to fully exploit the energy efficiency of applications.

To verify these approaches, we describe a new experience

adapting the computer simulation of electrocardiogram(ECG)

based on a whole-heart model for a Jetson Tegra K1(TK1)

System on Chip(SoC) board, which was previously only possible

on desktop-level platforms. The experiments are conducted to

evaluate the performance and power draw in different situations

on different platforms. In order to investigate the characteristics

of unified memory in TK1 board, an extra experiment was

provided. The experimental results show that our proposed

methods combining with the new hardware can lead to a

encouraging consequence.

Index Terms—Energy efficient, Parallelization, TK1 board,

Unified memory, Computer simulation of ECG.

I. INTRODUCTION

T
HE whole-heart modeling and computer simulation of
electrocardiogram (ECG) has always been a key issue

in the filed of cardiac electrophysiology [1]. Compared with
medical clinical research, this subject enables us to better
study working principles of cardiac electrophysilogy by fully
reproducing the electrophysiological characteristics of heart,
which can not be achieved in most traditional anatomy
experiments [2].

However, due to the enormous computational burden of
cardiac simulation, it was mainly operated on the super-
computers in the early stage. To break the computational
bottleneck, parallelism techniques were employed into this
subject to improve the performance. For example, with the
aid of OpenMP and MPI protocols, Zhu et al. built a whole-
heart model model on a four-node cluster of shared memory
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computers [3]. Tudel et al. used a Silicon Graphic Origin
2000 computer with 64 processors to realize a parallelization
for the simulation of QRST integral maps with a membrane
based on the virtual heart model [4]. Since the calculation
capability mostly relies on multi-processors or multi-nodes
of computers, the poor scalability confines the improvements
on performance to a great extent. In the past decade, with
the rising of various acceleration components, a lot of
researchers had realized that a good performance can be
realized when applications were implemented with paral-
lelization on servers or workstations equipped with Graphics
Processing Unit(GPU). For instance, Sato et al. utilized a
GPU to accelerate the simulation of electrical wave propa-
gation in myocardium and obtained a speedup of 30 times
compared with the completed work of 2D tissue simulation
with a single 2.0 GHz AMD Opteron processor [5]. It is
important to note that the computational capacity of these
platforms is increasing dramatically. But these platforms are
still too expensive to become easily available everywhere.
Recently, a growing number of computer modelings and
simulations of ECG have been applied to ordinary personal
computers(PCs) with x86 architecture. Like the previous
work [6], [7], [8] from our team showed that PCs with CPU-
GPU heterogeneous architecture can provide a good comput-
ing environment for the computer simulation of ECG with
some parallelism strategies. However, up to now, most of
researchers have only focused on improving the performance,
that is, through promoting computation efficiency to reducing
completion time of applications.

At the same time, with the constant extending of the
parallel scale, the power consumption of high performance
computers increases greatly. Moreover, the power consump-
tion of applications of computer systems draw unprecedented
attentions since the Defense Advanced Research Projects
Agency (DARPA) has introduced the high productivity com-
puting systems in [9]. Numerous studies have concentrated
on how to balance the two goals of promoting computation
efficiency and decreasing power draw, that is to say, how to
make a trade-off to realize an energy efficient application.

To solve this problem, on the one hand, many innova-
tive and flexible hardware platforms give developers better
options of optimizing the energy consumption [10]. More
and more scientific computing applications have been used
in these mobile devices. For examples, a mixed-signal ECG
System on Chip(SoC) is capable for portable ECG monitor-
ing applications with low power consumption was achieved
by Kim et al [11]. Raj et al. developed a reliable automatic
monitor based on the condition of patient’s hearts, which
is processed on an ARM-based SoC with just several watts
[12]. On the other hand, two energy-conscious scheduling
algorithms using dynamic voltage scaling (DVS) was pre-
sented by Lee et al., and their work showed that the test
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performance is very compelling in terms of both application
completion time and power consumption [13].

In terms of the modeling and simulation computing of
ECG, these miniature and portable devices fitly have the
advantages of significant computing capacity and lower
power consumption, which enable clinical staff to use them
in a hand-held device or offer medical experimental work-
ers a quick precise calculation result during the time of
making medical diagnosis. To this end, this paper makes a
contribution to achieving an energy efficient computational
application according to the proposed metric method. What’s
important, some optimizing approaches, including some par-
allelization strategies, an adapted scheduling algorithm and
some dynamic controllable mechanisms on Jetson Tegra K1
SoC board, are presented. In the demonstrations, the scenario
is the computer simulation of ECG based on the Wei-Harumi
whole-heart model.

The rest of this paper is organized as follows. In sec-
tion II, we will briefly introduce some related background
knowledge, including some features of TK1 board and some
work of ECG simulation computation. In section III, the
method of how to measure energy efficiency in this work,
and the details of how to conduct the optimizing strategies
and adjustable mechanisms to improve energy efficiency will
be described. The experimental evaluations of performance
and power consumption of TK1 board and that of an ordinary
PC will be exhibited in section IV. An investigation of unified
memory of TK1 board will also be addressed. Then we shall
make a discussion on all of the experiments in the same
section. Last but not least, we draw a conclusion and propose
future work in section V.

II. BACKGROUND

A. Jetson Tegra K1 SoC board
Tegra K1 SoC is a mobile processor with GPU which has

the same advanced feature and architecture as the modern
desktop GPU ��Kepler GPU, though it still possesses the
mobile chip with low power draw designed by Nvidia [14].

The Jetson Tegra K1 SoC board (referred to as TK1
board in this paper) is an embedded development platform
within the Tegra K1 SoC(CPU + GPU + ISP in one chip)
and runs a Linux environment. It can provide developers
with not only all Tegra’s common features and interfaces by
standard connectors, but also a highly flexible and extensible
for special design. It has some PC-oriented features such
as SATA, mini-PCIe and fan to allow continuous operation
when developers need to extend disk capacity in dealing
with heavy workload. There are two reasons for us to
choose the TK1 board as our platform of energy efficient
computing applications. Firstly, it has been designed with the
particular goal of being efficient [10]; secondly, this board as
a heterogeneous architecture, which contains the Quad-Core
4 ARM Cortex-A15 CPU running at up to 2.3 GHz, the 5-
th low power companion Cotex core and a Nvidia Kepler
streaming multiprocessor (SM) with 192 Compute Unified
Device Architecture(CUDA) cores running at up to 852 MHz
[14].

There are some encouraging work worth mentioning with
respect to the employment of TK1 board in other appli-
cations, Serrano et al. concluded Jetson TK1 is an evi-
dent incentive that can lead to the creation of smaller and

mobile medical image scanners [15]. Belloch et al. also
demonstrated that Jetson TK1 is capable of executing the
application in real time and it can provide a really good
performance even if it is a low power device [16].

B. Memory Access of GPU
Generally speaking, the CUDA platform mainly supports

the following data migration methods: traditional memory
access, unified memory access, zero-copy access, pageable
memory access and pinned memory access [17]. In this
paper, we will focus on the traditional memory access and
unified memory access, and compare these two patterns in
terms of the overall application execution time.

1) Traditional Memory Access: To date, the most com-
mon way of memory access of GPU is traditional memory
access(TMA). The memory of CPU(host) and GPU(device)
are completely distinct since they are separated in physical
structure, but they still can communicate with each other by
the PCI-express bus. A typical CUDA Application Program
Interface(API) in executing a program by TMA includes the
following steps:

1) Invoke the Malloc() function to allocate the space of
host memory for data.

2) Invoke the cudaMalloc() function to allocate the space
device memory for data.

3) Invoke the cudaMemcpy() function to transfer data
from the host to the device.

4) Execute CUDA kernel and store the result in the device
memory.

5) Invoke the cudaMemcpy() function to transfer data
from the device back to the host.

6) Invoke the Free() and cudaFree() function to free the
memory space of the host and device.

From this process, it is not difficult to find that the
space of host and device is undoubtedly disjoint. Hence
this programming model relies on programmers to explicitly
manage data between CPU and GPU [18]. There exists two
specified constant movements of host-to-device and device-
to-host, which may result in overheads of memory operations
and extreme performance degradation [19].

2) Unified Memory Access: Unified Memory Ac-
cess(UMA) is an emerging technology supported by CUDA
6.X. In this paper, the environment of experiments is TK1
board with CUDA 6.5, which offers not only a heterogeneous
architecture of ARM CPU and NVIDIA GPU, but also a
unified memory in CPU-GPU integrated memory.

The unified memory has implemented a pool of managed
memory to unite the separate domain of CPU-GPU. It is
accessible with a single pointer to both the CPU and GPU
since the managed memory is shared by the CPU and GPU.
The different view between the TMA and the UMA is
showed in Figure 1.

The key point of unified memory is that the system
automatically migrates data allocated in unified memory of
host and device so that it looks like CPU memory to code
running on the CPU, and like GPU memory to code running
on the GPU [20]. A typical CUDA API in executing a
program by UMA includes the following steps:

1) Invoke the cudaMallocManaged() function to allocate
the memory space for data, and to create the buffer
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Fig. 1. Different view between the traditional memory access and the
unified memory access

on GPU side and notifies the memory driver about the
location and page tables.

2) Use a global pointer to access the data that stored in
the unified address space when need it in CPU runtime
or CUDA kernel runtime.

3) Invoke the cudaDeviceSynchronize() function to syn-
chronize the data between the host space and device
space.

4) Invoke the cudaFree() function to free the common
address memory space for data.

It is necessary to note that, the host space and device space
mentioned here can be understood as two logical spaces but
they are treated as a coherent memory space instead of a
disjoint one.

The show up of unified memory enables the memory be-
come more optimizable, the programming efficiency become
higher, and the way to make use of GPU become more simple
and direct, even the complex data structures can be more
widely applied to the device and the code writing. However,
according to [18], [21], the performance of UMA is unsatis-
factory in reality. [18] stated that although the programming
productivity is high due to the on-demand fetching of data,
the performance of managed memory is poor which severely
restricts its flexibility and adding future optimizations. Even
[21] implied that Nvidia Unified Memory removes GPU
memory allocation and memory copy by automatically per-
forming them to improve programmability, but can result in
performance degradation for many workloads.

In this paper, we will make an investigation to evaluate the
performance of utilizing UMA from an application’s rather
than benchmark’s perspective, which is the execution time of
the computer simulation of ECG based on the whole-heart
model. In view of the simulation time, that is, the timestep
determines the scale of computational burden, we choose two
cases with different scale: one is, set a ECG simulation of
50-ms as a evaluating of small migrate data; and the other, set
a ECG simulation of 600-ms as a evaluating of big migrate
data. More details of this investigation will be described in
section IV.

C. The computer simulation of ECG based on the whole-
heart model

In order to diagnose and quantitatively analyze all the
abnormalities of heart and eventually exhibit a noninvasive
diagnostic method for heart disease, the so-called forward
research of electrocardiogram and backward research of

electrocardiogram emerge. The computer simulation of ECG
belongs to the field of forward research of ECG. Based
on a heart model, it can calculate and conclude the body
surface potential from the cardiac electrical activity. Note
that, compared with previous anatomical experiments or
physical researches, it has significant advantage in terms of
economy and security, and it is undoubtedly the foundation
of the backward research of ECG.

1) The whole-heart model: The whole-heart model men-
tioned by this paper is the Wei-Harumi model [1], which
introduced comprehensive electrophysiological characteris-
tics and the anisotropic fiber cells. This model is capable of
a number of the simulation of pathological characteristics,
such as myocardial infarction and arrhythmia. It is based
on an inclined three-dimensional coordinate system, and the
angle between each coordinate axis is 60 degrees. All models
consist of approximately 50,000 cell elements and coordinate
axes are discretized into evenly spaced layers with 1.5 mm
units and the three dimensions each has 56, 56, 90 layers
[22].

2) The computer simulation of ECG: According to [6], the
process of a computer simulation of ECG can be described
as the following three stages:

1) Simulate the propagation of cardiac electric excitation
based upon the Huygens principle;

2) Calculate the ECG potentials on the volume conductor,
which is simulated in the whole heart model;

3) Keep the calculation results of ECG potentials.
Wei D has established a geometric model based on the ac-

tual heart in the previous study [23], which can be abstracted
as a volume conductor. The torso surface, the epicardial
surface, the left endocardial surface and the right endocardial
surface were divided into 344, 278, 307 and 1002 node, and
684, 552, 610 and 2002 triangles in this volume conductor
[22]. We will employ the boundary element method to
calculate all values of ECG potentials in all of these nodes
and triangles in this reasonable artificial model.

In the first stage, every cell in the volume conductor of
the Wei-Harumi model can be stimulated according to the
Huygens principle which is called heart electric excitation
propagation. After that, certain cells become current dipole
sources, and then the potentials of body surfaces will be
effected by dipole sources in the entire volume conductor.
Therefore, the most important issue in ECG simulation
computing is the second stage. In this stage, you need
to locate every current dipole source stimulated after the
propagation of cardiac electric excitation, and calculate the
potential values produced by every current dipole source in
four blocks’ surfaces on human body [7]. The total number of
triangles is about 3800. At last, all the changing of potentials
of the four surfaces will be recorded to draw a curve, which
can be observed and studied on the influence of clinical
disease or drugs compared to clinical electrocardiogram data.

III. METHODOLOGY

A. A Metric Method of Energy Efficiency
Taking the words too literally, the raw formula of energy

efficiency, ⌘E , can be termed as below according to [24],
[25]:

⌘E =
Pe

C
, (1)
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where
Pe =

W

TE

, (2)

where
TE = TC + TIO + TN . (3)

On the one side, the performance, Pe of Equation 1, is a
complete concept for measuring the quality of applications.
The theoretical formula of Pe is shown in Equation 2, in
which the performance will be counted by: divide overall
workload of the application by overall application execution
time, that is, the wall time. In general, the wall time of
application execution consists of the time of computing,
the time of IO during the data migration between disk
and memory, and the time of network communication if
application runs in a multi-devices environment. Equation
3 expresses the formal representation of TE .

As Table I shows, it is essential to say that the unit of
performance can be expressed as GFLOPS, because the
defined W just means workloads, that is, the number all float-
point operations during the time of application execution.
Thus, the Pe can be represented as the number of float-point
operations per second.

On the other side, the C in Equation 1 on behalf the super-
ficial meaning of overall energy consumption of applications.
Considering the applicable meaning of C, it is a controversial
concept which can be interpreted as P with Watt units or Q
with Kalvin units, due to the fact that the consumption of
applications may consist of power consumption, temperature
consumption, land occupation, even and costing consump-
tion. In general, the P is used as the measurement factor
of overall energy consumption of the application. Note that,
one Watt equals to one Joule divides by one second, also
equals to one V olt times one Ampere, according to Joule’s
law in a pure resistance situation, as Equation 4 expresses
below.

C = P

= U ⇥ I.
(4)

Based on all above formulas, we can easily infer that the
energy efficiency, ⌘E , can be expressed as shown in Equation
5.

⌘E =
W

TE ⇥ P
. (5)

Where the unit of ⌘E is FLOPS/Watt or Pe/Watt.
The result is coherent with a previous study [26], where
the standard performance evaluation corporation (SPEC)
released the SPECpower ssj

c� 2008 benchmark suite
to measure the power and performance characteristics
of server-class computer equipment, which called the
Performance� per �Watt.

In this thesis, in particular, in order to make a qualitative
evaluation on the energy efficiency easily and directly, a
simplified dependency metric of energy efficiency is shown
in Equation 6.

⌘E /
W

TE ⇥ P
. (6)

Where the ⌘E is negatively correlated with two factors:
TE and P . While, the W in this paper can be regarded
as a constant count in our measurement, because of the

energy efficiency only cares qualitative evaluation rather
than quantitative evaluation. In another word, the metric of
Pe of the application in this study only be related to one
factor, the TE , based on the above hypothesis. Note that,
the word ”energy efficient” mentioned in the rest of this
thesis’s experiments is saying the same meaning as high
energy efficiency.

B. Optimization Strategy of Execution Time-Oriented

Based on Equation 6 of section III-A, assuming that the
P remains the same, when the TE decreases, the quotient
which is Energy Efficiency will accordingly increase. Thus,
we decided to employ some parallelization strategies into
programming, in order to make the TC becomes smaller.
Since the TN of Equation 3 is not in view in stand-alone
mode, the TE will become smaller, that is to say, the
application will become more energy efficient.

1) Parallelization in the Level of CPU: The CPU of TK1
board possesses 4-Plus-1 physical cores, which can reach
a highest frequency of 2.3GHz. In order to fully exploit
the computing capacity of TK1’s CPU, we determine to
realize a multi-thread optimization by invoking OpenMP
API in a multi-thread way. OpenMP enable us to parallel
accelerate the computing of applications, so as to reduce the
computational time, that is to say, improve the performance
of applications.

The usage of OpenMP is described in detail in our previ-
ous work [6], there is not too much explanation here except
the following contents. The reason why we turn on 4 main
cores of TK1’s CPU is that the 5th core is just a companion
core and there is no need to use it in a multi-thread case.
In addition, the #pragma are added to indicate the parallel
area with multi-thread in the code. Taking the simulation
computation of ECG as example, #pragma omp parallel
opened up the multi-thread mode in ECG inf() function and
ECG bd() function during the application execution time.

2) Parallelization in the Level of GPU: TK1 board, with
a Nvidia Kepler GPU, which contains 192 CUDA cores.
Objectively, GPU is more suitable than CPU for performing
a task, since it’s data are high intensive and no disjoint
to my best knowledge. Hence we choose the most suitable
section in ECG simulation computation’s code to implement
the parallelization with the aid of CUDA API.

According to [7], in the whole ECG simulation com-
putation procedure, ECG inf() function took about 99%
computational time, that is to say, the computation tasks of
ECG inf() function took a great majority of the whole
computation tasks. The pseudo code of ECG inf() function
is displayed in Figure 2, where the I, J, K respectively rep-
resents the maximum value of three coordinate dimensions
in the whole-heart model, and ECG inf single() function
is responsible for the ECG calculation of a single dipole.
In addition, [6] has proved that the calculating of current
dipole sources in ECG simulation computing is independent
in three layers’ loop between adjacent timesteps. As a result,
we decide to employ the CUDA optimizing strategies into
ECG inf() section.

In other words, we invoke the CUDA API to sufficiently
exploit the computing capacity of CUDA core in order to
parallel accelerating the ECG inf() process. The pseudo
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TABLE I
SYMBOLS AND DEFINITIONS

Symbol Definition Unit

⌘E The energy efficiency of the application GFLOP/Watt

Pe The performance of the application GFLOPS

C The overall energy consumption during the time of application execution Watt

W The overall workload, that is, all float-point operations during the time of application execution F lop

TE The overall wall time of application execution Second

TC The computing time of application execution Second

TIO The input/output time of application execution Second

TN The network communication time of application execution Second

P The power consumption during the time of application execution Watt

Q The thermal consumption during the time of application execution Joule

U Voltage V olt

I Current Ampere

ECG inf()
⇤ Calculating ECG potentials in an infinite medium.

1 BEGIN

2 arrayInit();
3 ⇤ Initialize the array.
4 for k  0 to K

5 do for j  0 to J

6 do for i 0 to I

7 do if dipole(i,j,k) != 0
8 ⇤ Verify the excited cell is or isn’t a dipole source.
9 ECG inf single();

10 ⇤ Calculate the value of potential produced by dipole(i,j,k).
11 end if

12 end for

13 end for

14 end for

15 END

Fig. 2. Pseudo code of ECG inf() in the serial program

code of gpuECG inf() function is given in Figure 3. It
enunciates a whole process of the computing of potentials
produced by dipole source after GPU level’s parallelization.
It is clear to see that gpuECG inf single() function can
be executed in a CUDA kernel to complete the computation
of ECG potentials, on condition that the cell pass the verifi-
cation of dipole(i, j, k) function in every loop. Generally,
the thread 0 is responsible for GPU and the remaining
threads will execute the remaining tasks in a hybrid parallel
programming which combines OpenMP and CUDA. Hence,
we must detect the id number of current thread to decide in
which the next task should be loaded.

As shown in Figure 3, the flow is: firstly, copy all needed
data from host memory to device memory; secondly, call
gpuECG inf single() function to complete the ECG po-
tentials’ computation of each dipole; finally, copy all results
of potentials from device memory back to host memory. Note
that, we used the TMA API in this GPU section. As we can
see in, there are two explicit memory copies exist so that the
overhead of memory copy can not be ignored.

As a measurement, we try a new memory access API

which derives from unified memory in TK1 board, means
to reduce the overhead of memory copy. In the last section,
we have described that how to use the new CUDA API to
take advantage of unified memory. Figure 4 illustrates the
pseudo code of gpuECG inf() but with the UMA in a new
memory architecture. Although this novel way reduces the
overhead of memory copy in a level of abstraction, it is still a
transparent procedure in developers’ view, which means the
challenge is that make clear what the unified memory exactly
do during the data migration. The effect on our experiments
will be analyzed in section IV.

3) Optimization in the Level of Scheduling Algorithm:
Crucially, this paper makes use of the load prediction dy-
namic static integrated scheduling algorithm(LPDS) [7], in
which proposed by Shen et al., for the better parallelism com-
putation of the computer simulation of ECG. It is necessary
to know the major advantage of this scheduling algorithm,
which lies in three aspects: firstly, it achieves load balance
of all tasks; secondly, it successfully reduces the overhead
of normal dynamic scheduling; thirdly, it adequately exploits
the computing capacity of hybrid environment. The previous
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gpuECG inf()
⇤ Calculating ECG potentials in an infinite medium with parallelization.

1 BEGIN

2 malloc();
3 ⇤ Allocate memory in the host for storing data.
4 cudaMalloc();
5 ⇤ Allocate memory in the device for storing data.
6 memcpyHosttoDevice();
7 ⇤ Transfer the data from host to device.
8 for k  0 to K

9 do for j  0 to J

10 do for i 0 to I

11 do if dipole(i,j,k) != 0
12 ⇤ Verify the excited cell is or isn’t a dipole source.
13 gpuECG inf single();
14 ⇤ Call the kernel to calculate the potentials produced by dipole(i,j,k).
15 end if

16 end for

17 end for

18 end for

19 memcpyDevicetoHost();
20 ⇤ Transfer the data from device to host.
21 cudaFree();
22 free();
23 END

Fig. 3. Pseudo code of ECG inf() in the parallel program with traditional memory access

gpuECG inf()
⇤ Calculating ECG potentials in an infinite medium with parallelization.

1 BEGIN

2 cudaMallocManaged();
3 ⇤ Allocate memory in the unified space for storing data.
4 for k  0 to K

5 do for j  0 to J

6 do for i 0 to I

7 do if dipole(i,j,k) != 0
8 ⇤ Verify the excited cell is or not a dipole source.
9 gpuECG inf single();

10 ⇤ Call the kernel and use the parameter in the unified space to calculate.
11 end if

12 end for

13 end for

14 end for

15 cudaDeviceSynchronize();
16 ⇤ Synchronize the values stored in unified space whatever belong to host or device.
17 free();
18 END

Fig. 4. Pseudo code of ECG inf() in the parallel program with unified memory access

work [7], [8] has concluded that the LPDS is more effi-
cient than traditional dynamic scheduling in most of load
predictable problems on a desktop-level hybrid architecture.

In this thesis, we transplant the LPDS into a embedded
Linux system to realize a parallelism acceleration, which
enable us to make good use of the hybrid computational
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capacity of ARM-based CPU and Nvidia GPU on TK1
board. The simplified pseudo code of main program based
on an adapted LPDS is shown in Figure 5, where also shows
the combined hybrid programming mode with OpenMP and
CUDA. Note that, some functions are listed as below:

propagation(): The propagation of cardiac electric exci-
tation.

malloc(): The allocation of private space for CPU.
cudaMalloc(): The allocation of private space for GPU.
loadPredictandSort() and setDeque(): The summation

of the computational amount of all dipoles of every timestep,
and then the calculated amount will be sorted into a deque
in a descend order, which form a pair with their timestep
[8]. The variable head and tail in setDeque() represents
the head and the tail of this deque, (e.g., head means the
timestep owns the most heavy computational task).

The variable gpustaic and cpustaic is the number of
allocated tasks by means of static scheduling of LPDS in
the initial stage.The variable gpudynamic and cpudynamic

is the number of allocated tasks by means of dynamic
scheduling of LPDS in the second stage.

#pragma omp parallel: The declaration of OpenMP
parallel program section.

cudaFree() and free(): The release of data space in their
memory.

To explain the scheduling algorithm clearly, it can be
divided into two stages. In the first stage, static scheduling
stage, thread 0 catches a chunk tasks from the head to the
gpustatic of the deque, and calls gpuECG inf() to execute
a CUDA kernel in GPU. Accordingly, the other threads catch
a chunk tasks from the tail to the cpustatic of the deque,
and call ECG inf() to execute CPU computation.

In the second stage, dynamic scheduling stage, thread
0 catches a task from the gpudynamic which equals to
gpustatic in the previous stage, and calls gpuECG inf()
to execute a CUDA kernel in GPU, with the value of
gpudynamic pluses one automatically. In the meantime, a
ready thread of the remaining threads catches a task from the
cpudynamic which equal to cpustatic in the previous stage,
and calls ECG inf() to complete the computation task in
CPU, with the cpudynamic minuses one automatically. Until
the value of gpudynamic equal to the value of cpudynamic,
the whole computation tasks will be executed completely.

C. Optimization Strategy of Power Consumption-Oriented

According to [15], the power consumption of computer
systems with modern desktop-scale GPUs is comparatively
larger. It can reach to a few tens even one hundred watts.
Since the power consumption of TK1 board only takes
several watts in an idle mode, it becomes the best optimizable
object in our experiments theoretically.

The TK1 board possesses 4-Plus-1 physical cores and one
on-chip integrated GPU, and offers many mechanisms to
control the power to support applications, which includes
two CPU clusters, frequency scaling of CPU and GPU, GPU
offloading, and others. The developers are free to adjust the
CPU and GPU core frequency, select the active CPU clusters
and control the number of active cores to adjust the power
consumption of the board [27]. According to Equation 6
of section III-A, assuming the P decreases when the TE

main program of ECG Simulation Computation

1 BEGIN

2 propagation();
3 loadPredictandSort(workload);
4 setDeque(head, gpustaic, cpustaic, tail);
5 malloc();
6 cudaMalloc();
7 #pragma omp parallel

8 tid = omp get thread num();
9 if tid == 0

10 then

11 memcpyHosttoDevice();
12 gpuECG inf (head to gpustaic);
13 memcpyDevicetoHost();
14 else

15 ECG inf(tail to cpustaic);
16 end if

17 gpudynamic = gpustaic;
18 cpudynamic = cpustatic;
19 while (gpudynamic ! = cpudynamic)
20 do if tid == 0
21 then

22 gpuECG inf(gpudynamic);
23 gpudynamic = gpudynamic+ 1;
24 else

25 ECG inf(cpudynamic);
26 cpudynamic = cpudynamic� 1;
27 end if

28 end while

29 end #pragma omp parallel

30 cudaFree();
31 free();
32 saveResults();
33 END

Fig. 5. Pseudo code of the ECG simulation computation based on an
adapted LPDS and parallelizations

remains the same, the quotient, in other words, the ⌘E will
undoubtedly increase.

Therefore, in order to realize an energy efficient computing
on the computer simulation of ECG, we intend to fully take
advantage of the steerable features of on-board. As we all
know, the board has two clusters of the CPU cores: turning
on 4 main cores to get higher performance with higher
power consumption or turning on 5th companion Cortex
core to get lower power consumption and gear generation
with lower performance [27]. In general, TK1 board’s CPU
is setting in cluster of 4 main cores. In this mode, when
the system reaches a low utilization state, the hardware and
operating system will cooperate to migrate processes and
threads off of the 4 main CPU cores, and move them to the
5th CPU core [28]. This mechanism is called sleep-mode.
However, if developers constrainedly control the number of
active cores and core frequencies when CPU is in busy
runtime, the performance will be affected obviously, with
power consumption’s variation. Hence, we better manually
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set the number of active cores and core frequencies in the
idle time of CPU, while we just leave it alone to automatic
adjustment in most cases.

The GPU has a same character in TK1 board but only in
adjusting of frequency. In this paper, we adopt the strategy of
sleep mode on CPU and GPU, which enable us to decrease
the power consumption of the board. Whilst, in terms of the
synthetic factors of energy efficiency, we make a cross com-
bination for adjustable mechanism of board, which means
the best situation will be launched in after the following
contrast: 4 main CPU cores cluster or the 5th companion
CPU core cluster; the regular 4 main CPU cores cluster
or the manual 4 main CPU cores cluster; the regular GPU
frequency or the constrained GPU top frequency. The result
of power consumption and performance after employing
cross combination situation on TK1 board will be presented
in section IV.

IV. EXPERIMENTAL RESULT AND DISCUSSION

In order to evaluate the typical performance and power
consumption of TK1 board, we setup an ordinary PC with
desktop-level GPU as a contrast. The PC is equipped with
Intel Core 2 Quad CPU Q8200, 2.33GHz, 6GB host memory
and a GeForce GT 705 card, regarded as platform(a). The
TK1 board with a Quad-Core 2.3GHz ARM Cortex-A15
CPU(ARMv7-A architecture), a 5-th low power companion
Cortex core, and one Kepler architecture GPU running at
852 MHz(128 CUDA cores), paired with 2 GB of LP-DDR3
RAM, is regarded as platform(b). Each Cortex-A15 core has
32 KB L1 instruction and 32 KB L1 data caches. 4-core
cluster has 2 MB of shared L2 cache.

The operating system was installed for the x86 architec-
ture with Linux Ubuntu 14.04.1 LTS(GNU/Linux 3.10.0)
and for ARM32bit architecture with Linux Ubuntu 14.04
for Tegra(GNU/Linux 3.10.40). The program of these two
platforms was compiled both with GCC v4.8 and NVCC
form CUDA Toolkit6.5.

For purpose of cross-contrast, we provide two input scale:
the first, the computer simulation of a 50-ms ECG is regarded
as a small data scale, which is called scale(a); the second,
the computer simulation of a 600-ms ECG is regarded as a
big data scale, which is called scale(b).

As far as my knowledge is concerned, The platform(b)
uses low voltage 12V power supply with direct current(DC),
but platform(a) uses 220V power supply with alternating
current(AC). Therefore, the value of power of platform(a)
can be measured by using an external device �� Kill-A-
Watt, which can represent the level of power imprecisely.
But for platform(b), the device used in platform(a) is suitable
for measuring computer’s power draw with ac mode, but can
not measure that of embedded board precisely. In addition,
the onboard power consumption has correlation with onboard
voltage, onboard current and onboard leakage current [25].
So, in next experiments for platform(b), a device named
Agilent E3634A was used to provide a 12V DC power
supply. This device could supply the constant DC output volt-
age. Meanwhile, it contains an internal automatic sampling
function. Note that, the each value of power consumption or
execution time or speedup of all the results are an average
value by averaging 10 values after measuring 10 times.
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Fig. 6. The parallel results of execution time and speedup of 1 to 4 threads
by OpenMP on platform(b) for scale(b)

It is necessary to say, until the computation has begun,
fluctuations in power usage on all machines are relatively
small [29]. And under our experimental conditions, the
average power consumption of TK1 board under stabilization
without applications running is 4.9 watts, and that of the PC
is 56.6 watts.

A. Evaluation of Performance and Power Consumption of
TK1 board

This subsection displays four experiments to study about
the performance and power consumption in different situ-
ations, by changing the active number of CPU cores and
the frequency of CPU or GPU of TK1 board. This set of
experiments are special indication for platform(b) itself.

The first experiment is conducted with CPU loading and
GPU offloading mode of scale(b) simulation, which is exe-
cuted by OpenMP to realize the CPU-level’s parallelization.
The performance and speedup of 1 to 4 threads of CPU is
given in Figure 6.

Since the CPU of TK1 board is a multi-core CPU,
OpenMP enables multi-thread to handle workload in a par-
allel way. Hence, as you can see, the result just fit the basic
rule of parallelization.

The second experiment is conducted to investigate the
details of how to set CPU clusters on platform(b). As Table
II(a) shows, when developers set in a multi-threads mode,
taking parallelization with 4 threads as an example, the
rank of overall behavior is: situation(a) > situation(b) >

situation(c). The situation(a) is a regular mode in 4 main
CPU cores mode, that is a default on-board mode with sleep-
mode. The situation(b) is a manual mode in 4 main CPU
cores mode, that is manually turned on 4 active CPU cores
with no sleeping in applications runtime by developers. And
the situation(c) is a manual mode in the 5th companion core
mode for power conservation. As you know, situation(b)
surely increases the computing speed and decreases the
application execution time, but leads to a sharper increase
of power consumption compared with situation(a). And situ-
ation(c) dramatically reduces the power consumption unless
you do not care the performance anymore. What’s more, the
computer simulation can not be executed under situation(c),
since the scale of input data is beyond the processing capacity
of 5th CPU core, as the blank of Table II(a) says.
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TABLE II
THE EXECUTION TIME AND POWER CONSUMPTION OF SIMULATION OF
SCALE(A) AND SCALE(B) ON PLATFORM(B) IN DIFFERENT SITUATION

(a) Situation: (a) vs (b) vs (c), all work
with four threads

Situation Scale(a) Scale(b)

(a).TE 10.57s 132.88s
(a).P 9.09w 12.01w
(b).TE 10.48s 132.65s
(b).P 9.54w 12.28w
(c).TE 34.3s none
(c).P 6.00w 6.19w

(b) Situation: (d) vs (e), both work with
single thread and single GPU

Situation Scale(a) Scale(b)

(d).TE 15.15s 138.43s
(d).P 7.04w 7.95w
(e).TE 12.02s 108.24s
(e).P 7.96w 8.72w

(c) Different memory access way, both work with
four threads and single GPU

Memory Access Way Scale(a) Scale(b)

UMA.TE 9.97s 97.22s
UMA.P 9.35w 12.07w
TMA.TE 8.85s 114.09s
TMA.P 9.33w 12.15w

The third investigation is in order to figure out how to set
GPU frequency fitly on platform(b). As Table II(b) shows,
taking parallelization with single thread and single GPU as
an example, when developers set in a GPU-loading mode,
the rank of overall behavior is: situation(e) > situation(d).
Note that, the situation(e) is a constrained GPU mode of
top frequency, that is to say, developers manually adjust
GPU frequency to the top frequency at the idle time in
the beginning of the procedure. And the situation(d) is a
regular GPU mode of alterable frequency, in which the
frequency will change when the workload loaded into GPU
changes. The result illustrates that, under situation(e), the
power consumption just rise a little, while the performance
rise much more. Hence we decide to take the constrained
GPU mode of top frequency into the following experiments.

The fourth experiment is conducted to evaluate the per-
formance and power consumption of platform(b) with a
comparison between TMA and UMA. According to [18],
the performance of UMA varied greatly based on program
design, kernel intensity and data migration scale. Therefore,
in term of different data scale of scale(a) and scale(b), this
experiment adopts the situation(a) for CPU and situation(e)
for GPU, to launch an investigation from an application’s
perspective. It turns out, on the one hand, the performance of
UMA is better than TMA under big data scale input. Because
the way of data migration of UMA is more suitable for big
data, so long as the data scale comes within the memory
capacity of CPU-GPU integrated memory. On the other hand,
under the small data scale input, due to the two explicit
data copies of TMA are not insignificant, the performance
of UMA is worse than the TMA. Furthermore, the power
consumption of taking the two different memory access way

TABLE III
THE EXECUTION TIME AND POWER CONSUMPTION OF SIMULATION OF

SCALE(A) AND SCALE(B) ON DIFFERENT PLATFORM

(a) Platform: (a) vs (b), both work with
four threads in situation(a)

Platform Scale(a) Scale(b)

(a).TE 9.97s 156.68s
(b).TE 10.57s 132.88s
(a).P 66.28w 71.81w
(b).P 9.09w 12.01w

(b) Platform: (a) vs (b), both work with
single GPU in situation(e)

Platform Scale(a) Scale(b)

(a).TE 10.14s 142.32s
(b).TE 15.15s 145.43s
(a).P 73.79w 76.13w
(b).P 7.96w 8.72w

is almost the same value, as shown in Table II(c).

B. Comparison of Performance and Power Consumption
between TK1 board and PC

The second set of experiments is conducted on platform(a)
and platform(b). In the first experiment, the computer sim-
ulation of ECG of scale(a) and scale(b) is implemented by
OpenMP with four threads and situation(a) provided by the
last set experiment, which means a regular mode with four
main cores. The results of application execution time and
power consumption are exhibited in Table III(a).

From Table III(a) we can find that, taking scale(b) as
an example, the platform(b) is about 1.18X faster than
platform(a) in this mode. And the power consumption of
platform(b) is 5.98X lower than platform(a). As you can see,
the performance of TK1 board is slightly higher than that of
the PC, but the power draw of TK1 board is much less than
that of the PC. To explain why, the reason is that the TK1
board is just devised for high intensive computing and low
power applications, but the PC has miscellaneous parts so
that is power draw is wasted too much in other pathway.

The application execution time and power consumption on
platform(a) and platform(b) with single GPU are examined
in the second experiment. Here the GPU is in the situation(e)
which means single constrained GPU mode top frequency.
The results of simulation of scale(a) and scale(b) are shown
in Table III(b), it is no surprise to see that the power
consumption of TK1 board is much lower than that of the PC.
And it is not difficult to find that, the performance of GPU
of TK1 board is slightly lower than that of the PC, because
of the TK1 board surely does well in plenty of scientific
applications, in term of the excellent computing power, but
which is still far behind that of most desktop-level GPU.

C. Comparison of Energy Efficiency between TK1 board and
PC

According to the experimental results of the aforemen-
tioned experimentations, we determine to adopt situation(a)
for the parallelization of four threads, situation(e) and UMA
way for the parallelization of GPU, into the last one ex-
periment, which parallels with four threads and single GPU

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_23

(Advance online publication: 10 February 2018)

 
______________________________________________________________________________________ 



0.000	

0.005	

0.010	

0.015	

0.020	

0.025	

0.030	

S CA LE (A ) S CA LE (B)

ENERGY EFFICIENCY

THE SCALE OF SIMULATION

PC TK1 TK1+LPDS

Fig. 7. The results of energy efficiency of simulation of scale(a) and
scale(b) with four Threads and single GPU on platform(a) and platform(b)

for the simulation of scale(a) and scale(b). And the adapted
LPDS will be added to make a contrast test.

According to Equation 6 in section III-A, we calculate
results of energy efficiency for two simulation scales in
following three cases: case(a): the parallel computing of
ECG simulation on the PC with the four threads and single
GPU; case(b): the parallel computing of ECG simulation
on TK1 with the four threads and single GPU; case(c):
the parallel computing of ECG simulation on TK1 with the
four threads and single GPU plus the adapted LPDS. As
the results illustrated in Figure 7, it is quite encouraging to
find out the rank result of energy efficiency is: case(c) >

case(b) > case(a). On the one side, the energy efficiency of
small scale input is better than that of big scale input. When
the workload increases multi-fold, the time of applications
execution just has a small rise, owing to the strong computing
ability. On the other side, the energy efficiency of case(c)
under the simulation of scale(a) does not increases as fast as
that of scale(b), due to the performance of ECG simulation
computing can not be effected significantly by applying the
LPDS, especially under small input data. The reason is,
the small scale input means that there are not too much
dipoles exist in the simulation timesteps. As a result of, the
predication and sorting of LPDS will not work effectively.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have examined application execution
time, power consumption and energy efficiency with the
demonstration of the computer simulation of ECG based on
the whole-heart model, with a comparison between a TK1
board and an ordinary PC. According to our experiments
and analyses, it is easy to see that the performance of TK1
board’s CPU can reach the same level of that of the PC,
and the TK1 board’s GPU performs closely to that of the
PC. Particularly, the energy efficiency of TK1 board is 3X-
5.67X higher than that of the PC, and even can be 3.25X-
6.67X higher than that of the PC with the aid of the adapted
LPDS, based on the metric methods.

In a word, we can draw a conclusion that the TK1
board can provide an easy available environment with good
performance, low power consumption and especially high
energy efficiency under the proposed effective approaches.
This paper adequately exploits the energy efficiency of the

miniature embedded device for computer simulation of ECG,
and offers a convenient and portable way for clinical staffs,
medical experimental workers and other researchers, in their
scientific applications.

Speaking of the future work, we would like to illuminate
how exactly the API works and the data migrates in UMA
way. Last but not least, in the future, we put our experiments
into Jetson Tegra X1 or Tegra X2 SoC board, so the load
prediction dynamic static integrated scheduling algorithm
might be improved further, with better optimization under
larger input data.
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