

Abstract—Volume and velocity are two characteristics of big

data. Big data “comes in” with high velocity that the volume

increases quickly. Efforts are needed to resolve these issues.

This paper presents a big data reduction technique that can be

used to reduce incoming big data periodically. The results,

patterns that represent the original data with smaller size can

be kept for further analysis, while the voluminous big data can

be discarded. Clustering is a technique that can be used for

reducing data. Based on our study, we find that agglomerative

clustering is suitable to be adopted for reducing big data

having low to medium number of attributes. Our proposed

technique is based on Hadoop MapReduce, a computing

framework for distributed systems, where Map and Reduce

functions run in parallel in machine nodes. The excerpt of our

technique: Map preprocesses and randomly divides the big

data into disjoint partitions, Reduce constructs cluster trees

(dendrograms) from partitions and computes patterns from

the clusters formed from the trees. The output is a collection of

patterns having a lot smaller number of objects and attributes.

To provide flexibilities, we design few input parameters set by

users. The effect of those parameters are shown by our

experiment results. By experimenting using big data in a

Hadoop cluster with up to 15 commodity computers, we

conclude that the Hadoop file system block size and number of

nodes affect the execution time and the size of incoming big

data that can be processed.

Index Terms— Big data reduction, cluster pattern,

MapReduce, parallel clustering

I. INTRODUCTION

ig data is collected from heterogeneous data sources -

such as social media systems, industrial sensor

networks, scientific experimental systems, and several other

application areas – and may reach giga to peta bytes in size

[1, 2]. The needs to analyze big data to obtain knowledge or

useful insights have been well known [3, 4]. However,

managing and gaining insights from the big data remains a

challenge. Among several characteristic of big data

(volume, variety, value, velocity, veracity, and variability),

Manuscript received May 7, 2017; revised January 18, 2018. This work

was supported by the Directorate General of Research Strengthening and

Development, Ministry of Research, Technology and Higher Education,

Indonesia, under Grant SP DIPA-042.06.1.401516/2017 and Informatics

Department - Parahyangan Catholic University.

Veronica S. Moertini is with the Informatics Department Parahyangan

Catholic University, Bandung, Indonesia (phone: 62-22-2041964; e-mail:

moertini@unpar.ac.id).

Gde W. Suarjana was with the Informatics Department Parahyangan

Catholic University, Bandung, Indonesia (e-mail: gdewira91@gmail.com).

Liptia Venica was with the Informatics Department Parahyangan

Catholic University, Bandung, Indonesia (e-mail: liptiavenica@gmail.com)

Gede Karya is with the the Informatics Department Parahyangan

Catholic University, Bandung, Indonesia (e-mail: gkarya@unpar.ac.id).

the volume is the primary concern. Efforts are required to

reduce the volume to effectively analyze big data [2].

Data reduction techniques can be applied to obtain a

reduced representation of the data set that is much smaller in

volume, yet closely maintains the integrity of the original

data [5]. That is, mining on the reduced data set should be

more efficient yet produce the same (or almost the same)

analytical results. Data reduction strategies include

dimensionality reduction, numerosity reduction, and data

compression. Numerosity reduction techniques replace the

original data volume by alternative, smaller forms of data

representation, which can be generated by nonparametric

methods such as histograms, clustering, sampling, and data

cube.

Hadoop with its MapReduce framework, which works in

distributed systems, has been developed to address the need

for big data analysis. Small-medium organizations can adopt

Hadoop as Hadoop clusters can be configured using

commodity computers with low specification. MapReduce

supports the processing of large datasets and has the

advantage of easy scaling of data processing over multiple

computing nodes [1, 7]. A MapReduce program takes input

data in the form of key-value pairs, the Mapper and Reducer

algorithms then manipulate those key-value pairs, and

produce some other form of key-value pairs.

Recently, Rehman et.al. [2] reported their survey of big

data reduction methods. They classified the methods into:

Network theory, compression, data deduplication

(redundancy elimination), data preprocessing, dimension

reduction, and Data Mining and Machine Learning (DM and

ML). The DM and ML methods can either be applied to

reduce big data immediately after its acquisition or to

customize big data to address some specific problems.

These methods have the potential to be enhanced for

Hadoop Map-Reduce distributed systems to handle big data.

However, there still exists a huge research gap between

these potencies and the works done. There are still very

limited research results of DM and ML methods (that

include supervised, unsupervised, semi-supervised, and

hierarchical deep learning models) for big data reduction.

For instance, one supervised technique that has been

developed recently is MRPR [6]. MRPR is based on

MapReduce. It selects instances from the original data set,

or build new artificial prototypes, to form a set of prototypes

that better adjusts the decision boundaries between classes

in NN classification.

In this research, we intend to contribute in developing a

big data reduction technique that can be used regularly. It is

based on unsupervised (clustering) approach in the

distributed system that will produce a collection of patterns

Big Data Reduction Technique using Parallel

Hierarchical Agglomerative Clustering

Veronica S. Moertini, Member, IAENG, Gde W. Suarjana, Liptia Venica and Gede Karya

B

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_24

(Advance online publication: 10 February 2018)

__

with smaller size (compared to the raw big data). These

patterns can then be stored (permanently) while the raw data

can be discarded to save disk space. Based on the

organizations’ need, the patterns can then be analyzed by

suitable data mining techniques (outlier detection,

summarization, clustering, etc.). To take advantage of

Hadoop, our proposed techniques is based on MapReduce.

We find that the non-parallel hierarchical clustering

algorithm [5] has some advantages to be enhanced into

parallel algorithm for the purpose of reducing big data. One

of the important advantages is that it does not take definite

number of clusters. This algorithm builds a cluster tree

(known as dendrogram) based on a distance metric, then

clusters can be formed from the dendrogram by using a

variable (such as distance cut-off) defined by users. Cluster

patterns (such as discussed in [4]) can then be computed

from the clusters as the reduced representations of the big

data without loosing its semantic meaning.

A distributed single-linkage hierarchical clustering

algorithm (DiSC) using MapReduce has been developed [8].

The Mapper constructs subgraphs (sub-dendrograms),

where each is constructed from two data splits. The data

splits may be used by more that one Mapper, hence

producing subgraphs that have overlapping edges (this will

be resolved in next stage for obtaining a complete graph of

dendrogram). For the purpose of data reduction, we need to

construct subgraphs (local dendrograms) that are non-

overlapping. Thus, we can not adopt this part of algorithm.

To be more specific, our proposed big data reductions

method is based on parallel hierarchical clustering algorithm

that handles numeric attributes. To the best of our

knowledge, there is no similar technique yet developed by

other researchers. The problems that are resolved include:

(a) How to partition the raw big data into non-overlapping

datasets to ensure that the resulted patterns are less biased

towards objects order in the raw data?

(b) By considering that the data partition may still be large,

how to construct dendrograms from this partition in every

node and ensure that it is “fitted” in its memory (which may

be small in commodity computers)?

(c) As the results of reduced data, what patterns that

semantically represent the original data and how to compute

these?

(d) There are several distance types that can be adopted in

constructing dendrogram. How these influence the patterns

generated and the execution speed?

(e) How is the time response of the proposed technique in

Hadoop distributed systems affected by its configuration

set-up?

In the rest of the paper, we discuss the related literature,

proposed technique (the main idea, proposed algorithm,

Map-Reduce functions design), four series of experiments

(patterns evaluation, variables influencing the execution

speed, reduction percentage, the performance related to

Hadoop cluster configurations) and conclusion. In the

appendix, we include additional experiment results.

II. LITERATURE REVIEW

A. Research Opportunities

As stated in Section I, Rehman et.al. [2] have conducted

and reported their survey of big data reduction methods.

Few of data reduction techniques based on DM and ML that

are evaluated in [2] are:

(1) A MapReduce algorithm used to reduce the search

space and mine frequent patterns from uncertain big data. It

facilitates the users to confine their search space by setting

some succinct anti-monotone (SAM) constraints for data

analysis and subsequently mines the uncertain big data to

uncover frequent patterns that satisfy the user-specified

SAM constraints.

(2) Artificial neural networks (ANNs) self-organized

Kohonen network-based that is proposed to reduce big

hydrographic data acquired from the deep seas.

(3) Deep learning, which is based on deep neural network

architectures, as an option for big data reduction methods.

However, the models become computationally inefficient

with the increase in big data complexity.

Based on their survey results, [2] formulates research

opportunities related to big data reduction methods. The

ones that are related to our interest are:

(1) Data preprocessing approach: The investigations of

research problems relevant to preprocessing techniques of

big data are still at the initial level. The forefront data

preprocessing methods in the big data knowledge discovery

process requires new, efficient, robust, scalable, and

optimized preprocessing techniques for both historical and

streaming big data.

(2) DM and ML approach: The DM and ML methods for

big data reduction can be used at various levels of big data

architectures. These methods find interesting patterns from

big data streams as highly relevant and reduced data for

further analysis. The DM and ML methods also have the

potential to be implemented in the Hadoop MapReduce.

There still exists a huge research gap for the implementation

of other DM and ML methods for big data reduction that

include supervised, unsupervised, semi-supervised, and

hierarchical deep learning models.

One of the DM technique for reducing big data that have

been developed recently is MRPR [6], which is based on

supervised approach. It selects instances from the original

data set, or build new artificial prototypes, to form a set of

prototypes that better adjusts the decision boundaries

between classes in NN classification. The core of Map and

Reduce functions are as follows: Map reads a training set

TR, which is stored as distributed blocks in the HDFS as a

single file (TR contains records that have been randomized).

By reading each split/block locally, each Map produced RSj,

which is a reduced set of records in a split. By taking RSj

and approach for reducing dataset (filtering or fusion) as its

input, a single Reduce function computes the final reduced

dataset RS. The experiment conducted with few datasets

(PokerHand, KDDCup, Susy, RLCP) show that the

accuracy depends on the approach selected (filtering or

fusion) and the dataset used, where for KDDCup and RLCP

reach more than 99%. MRPR is also proved scalable in the

used distributed Hadoop cluster.

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_24

(Advance online publication: 10 February 2018)

__

B. Hadoop, HDFS and Map-Reduce

Hadoop is a platform that has been developed for storing

and analyzing big data in distributed systems [1, 7, 9]. It

comes with master-slave architecture and consists of the

Hadoop Distributed File System (HDFS) for storage and

MapReduce for computational capabilities. Its storage and

computational capabilities scale with the addition of slave

hosts/nodes to a Hadoop cluster, and can reach volume sizes

in the petabytes on clusters with thousands of hosts. The

following is some brief overview of HDFS and MapReduce.

HDFS: HDFS is a distributed file system designed for

large-scale distributed data processing under frameworks

such as MapReduce and is optimized for high throughput. It

automatically re-replicates data blocks on nodes (the default

is 3 replications).

MapReduce: MapReduce is a data processing model that

has the advantage of easy scaling of data processing over

multiple computing nodes. Map and Reduce functions run

in each slave node parallely. Where as Map functions read

local blocks, Reducer functions take input from Map. A

MapReduce program processes data by manipulating key-

value pairs in the general form:

map: (k1,v1) ➞ list(k2,v2)

reduce: (k2,list(v2)) ➞ list(k3,v3).

Map reads (key, value) pairs, then based on the algorithm

designed by developers, it generates one or more output

pairs list (k2, v2). Through a complex shuffle and sort

phase, the output pairs are partitioned and then transferred

to Reducer: Pairs with the same key are grouped together as

(k2, list(v2)) and then each partition with unique value of k2

is sent to a Reducer. The Reduce function (with a specific

algorithm assigned) generates the final output pairs list(k3,

v3) for each group. Fig. 1 illustrates Map Reduce processes

for computing average attribute values (column 2 and 3) for

every record with specific Id (column 1) stored in blocks.

The overall MapReduce processed is as follows [1]: A

client submits a job to the master, which then assign and

manage Map and Reduce job parts to slave nodes. Map

reads and processes blocks of files stored locally in the slave

node, sent list of key-value to Reduce via shuffle and sort,

then Reduce may write its computation results to HDFS.

23 34 67

12 34 98

10 34 45
Map

Map

Map

Reduce

Reduce

Reduce

Block in node-1:

10 34 67

52 20 98

23 44 55

80 45 67

52 30 77

23 64 23

12 23 90

23 {34 67, 44 55, 64 23}

12 {34 98, 23 90}

10 {34 45, 34 67}

52 {20 98, 30 77}

80 {45 67}

Block in node-2:

Block in node-3::

23 {47.3 48.3}

12 {28.5 94}

10 {34 56}

52 {25 87.5}

80 {45 67}

Fig. 1. Illustration of MapReduce processes.

C. Parallel Clustering based on MapReduce

Along with the popularity of Hadoop for analyzing big

data, we found few research results for enhancing non-

parallel into parallel (based on MapReduce) clustering

techniques. The following are our findings:

(a) The most popular clustering algorithm, k-Means:

Taking k (the number of cluster and initial cluster center),

this algorithm iteratively assign objects into the closest

center, then update the center based on the newly formed

clusters. The technique in [11] is based on the core concept

that the Map function assigns each sample to the closest

center while the Reduce function performs the procedure of

updating the new centers. Ma et al. in [12] add the

capability of pre-computing the value of k and initial

clusters (to reduce iterations). [4] and [10] enhance the

technique in [11] to compute cluster patterns. Then, [13]

enhances the fuzzy version of k-Means based on

MapReduce.

(b) k-Medoids: The k-medoid that works similar to k-

Means but by minimizing the absolute distance between the

objects and the selected centroid, has been enhanced for

MapReduce in [14].

(c) DBSCAN: The grid-based clustering algorithm that

takes input of minimum points in a cluster and radius of a

cluster (eps) form clusters by “connecting” objects with

previously-formed clusters (from previous iteration) by

using eps. Objects that are far from formed clusters will be

regarded as outliers. Fu, Hu and Wang [15] have enhanced

this algorithm based on MapReduce.

(d) Hierarchical: Aiming for clustering internet users by

mining a huge volume of web access log, Vadivel and

Raghunath [16] have developed MapReduce hierarchical

clustering consisting three batches: First, selecting top N

users with highest similarity values to form initial clusters.

Second, adding other users to the initial clusters and

merging clusters. Third, updating user-matrix file and

modify the similarity values. As the clustering process are

conducted in batches, the objects are queued (each queue

contains m objects). By this approach, [16] intends to reduce

the high IO and distributed communication overhead due to

the read/write operations on distributed file system, caused

by both matrix updating and similarity value modification.

Another algorithm is DiSC [8] that is discussed below.

DiSC (distributed single-linkage hierarchical clustering

algorithm) consists of two stages. The first stage (Prim map

and Kruskal reducer) constructed subgraphs from data split

and write the output as HDFS files that will be fed into the

second stage (Kruskal map and Kruskal reducer) to “unite”

those subgraphs.

The part that relates to our technique is the first stage,

hence we only discuss this part in more detailed. The

algorithm of the algorithm of the first stage is depicted in

Algorithm 1 below.

Algorithm 1. Outline of DiSC, a distributed SHC algorithm
Input: a dataset D, K

Output: a MST for D

Steps:

1: Divide D into s roughly equal-sized splits: D1, D2, …., Ds

2: Form subgraphs containing the complete subgraph for every

pair in {(Di, Dj) | | i < j and i, j ε [1; s]}

3: Use Prim's algorithm to compute the local minimum spanning

tree (MST) for each subgraph in parallel, and output the MST's

edge list in increasing order of edge weight

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_24

(Advance online publication: 10 February 2018)

__

4: repeat

5: Merge the intermediate MSTs for every K subgraphs using the

idea of Kruskal's algorithm

6: until all vertices belong to the same MST

7: return the final MST

In implementing the algorithm using MapReduce scheme,

step 1, 2 and 3 are computed in the Mapper, while step 4

until 7 are performed in the Reducer. In the Mapper, the

original dataset is divided into s splits (D1, D2, …., Ds). Then

subgraphs will be constructed from every two of these splits

by allowing that some edges might be duplicated on

multiple subgraphs. For example, a subgraph Gij is

constructed from a split pair (Di, Dj) and a subgraph Gik

from (Di, Dk), hence edges that are exclusively formed by

the data points in Di are duplicated for both Gij and Gik.

Once a much smaller subgraph with the number of vertices

roughly being 2k and the number of edges being , where

, a serial MST algorithm is run locally for each

subgraph using Prim's algorithm (starting with any random

vertex, and growing the MST one edge at a time). With K is

the number of subgraphs, Reducer is then merge those K

subgraphs to form the final MST.

While the algorithms discussed above are applied to

vectored-based objects, [17] has developed parallel

clustering algorithms for non-vectored objects (such as bag

of words).

It has been discussed previously that clustering can be

adopted for reducing data. With regards to this objective,

our opinions towards those parallel clustering techniques are

as follows: Adopting clustering techniques that take k

(number of clusters) and other variables (minimum points,

radius in a cluster, etc.) that limit the clusters formed are not

suitable for data reductions. These variables need to be

defined in advance (by knowing the properties of the

dataset), which require some computation (before clustering

process). In this research, we aim to reduce the vectored-

based objects. Thus, we can not adopt parallel k-Means, k-

Medoids, DBSCAN and the technique proposed in [17].

Our better option is hierarchical clustering. However, we

would not adopt the algorithm that employ three batches

[16], as it needs to supply N (number of objects having the

highest similarity) as it will require prior computation (to

define N). As for DiSC [8], our comments: The Mapper

constructs subgraphs, where each is constructed from two

data splits. The data splits may be used by more that one

Mapper, hence producing subgraphs that have overlapping

edges (this will be resolved in Stage 2 for obtaining a

complete graph of dendrogram). For reducing data, we need

to construct subgraphs (local dendrogram) from data splits

that are non-overlapping. Thus, we can not adopt this

algorithm.

D. Agglomerative Hierarchical Clustering

 Clustering techniques consider data tuples as objects.

They partition the objects into groups, or clusters, so that

objects within a cluster are “similar” to one another and

“dissimilar” to objects in other clusters. In data reduction,

the cluster representations of the data are used to replace the

actual data [5]. The effectiveness of this technique depends

on the data’s nature. It is much more effective for data that

can be organized into distinct clusters than for smeared data.

A hierarchical clustering method can be either

agglomerative or divisive, depending on whether the

hierarchical decomposition is formed in a bottom-up

(merging) or top down (splitting) fashion.

An agglomerative hierarchical clustering method uses a

bottom-up strategy. It starts by letting each object form its

own sub-cluster and iteratively merges sub-clusters into

larger and larger sub-clusters, until all the objects are in a

single cluster or certain termination conditions are satisfied

(Fig. 2). The single cluster becomes the hierarchy’s root.

For the merging step, it finds the two clusters that are

closest to each other (according to some similarity or

distance measure), and combines the two to form one

cluster. Because two clusters are merged per iteration,

where each cluster contains at least one object, an

agglomerative method requires at most n iterations. A tree

structure called a dendrogram is commonly used to

represent the process of hierarchical clustering. In an

agglomerative method, it shows how objects are grouped

together step-by-step.

ab

de

cde

abcde

a b d ec

Step 1

Step 0

Step 2

Step 3

Step 4

a b c d e

d
is

ta
n
ce

 Fig. 2. Steps of the agglomerative (left) and the dendrogram tree (right).

The following are three distance measures that can be used:

(1) Minimum/single distance: A sub-tree/sub-cluster (or

object) cp is grouped with another sub-cluster cq using the

minimum distance between object members in cp and cq (the

closest edge):

dmin = min(dij), where 1≤ i ≤ m; 1≤ j ≤ n; dij = distance

between the object i in cp and j in cq; m = number of objects

in sub-cluster cp and n = number of objects in sub-cluster cq.

(2) Maximum distance: A sub-tree/sub-cluster (or object) ci

is grouped into another sub-cluster cj using the maximum

distance between object members in ci and ci (the furthest

edge):

dmax = max(dij).

(3) Means distance: A sub-tree/sub-cluster (or object) ci is

grouped into another sub-cluster cj using the distance

between centroids of ci and ci.

dmeans = distance(centroidcp, centroidcq), where centroidcp=

the attributes means of all objects in sub-cluster cp and

centroidcq = the attributes means of all objects in sub-cluster

cq.

E. Data Stream Mining

A data stream, DS, can be defined as a sequence of data

objects or samples. DS = {x1, x2, . . . , xt , . . .}, where xi is

the i-th arrived data object [18]. In the data stream mining

system, when a data stream comes, a temporary storage is

used to store the most recent data. Then, the system may

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_24

(Advance online publication: 10 February 2018)

__

apply different time window approaches to create data

synopsis that would be computed by analytical algorithms to

produce useful patterns.

The time window can be selected from the following

approaches:

(a) Landmark window: The data selected is the data stream

from starting time instant 1 to the current time instant tc,

hence, the window is W[1, tc].

(b) Sliding window: The data selected is in the w most

recent transactions (and the others are eliminated).

(c) Fading window: Each data object is assigned a different

weight according to its arrival time so that the new

transactions receive higher weights than the old ones.

(d) Tilted time window: It is somewhere between the fading

window and sliding window variants.

More discussion of these can be found in [18].

Computational approaches applied to the synopsis can be:

(a) Incremental learning: The mining model incrementally

evolves to adapt to changes in incoming data (an instance or

a window).

(b) Two-phase or online–offline learning: In the first

(online) phase, the data synopsis is updated in a real-time

manner; in the second (offline) phase, the mining process is

performed (based on a user request) on the stored synopsis.

Data stream mining may produce approximate results and

has to satisfy the following constraints [18]:

(a) Single-pass: Each sample in a data stream is examined at

most once and cannot be backtracked. The reason is: I/O

operations are quite expensive than memory operations.

(b) Real-time response: The data processing must be fast.

(c) Bounded memory: The amount of arriving data is

extremely large or potentially infinite. Ones may compute

and store a small summary of the data streams and possibly

throw away the rest of the data. Approximate results are

acceptable.

(d) Concept-drift detection: The discovered patterns (or the

underlying data distribution) change over time.

III. PROPOSED TECHNIQUE

The proposed technique, namely BDRT-ParAgglo, can be

used as part of big data stream mining (see Subsection II.E)

using clustering technique. BDRT-ParAgglo is used to

reduce the synopsis dataset stored as HDFS files. It handles

dataset having numeric attribut

es (or ones that can can be transformed into numeric) in

the two-phase learning system: Once the synopsis of raw

big data is available, BDRT-ParAgglo is executed to

generate patterns (see Fig. 4 3). The function to collect raw

big data may adopt landmark or sliding window. The

outputs of BDRT-ParAgglo, which are patterns with a lot

smaller size (compared to the raw dataset), can be stored

permanently while the raw big data itself can then be erased.

The resulted patterns can be analyzed by parallel data

mining techniques in the distributed systems or exported to

non-distributed and be analyzed by “traditional” (non-

parallel) techniques provided by many existing tools or

applications.

source

of big data

collect

regularly

reduce

export

results

files

distributed system

data

mining

technique

non-distributed system

data mining

technique

results

raw big

data

(HDFS)

extracted

patterns

Fig. 3. Scheme of batch big data reducer.

BDRT-ParAgglo is designed based on agglomerative

clustering algorithm. By employing this algorithm, BDRT-

ParAgglo handles big dataset of matrices (all objects

possess the same number of numerical attributes) only.

Missing values and/or wrong value of attributes should be

addressed in the data preprocessing step.

The concept our proposed technique is as follows:

(a) To ensure that large volume of data can be handled, we

randomly divided the objects into n disjoint partitions, then

a dendrogram tree is built from each partition (in every

slave node of Hadoop cluster) using agglomerative

hierarchical clustering method. The maximum number of

objects in a dendrogram is defined as a parameter

(maxObject) such that its value can be defined by

considering the slave node memory capacity. Hence, if a

partition contains greater than maxObject, the Reducer

processing this partition will create more than one

dendrogram.

(b) To allow flexibility, we provide three choices of distance

type for constructing dendrograms, which are single

(minimum), complete and means (average).

(c) Once a complete dendrogram is constructed from a

partition, it is “cut” using certain distance value (defined by

users) to form clusters.

(d) Cluster patterns (such as centroids, number of objects in

each cluster, etc.) are computed from each cluster formed,

then written to HDFS. As the objects in each

partition/dendrogram are obtained by random selection from

the raw big data, it is expected that the patterns are less

biased (by the incoming sequence of objects).

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_24

(Advance online publication: 10 February 2018)

__

C2

C1

centroid

centroid

cut-off

C1 C2

(b)

(c)

(a)

Fig. 4. (a) Data distribution; (b) Dendroram with its cut-off;

(c) The patterns or reduced data (red points).

The illustration of “cutting” dendrogram to obtain

patterns is depicted on Fig. 4: (a) The distribution of a

dataset having 21 objects; (b) cutting the dendrogram

constructed from dataset using certain distance that forms

C1, C2 clusters with few members and other clusters each

having one object member; (c) if cluster centroids are

regarded as the patterns, from those 21 objects can be

obtained 10 patterns (red dots), hence the dataset is reduced

by approximately 50% (10/21). As shown on the figure, the

dense objects are replaced by its centroids while the sparse

objects are preserved as is.

By selecting the agglomerative method and MapReduce,

the objectives and advantages of our proposed technique

include:

(a) Reducing the volume of “dense objects” with their

cluster patterns having a lot smaller size;

(b) Allowing flexibility in defining cut off distance to adjust

the granularity (fine-grain) of the the reduced dataset

(resulted cluster patterns);

(c) Permitting flexibility in using single, complete or mean

distance in constructing dendrogram such that users can

select the most suitable one for a certain dataset;

(d) Outliers are preserved as they may be needed by data

analysis technique;

(e) Numbers of data partitions (n) can be adjusted for

optimal computation in the distributed network (by

considering the slave/data nodes number and their

specification, i.e. available memory).

A. The Proposed Algorithm

Our proposed overall algorithm for reducing dataset is

depicted in Algorithm 2 and its visualization is presented in

Fig. 5.

Algorithm 2: Reduce dataset
Input: raw dataset (TO); number of partitions (n), distance type for

constructing dendrogram (distType), cut-off distance (co)

Output: cluster patterns CP = {CPj} as the reduced dataset

Steps:

(1) for each object (oi) in TO

(2) check and preprocessed each attribute value then put the

object in a bin/partition (TOj), send TOj to one of the parallel

processes

(3) for each TOj: construct dendrogram, cluster the objects in

dendrogram using cut-off co, compute local patterns CPj

(4) collect and store all CPj in CP then write CP into files

As discussed in [19] and [4], patterns generated from

clusters may include the number of objects in each cluster,

the average (means), minimum, maximum, standard

deviation of each attribute values and percentage of objects

having each of the attribute values. Hence, the attribute of

the pattern (CPj) can be selected from these components. In

doing so, the characteristic of the dataset and purpose of

reducing data should be considered.

1

 preprocess

& split

objects

2.1 cluster

& compute

patterns

3

collect

patterns

2.2 cluster

& compute

patterns

2.n cluster

& compute

patterns

2

reduce dataset

raw dataset (TO)

cluster

patterns

(CP)

TO1

TO2

TOn

CP1

CP2

CPn

Fig. 5. The proposed parallel algorithm.

B. Map-Reduce Functions Design

Algorithm 2 is implemented as Map and Reduce

functions as illustrated in Fig. 6 and described as follows.

As discussed in Subsection II.B, each Reducer receives and

processes a collection of <key, value> pairs having the same

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_24

(Advance online publication: 10 February 2018)

__

key value. We view this strict rule as an advantage and use

it in our Mapper to partition the dataset by simply assigning

a random number as the output key (for every value of

record emitted). As stated in [1, 7], each Reducer that runs

in every slave node is allowed to write its output directly

into HDFS files. We embrace this advantage for eliminating

the process of merging of all Reducer results (as employed

in [8]) to speed up the computation. Hence, our Reducer

write the output (reduced dataset) into HDFS files directly.

Map-1

Map-2

Map-n

Red-1

Red-2

Red-k

raw dataset (TO)

stored as HDFS

blocks

peprocessed

partitions of

object (TOn)

cluster patterns

Fig. 6. Illustration of the Map-Reduce function.

As sown in Fig. 6, each Mapper (Map-i) read local blocks

of HDFS containing consecutive of records/objects (Oi) then

distributes every records randomly to every Reducer. The

Reducer then perform data reduction computations and

write the results (cluster patterns, CPi) to files. Here, we do

not use local HDFS blocks (read by local Mapper) as data

partition because: Hadoop creates HDFS blocks

consecutively by “chunking” the input file. Hence, each

block contains ordered (not random) that are not proper for

constructing representative dendrograms.

The detailed steps of Mapper and Reducer functions are

depicted in Algorithm 3 and 4.

Algorithm 3: Mapper
Input: raw dataset (TO); number of partitions (nPar)

Output: key = an integer number ε {1… nPar }, value = text of

preprocessed set of attribute values

Description: Split TO object disjointly by assigning a random

number for each object

Steps:

(1) value ← read a line (an object) and preprocessed its attributes

accordingly

(2) key ← a random integer k, where 1 ≤ k ≤ nPar // By assigning

key with a random integer k, where 1 ≤ k ≤ nPar, we intend to

split the records (values) evenly (approximated) to every Reducer.

(3) emit pair of <key, value>

Depending on the k value, the number of randomized

objects (values) received by Reducer may still be very large

such that forming a dendrogram from these large objects

may not fit into the node memory. Cluster patterns created

from very large large of objects may not highly accurate in

representing the semantic of the objects as well. Hence, in

Reducer, we introduce maxObject variable that is used to

limit the maximum number of objects in a dendrogram.

Algorithm 4: Reducer
Input: list of records <key, value> emitted by Mapper where key

has the same value in every record, maxObject, distType ε {single,

complete, means}, cut-off distance (co)

Output: cluster patterns, CPj

Description: Construct dendrograms from list of value by applying

constraint that a dendrogram has at most maxObject objects, form

clusters from dendrograms using co, compute and write the

patterns from each cluster formed into files

Steps:

(1) listTrees ← [] // array of single_tree

(2) for each pair of <key, value>

(3) form an independent tree, single_tree, from value

(4) add single_tree to listTrees

(5) isProcessed = false

(6) if the number of single_tree in listTrees = maxObject

(7) form dendrogram_tree from listTrees using distance

measure of distType

(8) form object clusters from dendrogram_tree using co

(9) compute patterns CPj from every cluster formed in step

(8) then write to files

(10) clear object trees in listTrees // remove objects from node

memory

(11) isProcessed = true

(12) if isProcessed = false // there are objects in listTrees that have

not been reduced

(13) do step (7, 8, 9, 10) // compute the cluster patterns from

the remaining objects

Data structure used in Algorithm 4 is as follows:

(a) single_tree = {atrVal[], clsLabel} where atrVal[] =

array of the object attribute values, clsLabel = an integer

denoting the number of cluster that this tree belongs (filled

at the clustering process using cut-off distance).

(b) dendrogram_tree = {leftCls, distType, distance,

clsLabel, rightCls} where leftCls = reference/pointer to

left-side of single_tree, rightCls = pointer to right-side of

single_tree, distType ε {0, 1, 2} where 0 is single, 1 is

complete, 2 is mean distance type used to form dendrogram,

and distance = a real number denoting the distance between

its pair of left and right tree/cluster (Fig. 7).

(c) CPj = {nObjects, minAtrVal[], maxAtrVal[],

meansAtrVal[]}, where nObjects = number of objects,

minAtrVal[] = array of minimum attribute values,

maxAtrVal[]= array of maximum attribute values,

meansAtrVal[]= array of average (means) attribute values.

As for computing attribute deviations and the value

percentages require one more iteration for visiting objects in

every cluster (see Subsection III.A), we exclude these 2

components as elements in the cluster patterns to simplify

Reducer time complexity.

Fig. 7. The dendrogram tree structure.

The visual illustration of the Reducer algorithm in

processing a single dendrogram is depicted on Fig. 8. Each

Reducer constructs a dendrogram tree from the data

partition containing a collection of objects fed into this

function. Then all Reducer functions “cut” the dendrogram

using the same value of distance cut-off (co) where each

branch below the cut-off will form one cluster having the

member objects included in the branch. Hence, each

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_24

(Advance online publication: 10 February 2018)

__

1

construct
dendro-

gram

2
cluster

objects

3

compute
patterns

C1 & C2
dendrogram

Reduce-1

cut-off

1

construct

dendro-

gram

2

cluster

objects

3

compute

patternsC1dendrogram

Reduce-n

cut-off

1
construct

dendro-
gram

2
cluster

objects

3

compute

patterns
C1, C2,

C3 & C4

dendrogram

Reduce-2

cut-off

Fig. 8. Illustration of three Reducer functions that produce 2, 4 and 1 cluster patterns from records emitted by Map functions.

Reducer may form different number of clusters. Generally,

the smaller the value of cut-off, the more clusters will be

resulted (but this depends on the dendrogram structure). As

a pattern is computed from a cluster, the number of cluster

pattern dispatched by every Reducer is equal to the clusters

number.

The detailed of three steps in Algorithm 4 is discussed

below.

Step-7: form dendrogram_tree from listTrees based on

distType

(7.1.) if no dendrogram_tree existed, get two single_tree

from listTrees having the shortest distType distance and

form a dendrogram_tree from these two trees, store the

distance in the tree, then remove these two from listTrees

(7.2.) else: get the next element of single_tree in listTrees

then

 (a) if distType = single or complete, find the shortest (or

longest) distance of this single_tree to every single_tree in

dendrogram_trees,

 (b) if distType = means, compute the average distance

between the sub-tree/branches of the dendrogram_tree

using the stored distance and by adding this single-tree in

it, select the shortest mean distance, construct left branch as

the existing dendrogram_tree having the shortest/longest

distance, store the distance in the tree, and the right branch

as single_tree (or the opposite), remove this single_tree

from listTrees

(7.3) repeat (7.2) until listTrees is empty.

The method for computing the distance between 2 objects

can be selected from Euclidean, Manhattan, etc., which are

applicable for numeric attributes. As every object attribute

must be read, the complexity is O(n), where n is the number

of attributes. The complexity for finding shortest distance

of single and complete type between a single_tree object

and single_tree objects in previously formed

dendrogram_tree is O(n), where n is the count of

single_tree. For finding shortest distance of average or

means, the computation is more efficient, as the centroid of

every sub-dendrogram-tree is stored in the tree then each

time an object is added the tis centroid is recomputed. The

complexity is also O(n) but with n is the number of

branches, which is smaller than the count of single_tree.

Hence, the overall complexity of Step-7 is between O(n

log(n)) to O(n2) where n = count of nodes listTrees.

Step-8: form object clusters from dendrogram_tree using

cut-off distance co

(8.1.) create list of empty tree, clsResults

(8.2) if dendrogram_tree has only a single tree, add (the

reference of) this to clsResults as its element

(8.3) else

(8.4) if the dendrogram_tree distance <= distance add

(the reference of) this dendrogram_tree to clsResults as its

element

(8.5) else repeat (6.2) for dendrogram_tree left and right

branch of the tree

The complexity of Step-8 is O(m), where 1 ≤ m ≤ depth of

the dendrogram_tree.

Step-9: compute patterns CPj from every cluster formed

for each cluster element in clsResults (the result of Step 6):

visit each object member of this cluster for computing each

element of its pattern, CPj (the elements are nObjects,

minAtrVal[], maxAtrVal[] and meansAtrVal[]).

The complexity of Step-9 is O(stn), where s = count of

elements in clsResults, t = count of elements in a cluster in

the particular element of clsResults (here, 1 ≤ t ≤ count of

objects in this data partition received by Reducer), n =

count of object attributes.

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_24

(Advance online publication: 10 February 2018)

__

In our proposed algorithm, Mapper only partitions the

dataset. The complex computation is performed by Reducer.

Hence, we present the complexity of the Reducer algorithms

only.

IV. EXPERIMENTS, ANALYSIS AND DISCUSSION

To evaluate BDRT-ParAgglo, three series of experiment,

where each has specific objective, were performed. All of

the experiments were conducted in Hadoop clusters with N

slave nodes (Fig. 9) where all are commodity computers

with low specification.

Master Slave-1 Slave-2

Slave-3 Slave-4 Slave-N. . . .

Fig. 9. Hadoop cluster with N slave nodes.

A. Patterns Evaluation

The intention of the experiments are to evaluate the

proposed techniques and to answer the following questions:

Q-1: Will the proposed technique generate reduced dataset

(patterns) that semantically represent the original data?

Q-2: How are the comparison among the three distance

types computation (in generating the reduced dataset)?

Q-3: What variables that affect the percentage of the

reduced data? Will the number of partition and maximum

object in a dendrogram correlate to that percentage?

Experiments using Synthetic Datasets

For these experiments, we used synthetic and real

datasets. The experiments were performed on a Hadoop

Cluster having one master with four slave nodes (Fig. 10 9)

where each node has the following specifications: The

processor is Quad-Core running at 3.2 GHz with 8 Gbyte of

memory.

In the first experiments, which is intended to answer Q-1

and Q-2, we use two synthetic datasets with 2 numeric

attributes, where objects are created randomly such that they

have particular distributions. The first and second dataset

contains 400 and 1200 objects. The patterns as the reduced

dataset consist of two elements (proposed in [4]), which are

the attributes means/centroids and the number of objects in

the sub-clusters.

The dataset with 400 objects has three dense-objects and

outliers. We reduce this dataset using the parameters:

(a) nPar = 1, maxObject = 20, distType ε {single, complete,

means}, co = 0.5

(b) nPar = 3, maxObject = 20, distType ε {single, complete,

means}, co = 0.5

By observing the results, we conclude that the results of

(a) and (b) are similar, which can be interpreted that

partitioning the dataset (nPar = 3) will not greatly change

the patterns computed from the dataset without being

partitioned (nPar = 1). Also, by visualizing the original

dataset vs the resulted output of patterns, we found that the

distance type of single, complete and average linkage

produce similar patterns. However, patterns of complete

and average distance type are closer.

The dataset with 1200 objects has six dense-objects and

outliers. We reduce this dataset using combination

parameters of nPar = 3, maxObject ε {30, 50, 70}, distType

ε {single, complete, means}, co ε {0.2, 0.4, 0.6, 0.8, 1.0}.

Some sample of the experiment results are presented in Fig.

10. By comparing the distribution of original dataset and the

cluster centroids, it can be seen that the centroids (red)

represents the original dataset (green). On Fig. 11 we

present the count of cluster centroid members using circles

with the size of the diameter represents the count of cluster

centroid members. It shows that among the original dataset

with green dense objects, the circles have larger diameter.

Hence, similar/close objects are greatly reduced, while

sparse objects are less reduced.

(a)

(b)

Fig. 10. The distribution of dendrogram cluster centroids (red) vs original

data (green) for 2-d 1200 objects with nPar = 3, maxObject = 50, distType

= means with co = (a) 0.6 and (b) 0.8.

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_24

(Advance online publication: 10 February 2018)

__

Fig. 11. The object member counts of sub-clusters in Fig. 10(b), where the

more members represented by larger size of blue circle.

By observing the plots of the experiments using those two

datasets (400 and 1200 objects), we conclude that: The

generated reduced dataset (patterns) semantically represents

the original dataset, where:

(a) Dense original objects are represented with fewer

patterns but with larger member counts;

(b) Outliers are preserved (with small member counts).

Thus, Q-1 is resolved.

By observing the experiment results using distType of

single, complete and means, we find that while the results of

complete and means/average are similar, where as the

results of single is slightly different. The cluster centroids

generated using complete and average distance represents

the original data better. Thus, Q-2 is partially answered.

For finding more answer of Q-2 and Q-3, we use the

synthetic dataset of 1200 objects and reduce this dataset

using combination variables of nPar ε {2, 3, 4, 5},

maxObject ε {50, 70}, distType ε {single, complete, mean},

co ε {0.2, 0.4, 0.6, 0.8, 1.0}. The sample of the results are

presented in Table I and II.

By analyzing the results, the following are findings of the

variables influences:

(a) co (cut-off distance): As discussed in Subsection III.B

and illustrated in Fig. 8, the larger value of co, the less

clusters or patterns will be created, which means less

percentage of the reduced dataset (compared to the original

one). Our experiment results confirm this (as shown in

Table I and II).

(b) nPar: Frequently, the larger the partitions, the larger the

number of patterns resulted (but sometime it is smaller).

This fact is justified, as the larger the partitions, the more

dendrograms will be produced (by more slave nodes) and

the more clusters/ patterns will be resulted (using certain

co). Hence, the experiment results prove this.

(c) maxObject: The larger value of maxObject, the smaller

number of patterns created. Using larger number of

maxObject will result in fewer dendrogram being created.

Hence, the clusters/patterns will also be fewer.

(d) distType: Using single distType will reduced the original

dataset the most, follow by means, then complete (the least).

Creating dendrogram using single distance type (the closest

distance between object in two sub-cluster) will produce

smaller distance among clusters and when be cut using

certain value of co will produce fewer clusters/patterns. Our

experiments results conform to this.

TABLE I . COMPARISON OF REDUCED DATA USING SEVERAL VARIABLES

mO co

nPar = 2
d.t. = single d.t. =

complete

d.t.=mean

#ptrn % #ptrn % #ptrn %

50

0.2 673 56.1 734 61.2 737 61.4

0.6 234 19.5 398 33.2 328 27.3

1.0 101 8.4 243 20.3 207 17.3

70

0.2 574 47.8 683 56.9 679 56.6

0.6 199 16.6 334 27.8 311 25.9

1.0 68 5.7 198 16.5 179 14.9

 nPar = 3

mO co

d.t. = single d.t. =

complete

d.t.=mean

#ptrn % #ptrn % #ptrn %

50

0.2 703 58.6 761 63.4 779 64.9

0.6 265 22.1 426 35.5 383 31.9

1.0 116 9.7 288 24.0 241 20.1

70

0.2 646 53.8 699 58.3 687 57.3

0.6 197 16.4 367 30.6 306 25.5

1.0 77 6.4 207 17.3 171 14.3
Note: mO = maxObject, co= cut-off distance, d.t. = distType,

#ptrn = patterns count, % = (#ptrn /original object counts) x 100%

TABLE II. COMPARISON OF REDUCED DATA USING DISTTYPE = MEAN
nPar co maxObj=50 maxObj=70

#ptrn % #ptrn %

2

0.2 737 61.4 679 56.6

0.6 328 27.3 311 25.9

1.0 207 17.3 179 14.9

3

0.2 779 64.9 687 57.3

0.6 383 31.9 306 25.5

1.0 241 20.1 171 14.3

4

0.2 804 67.0 764 63.7

0.6 381 31.8 339 28.3

1.0 256 21.3 197 16.4

5

0.2 767 63.9 733 61.1

0.6 413 34.4 350 29.2

1.0 237 19.8 203 16.9

Note: co= cut-off distance, #ptrn = patterns count,

% = (#ptrn/original object counts) x 100%

Thus, from those experiments, it can be concluded that:

(1) The larger the partition (nPar), the more patterns

(reduced data) resulted;

(2) The smaller the co (distance cut-off) applied to

dendrograms in forming clusters, the more patterns resulted;

(3) The larger the maximum objects in a dendrogram, the

smaller patterns resulted;

(4) The selection of distance type influence the resulted

number of patterns or percentage of reduction, with the

following order: single (reduced the dataset the most),

mean, complete (the least.

Experiments using Real Large Dataset

The experiments are conducted with larger size of

Hadoop cluster, which has 1 master and 14 slave nodes

(Fig. 9), where each node machine has processor of Quad-

Core running at 3.2 GHz, the memory of 7 machines is 4

Gbyte and of 8 machines is 6 Gbyte, the HDFS block (for

input and output) size is configured as 16 Mbyte.

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_24

(Advance online publication: 10 February 2018)

__

As a sample of reducing real dataset, we use: The dataset

of household energy consumption, which is obtained from

https://archive.ics.uci.edu/ml/datasets/ with the size of

approximately 132 Mb. This archive contains 2075259

measurements (records/objects) gathered between

December 2006 and November 2010. The sample of the

dataset are as follows:
9/6/2007; 17:31:00 ; 0.486 ; 0.066; 241.810; 2.000; 0.000 ; 0.000 ; 0.000

9/6/2007; 17:32:00 ; 0.484 ; 0.066; 241.220; 2.000 ; 0.000 ; 0.000; 0.000

9/6/2007; 17:33:00 ; 0.484 ; 0.066 ; 241.510; 2.000; 0.000 ; 0.000 ; 0.000

Each line presents a record with 9 attributes, the excerpts

are: (1) Date; (2) Time; (3, 4, 5, 6) some results of metrics;

(7) sub_metering_1: energy sub-metering (watt-hour) that

corresponds to the kitchen, (8) sub_metering_2: energy sub-

metering that corresponds to the laundry room; (9)

sub_metering_3: energy sub-metering that corresponds to a

water-heater and an air-conditioner.

The reason that we select that dataset is: We can

preprocess the dataset and obtain numeric attributes that are

meaningful and can be mined to obtain interesting patterns

(see [10] for more discussion). The data preprocessing

performed in Map function (see Algorithm 3) is as follows:

(a) Number of day (1, 2, …7) is extracted from Date and

stored as attribute-1;

(b) Hour (1, 2,…24) is extracted from Time and stored as

attribute-2;

(c) The value of sub_metering_1, _2 and _3 are taken as is

and stored as attribute-3, -4, -5.

Thus, the preprocessed dataset has 5 attributes, which are

day number, hour and 3 sub-metering measures.

The results of reducing the dataset using distType = single

and means, for several value of nPar, maxObj and co are

presented in Table III. As shown in the table, we find that

the experiment results are very much consistent with the

results with synthetic dataset (see Table I and II), which are:

a) Reducing the dataset using single distType will produce

fewer patterns compared to using mean distType.

b) The larger the partition (nPar), the larger the count of

patterns resulted;

c) The larger the maximum objects (maxObj) used in a

dendrogram, the fewer the patterns resulted;

d) The smaller the co (distance cut-off), the more patterns

resulted (the smaller reduced percentage).

B. Variables Influencing Execution Speed

The objective of this experiment is to find BDRT-

ParAgglo variables that influence the execution time. The

data used is the dataset of household energy consumption as

discussed in Subsection IV.A. In conducting experiments,

each run was repeated five times and the execution times

were averaged.

TABLE III. THE RESULTS OF REDUCING REAL DATASET

distType = single, nPar = 10
maxObj co #patterns % exec time

(min:sec)

50

1 798,980 38.5

0

1:35

1.5 674,265 32.4

9

1:21

2 590,422 28.4

5

1:35

100 1 636,668 30.6 6:12

8

1.5 508,425 24.5

0

6:03

2 412,906 19.9

0

5:58

200

1 494,078 23.8

1

23:08

1.5 359,842 17.3

4

21:52

2 281,691 13.5

7

22:18

distType = single, nPar = 20

maxObj co #patterns % exec time

(min:sec)

50

1 1,053,13

0

50.7

5

1:41

1.5 641,642 30.9

2

2:50

2 723,728 34.8

7

2:03

100

1 865,759 41.7

2

4:11

1.5 641,642 30.9

2

4:50

2 494,815 23.8

4

4:00

200

1 676,871 32.6

2

19:27

1.5 444,253 21.4

1

22:31

2 315,646 15.2

1

21:59

distType = mean, nPar = 10

maxObj co #patterns % exec time

(min:sec)

50

1 996,653 48.0 3:55

1.5 638,426 30.8 4:24

2 521,195 25.1 4:18

100

1 896,315 43.2 4:33

1.5 638,426 30.8 4:24

2 521,195 25.1 4:18

200

1 801,405 38.6 14:53

1.5 523,971 25.2 14:53

2 408,027 19.7 15:37

distType = mean, nPar = 20

maxObj co #patterns % exec time

(min:sec)

50

1 1,241,87

6

59.8 2:19

1.5 992,973 47.8 2:02

2 847,262 40.8 1:53

100

1 1,121,01

3

54.0 4:33

1.5 824,520 39.7 4:31

2 669,022 32.2 4:26

200

1 1,018,25

7

49.1 15:06

1.5 678,300 32.7 14:51

2 513,655 24.8 14:54

Table III shows that maxObj is the most important

variable that influences time executions. The variable of

distType, nPar and co do not influence the time significantly

(using the same maxObj value, the use of different distType,

nPar and co only slightly affect the execution time). This is

in accordance with the time complexity analysis (see

Subsection III.B), where the most complex computations is

the dendrogram creation, which is O(n2) with n is the object

number.

It also shows in Table III that the execution time using

single distance type is longer than mean distance type. This

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_24

(Advance online publication: 10 February 2018)

__

complies to the Step 7 of the Reducer algorithm (Algorithm

4), where mean distance computation is more efficient.

Another finding, the use of larger nPar, which means that

through Hadoop shuffle process more data partitions are

created and each is sent to a Reducer running in a slave

node, slightly increase the time execution. Our analysis: As

discussed in [20], the Hadoop shuffle process is a

complicated phase between Map and Reduce functions. It

involves sorting, grouping (among pairs of (k,v), pairs

having the same value of k is placed in one group), and

HTTP transferring. During this shuffle phase, a large mount

of time is also consumed disk I/O (storing the grouping

results and reading the grouped records) with a low speed of

data throughput. In the case of sorting, depending on the

algorithm used (Quicksort, Mergesort, Heapsort, etc.), the

best complexity is O(n) where as the worst is O(n log n) or

O(n2). The complex computation, disk I/O and data transfer

through HTTP are the caused why the larger nPar used the

more time needed.

C. Reduction Percentage

The objective of this experiment is to observe the

percentage of data reduction when the input is big dataset.

Since we can not find real big dataset with numerical

attributes, we create the big data by “multiplying” the

preprocessed household energy consumption dataset (used

in the previous experiments) up to 5 gigabyte.

Some example of the results, the reduction statistics with

nPar = 9, distType = mean and co = 1 is depicted in Table

IV. It shows in the table that using this value of nPar,

although the input data size vary, the percentage of

reduction (number of output records/input records), more or

less is constant. Other results are depicted on Table V that

shows the average of reduction percentage for nPar = 5, 9,

14 and 18. It can be observed that the larger nPar value, the

more the number of output records or patterns. The analysis

is: The more number partitions (nPar) the more

dendrograms created. Hence, cutting these dendrograms

using the same value of co will produce more number of

subclusters and their patterns (computed for each sub-

cluster).

TABLE IV. DATA REDUCTION WITH nPar = 9 AND distType = means

Input

Size

(Gb)

#Input

Records
#Bk

Time

(sec)

Output

Records

%Re-

duced

0.51 8,301,036 32 302 3,389,523 40.83%

1.01 16,602,072 64 307 6,794,618 40.93%

1.49 24,903,108 96 319 10,236,593 41.11%

1.98 33,204,144 127 469 13,582,097 40.90%

2.48 41,505,180 159 527 17,001,881 40.96%

2.97 49,806,216 191 612 20,377,226 40.91%

3.47 58,107,252 222 647 23,778,819 40.92%

Input

Size

(Gb)

#Input

Records
#Bk

Time

(sec)

Output

Records

%Re-

duced

3.96 66,408,288 254 823 27,177,419 40.92%

4.46 74,709,324 286 892 30,578,403 40.93%

4.95 83,010,360 318 955 33,956,222 40.91%

 #Bk = #Blocks, %Reduced = #InputRecords/#OutputRecords

TABLE V. AVERAGE PERCENTAGE OF RECORDS

nPar %Reduction

5 30.9107

9 40.9329

14 48.3333

18 52.2957

D. Evaluating Hadoop Configuration towards BDRT-

ParAgglo

As BDRT-ParAgglo is based on Hadoop MapReduce, in

these experiments, we intend to evaluate the influence of

Hadoop cluster configuration towards BDRT-ParAgglo.

The data used is from 1 Gb up to 20 Gb, obtained by

multiplying the household energy consumption dataset. The

Hadoop cluster (Fig. 9) is configured with (maximum of) 14

slave nodes (each node has 4Gb of memory and Quad-

Core processor running at 3.2 GHz). The Hadoop

configuration that are evaluated are number of slave nodes

and HDFS block size. Here, maxObj is set to 100 as this is

the largest that can be handled by the slave nodes with that

limited memory (we experimented with larger size of

maxObj, but the executions were failed due to lack of slave

nodes memory capacity). As one important finding of the

previous experiments (see Subsection IV.B) suggest that

nPar influence the execution speed, to obtain more facts,

we use 3 values of nPar that are related to the number of

slave nodes (5, 9 and 14).

The first series of experiments are performed by

executing the algorithm using distType = means and varying

the values of data input size, number of slave nodes,

partition (nPar) and HDFS block size. The results are

presented using plots.

The plots of the experiments results using block size of

32 and 64 Mb are presented on Fig. 12 and 13, while using

16 Mb is depicted on Fig. A.1 in Appendix A. (Note:

Block size = 16 Mb is actually too small and not

recommended. The experiments using 16 Mb block size are

performed for comparison intention only.)

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_24

(Advance online publication: 10 February 2018)

__

Fig. 12. Plot of execution time for distance type = means, HDFS block size = 32 Mb.

Fig. 13. Plot of execution time for distance type = means and HDFS block size = 64 Mb

The experiment findings using block size of 16Mb (Fig.

A.1) and 32 Mb (Fig. 12) are similar, which are: (a) By

adding slave nodes, bigger size of dataset can be processed

(using node = 1, the maximum of data input that can be

processed is up to 5Gb only, using node = 5 is up to 15 Gb);

(b) The more slave nodes, the faster the execution time. (c)

Execution using nPar = 14 is the slowest; (d) Using larger

block size (32Mb) on 14 nodes, the speed of nPar = 9 is

almost equal to nPar = 5.

The experiment findings using block size of 64 Mb (Fig

.14) are similar to the 16 Mb and 32 Mb findings, with this

additional fact: Using block size of 64 Mb, the execution

speed on 10 and 14 nodes with nPar = 5, 9 and 14 are

approximately equal.

Thus, the summary of the above findings are:

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_24

(Advance online publication: 10 February 2018)

__

(a) Using more slave nodes will increase the size of big data

that can be processed as well as the speed of the execution

time;

(b) In general, using larger block size reduces the execution

time (the input dataset itself can be partitioned into up to the

count of slave nodes);

(c) Using larger value of nPar will slow down the

execution.

Analysis of the findings:

(a) The findings of (a), using more nodes will increase the

input data size and faster execution, is due to the fact that

the computation are performed parallely in more nodes with

more processor and memory. Ideally, by parallelizing a

computation, the time complexity is divided by the number

of processor, np. Hence, the execution should be np faster.

On Fig. 12 and 13, and data size = 5 Gb, however, it can be

seen that the execution on nodes = 14 is approximately only

5 times compared to node = 1. In the Hadoop cluster

environment, this is due to network cost and the complexity

of shuffle process as discussed in Subsection IV.B.

(b) By using larger HDFS block size, less data will be sent

to the network in the Hadoop shuffling stage (as more

objects are computed locally), hence it reduces the overhead

of data communication and increases overall execution

speed. (In the shuffling process, the smaller the block size,

the more grouping and sorting computation are performed

for distributing the outputs of Mapper to the corresponding

destination Reducers.)

(c) The cause has been discussed in Subsection IV.B. But,

here, we find that the influence of nPar also depends on the

block size. To obtain more facts, additional plots for

observing the influence of block size towards nPar have

been created. The sample plot is selected for node = 14 and

is depicted on Fig. 14. It can be observed that using nPar =

9 and 14, the fastest is execution is achieved with block size

of 64 Mb. The reason is discussed in item (b) as stated

above.

The second series of experiments are performed by

repeating all of the experiments discussed above but using

distType = single (the complexity of computation using

single and complete distance is the same, so here only single

distance is evaluated). The results are presented on

Appendix B. As discussed on the appendix, the execution is

slower and BDRT-ParAgglo can handle smaller input

dataset. However, it shows similar patterns compared to the

results using distType = means, which are: adding more

nodes and using larger block size will speed up the

computation.

Fig. 14. Time execution on Hadoop cluster with 14 slave nodes.

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_24

(Advance online publication: 10 February 2018)

__

E. Experiment Conclusions

The overall conclusion of experiments discussed in

Subsection IV.A, B. C and D are excerpted as follows:

(1) The influence of BDRT-ParAgglo variables: (a) The

counts of patterns created are affected by the value of

maxObj (larger maxObj – fewer patterns), nPar (larger nPar

–more patterns), distType (descending order: means-

single/complete) and co (smaller co – more patterns); (b) On

a specific configured Hadoop cluster, the larger value of

maxObj or nPar, the slower the execution; (c) The size of

big data that can be processed on a specific configured

Hadoop cluster is influenced by the selection of maxObj and

distType values.

(2) The influence of Hadoop cluster configuration: (a)

Execution times are affected by number of slave nodes and

HDFS block size; (b) Adding slave nodes will increase the

size of the data that can be processed.

(3) The main objective of partitioning the input dataset

(using nPar value in Mapper) is to randomize the objects

fed into Reducer. Hence, the larger the nPar value, the more

randomized the data partitions received by Reducer that will

produce patterns that are less biased towards the object

order. However, the cost is the execution time, which can be

reduced by using larger HDFS block size.

F. Evaluating Towards Constraints

As discussed in Subsection II.E, data stream mining

technique has to satisfy four constraints. Based on the

experiment results and their analysis, Table VI shows the

results of the proposed techniques evaluation towards the

four constraints.

TABLE VI. THE RESULTS OF CONSTRAINTS EVALUATION

Constraint Comply? Rationale

Single-pass Yes

BDRT-ParAgglo reads and

processes (to generate patterns) a

dataset once only.

Real-time

response
Somewhat

The variables of maxObj and nPar,

HDFS block size and number of

slave nodes affect the BDRT-

ParAgglo execution speed. Thus,

real-time response can be

approached by selecting the proper

variables’ values and Hadoop

configurations.

Bounded

memory
Yes

Achieved by adopting landmark or

sliding window and assigning a

value of maxObj that fit into slave

node memory.

Concept-

drift

detection

Yes

The dataset being processed or

discovered patterns change over

time.

G. Open Discussion: Measuring Clusters Quality

As discussed in [5], there are two approach for measuring

clustering quality, which are extrinsic and intrinsic methods.

Extrinsic methods compare the cluster results against the

group truth and measure. If the ground truth is unavailable,

ones can use intrinsic methods, which evaluate the goodness

of a clustering by considering how well the clusters are

separated. Generally, group truth for big data is unavailable,

so only intrinsic methods can be adopted.

The silhouette coefficient is a measure of intrinsic

methods, which is described as follows: For a data set, D, of

n objects, D is partitioned into k clusters, C1, ….,Ck. For

each object o ϵ D, a(o) is the average distance between o

and all other objects in the cluster to which o belongs.

Similarly, b(o) is the minimum average distance from o to

all clusters to which o does not belong. The silhouette

coefficient of o is then defined as:

If s(o) < 0, it indicates that o is wrongly clustered. The

closer the value of s(o) to 1, the better o is clustered. To

measure the quality of a clustering, ones may use the

average silhouette coefficient values of all objects in the

data set. The larger the value, the better the quality of

clustering.

The complexity of computing all of s(o) values is

approximately O(kn2m), where k = count of clusters, n =

count of objects and m = count of object attributes. Then,

the complexity to compute the average of all s(o) values

would be O(n). Thus, including functions in the

MapReduce program to compute every s(o) and the average

will slow down the computation and require lots of memory

space in the slave nodes (for storing the objects, distances,

objects’ cluster membership and all of s(o) values). For

these reasons, we have not implemented this function.

Ideally, a function for measuring the quality of clusters is

provided such that before patterns are computed, ones can

measure the quality of the formed clusters (in Algorithm 4,

it should be called after line 8, form clusters using co).

Thus, in this research, this remains unresolved yet.

As discussed in [5] and [18] agglomerative clustering

algorithm has the advantage that it derives more meaningful

cluster structures (compared to other approaches) as

illustrated on Fig. 8. But its limitations are high complexity

(or not suitable for high dimensional data) and sensitive to

the order of the data records. In our proposed techniques,

the second limitation has been resolved by randomly

partitioning the objects (see Subsection IV.E). As a

consequence of the first limitation, BDRT-ParAgglo is

suitable for reducing big data having small to medium

dimension (number of attributes).

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_24

(Advance online publication: 10 February 2018)

__

Fig. 14. Time execution on Hadoop cluster with 14 slave nodes.

V. CONCLUSION

A parallel method for reducing big data based on

hierarchical clustering algorithm for Hadoop environment

has been developed. In essence, Map preprocesses and

randomly partitions the data, whereas Reduce computes the

cluster patterns from each data partition. The components of

the pattern can be selected from object counts, the attribute

average, minimum, maximum and deviation value of each

attribute in every cluster.

The variables of BDRT-ParAgglo as well as Hadoop

cluster configuration may influence the execution time and

the size of big data that can be processed. Hence, the

variable values and configuration should be selected such

that the performance is the best.

Through the experiments using low specification of

computers as master and slave nodes, it has been shown that

up to 20 Gb of big data can be processed with certain speed.

Those experiments have proved that BDRT-ParAgglo can

be implemented on Hadoop clusters configured using just

commodity computers. By improving the hardware

specifications (increasing memory and speed of processors),

the size of data input that can be handled will be larger and

the speed will also be increased.

Further research is suggested as follows:

(a) To increase the execution speed and addressing the

complex shuffle process problem, the technique proposed in

[20] for improving the Hadoop configuration, may be

studied and, if found as the solution, can be adopted.

Another option is: Creating HDFS blocks from

preprocessed data that contains random objects, then

Reducer is designed to form dendrogram without involving

shuffling process.

(b) Designing and implementing functions to measure

clustering quality suitable to handle big data in the

distributed systems.

(c) By adopting the cloud clustering technique discussed in

[21], this technique can further be enhanced such that it

works in cloud platform.

APPENDIX

A. Experiment Results using Distance Type = Means and

HDFS block size = 16 Mb

Fig. A.1 shows that: (a) By adding slave nodes, bigger

size of dataset can be processed: Using single node, only 5

Gb of dataset can be processed (using nPar = 5 only), while

using 5 nodes, it is up to 15 Gb and using 10 and 14 nodes,

it is up to 20 Gb; (b) The more slave nodes, the faster the

execution time; (c) The larger value of data partition

(nPar), the more execution time needed.

B. Experiment Results using Distance Type = Single

Compared to using distance type = means, when using

distance type = single, the proposed algorithm can only

handle smaller size of dataset. An example of the

experiment results are depicted on Fig. B.1. The broken

charts mean that the execution were failed due to lack of

memory (in the slave nodes). This is because we implement

the function for finding the shortest distance using recursive

functions (in a class method) that occupy large space of

memory during its computation (involving large size of

objects). By comparing Fig. B.1 with Fig. 12 and 13, it can

also be noted that the execution with single distance is

slower. This is inline with its complexity that is discussed in

Subsection III.B.

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_24

(Advance online publication: 10 February 2018)

__

Fig. A.1. Plot of execution time for distance type = means, HDFS block size = 16 Mb

Fig. B.1. Plot of execution time for distance type = single.

C. Example of Proposed Technique Applications

The results of data reduction can be used for: (a) Direct

applications: Histogram analysis and outlier detection; (b)

Indirect applications: As the input of data mining techniques

that can process the sub-cluster patterns. In this experiment,

we intend to show the example of the direct application

using histogram analysis. The data used is the one discussed

in Subsection IV.A.

Table C.1 depicts some example of the histogram of the

reduced dataset of household energy consumption from

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_24

(Advance online publication: 10 February 2018)

__

experiments in Subsection IV.A using Npar = 20, dType =

single, maxObj = 50 and co = 1.5. It can be seen that there

are five patterns having object members 46-50 (patterns

with the most object members). To find the insights of those

five patterns, Table C.II shows the values of each pattern

(presented here for example). The interpretation patterns

depicted in Table C.II is: The household mostly use

electricity power in sub-meter 2 and 3 in the morning or late

afternoon on Tuesday, Wednesday (the most) or Thursday.

Other histogram component having large object members

can also be examined to find the information or insights. In

these experiments, we find that the information (that can be

dig from the data reductions) is more detailed compared to

our previous results published in [10], where patterns were

obtained from parallel k-Means clustering algorithm.

TABLE C.I. EXAMPLE OF PATTERNS HISTOGRAM

No #Objects

in a Pattern Count
1 1-5 590,611

2 6-10 34,301

3 11-15 10,285

4 16-20 3,915

5 21-25 1,541

6 26-30 656

7 31-35 224

8 36-40 75

9 41-45 29

10 46-50 (47-48) 5

 Total 641,642

TABLE C.II. FIVE PATTERNS WITH THE LARGEST OBJECT MEMBER

CP
#Objec

t

Minimum attribute value Maximum attribute value Cluster centroids

D H M-1 M-2 M-3 D H M-1 M-2 M-3 D H M-1 M-2 M-3
1 47 4 0 0 0 0 4 1

3
0 2 0 4 6.45 0 0.13 0.00

2 47 3 8 0 0 0 3 2

3
0 2 1 3 15.2

3
0 0.19 0.55

3 47 2 2 0 0 0 2 1

5
0 1 1 2 7.79 0 0.17 0.60

4 48 3 0 0 0 0 3 1

5
0 2 1 3 7.71 0 0.27 0.77

5 48 3 6 0 0 0 3 1

9
0 2 1 3 13.5

6
0 0.21 0.75

Note: Attribute of each pattern: D = day number, H = hour, M-1 = meter-1, M-2 = meter-2, M-3 = meter-3

REFERENCES

[1] A. Holmes, Hadoop in Practice, Manning Publications Co., USA,

2012.

[2] M. H. U. Rehman, C. S. Liew, A. Abbas, P. P. Jayaraman, T. Y. Wah,

S. U. Khan, “Big data reduction methods: a survey”, Data Science

and Engineering, pp. 1-20, December 2016.

[3] M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A.S. Netto, R.

Buyya, “Big data computing and clouds: trends and future directions”,

J. Parallel Distrib. Comput., vol. 79, no. 80, pp. 3–15, 2015.

[4] V. S. Moertini, L. Venica, “Enhancing parallel k-means using map

reduce for discovering knowledge from big data”, Proc. of. 2016

IEEE Intl. Conf. on Cloud Computing and Big Data Analysis

(ICCCBDA 2016), Chengdu China, 4-7 July 2016, pp. 81-87.

[5] J. Han, M. Kamber and J. Pei, Data Mining Concepts and Techniques

3rd Ed., The Morgan Kaufmann Publ., USA, 2012.

[6] I. Triguero, D. Peralta, J. Bacardit, S. García, F. Herrera, “MRPR: A

MapReduce solution for prototype reduction in big data

classification”, Neurocomputing, vol. 150, 2015, pp. 331–345

[7] C. Lam, Hadoop in Action, Manning Publ., USA, 2010

[8] C. Jin, M. M. A. Patwary, A. Agrawal, W. Hendrix, W. Liao, A.

Choudhary, “Disc: a distributed single-linkage hierarchical clustering

algorithm using mapreduce”, Proc. of the International SC Workshop

on Data Intensive Computing in the Clouds (DataCloud), 2013.

[9] E. Sammer, Hadoop Operations, O’Reilly Media, Inc., USA, 2012.

[10] V. S. Moertini and L. Venica, “Parallel k-means for big data: on

enhancing its cluster metrics and patterns”, Journal of Theoretical and

Applied Information Technology, vol. 95, no. 8, 2017. Pp. 1844-1857.

[11] W. Zhao, H. Ma and Q. He, “Parallel k-means clustering based on

mapreduce”, CloudCom 2009, LNCS 5931, pp. 674–679, Berlin

Heidelberg: Springer-Verlag, 2009.

[12] L. Ma, L. Gu, B. Li, Y. Ma and J. Wang, “An improved k-means

algorithm based on mapreduce and grid”, International Journal of

Grid Distribution Computing, vol. 8, no. 1, pp. 189-200, 2015.

[13] J. M. Mathew and J. Joseph, “Parallel implementation of fuzzy k-

means algorithm using hadoop”, International Journal of Advanced

Research in Computer Science & Technology, vol. 4, issue 2, Apr. -

Jun. 2016.

[14] L. Srinivasulu, A. V. Reddy, V. S. G. Akula, “Improving the

scalability and efficiency of k-medoids by map reduce”, International

Journal of Engineering and Applied Sciences, vol. 2, issue 4, April

2015.

[15] X. Fu, S. Hu and Y. Wang, “Research of parallel DBSCAN clustering

algorithm based on mapreduce”, International Journal of Database

Theory and Application, vol. 7, no. 3, pp. 41-48, 2014.

[16] Vadivel and Raghunath, “Enhancing map-reduce framework for

bigdata with hierarchical clustering”, International Journal of

Innovative Research in Computer and Communication Engineering,

vol. 2, special issue 1, March 2014.

[17] Y. Zhang, J. Z. Wang and J. Li, “Parallel Massive Clustering of

Discrete Distributions”, ACM Trans. Multimedia Comput. Commun.

Appl., vol. 11, no. 4, article 40, pp. 49:1- 49:24, 2015.

[18] Nguyen H. L., Woon Y. K., Wee K. N., “A Survey on Data Stream

Clustering and Classification”, Knowledge Information System

Journal Springer – Verlag, Vol. 45, pp. 535–569, 2015

[19] K. Tsiptsis and A. Chorianopoulos, Data Mining Techniques in CRM:

Inside Customer Segmentation, John Wiley and Sons, L., UK, 2009.

[20] J. Wang, M. Qiu, B. Guo, Z. Zong, “Phase–Reconfigurable Shuffle

Optimization for Hadoop MapReduce”, IEEE Transactions on Cloud

Computing, vol. PP, Issue 99, 2015.

[21] X. Zhong, G. Yang, L. Li and L. Zhong, “Clustering and correlation

based collaborative filtering algorithm for cloud platform”, IAENG

International Journal of Computer Science, vol. 43, no. 1, pp. 108-

114, 2016.

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_24

(Advance online publication: 10 February 2018)

__

