
 

 

Abstract—Volume and velocity are two characteristics of big 

data. Big data “comes in” with high velocity that the volume 

increases quickly.  Efforts are needed to resolve these issues. 

This paper presents a big data reduction technique that can be 

used to reduce incoming big data periodically. The results, 

patterns that represent the original data with smaller size can 

be kept for further analysis, while the voluminous big data can 

be discarded.  Clustering is a technique that can be used for 

reducing data. Based on our study, we find that agglomerative 

clustering is suitable to be adopted for reducing big data 

having low to medium number of attributes. Our proposed 

technique is based on Hadoop MapReduce, a computing 

framework for distributed systems, where Map and Reduce 

functions run in parallel in machine nodes. The excerpt of our 

technique: Map preprocesses and randomly divides the big 

data into disjoint partitions, Reduce constructs cluster trees 

(dendrograms) from partitions and computes patterns from 

the clusters formed from the trees. The output is a collection of 

patterns having a lot smaller number of objects and attributes. 

To provide flexibilities, we design few input parameters set by 

users. The effect of those parameters are shown by our 

experiment results. By experimenting using big data in a 

Hadoop cluster with up to 15 commodity computers, we 

conclude that the Hadoop file system block size and number of 

nodes affect the execution time and the size of incoming big 

data that can be processed. 

 
Index Terms— Big data reduction, cluster pattern, 

MapReduce, parallel clustering  

 

I. INTRODUCTION 

ig data is collected from heterogeneous data sources -  

such as social media systems, industrial sensor 

networks, scientific experimental systems, and several other 

application areas – and may reach giga to peta bytes in size 

[1, 2]. The needs to analyze big data to obtain knowledge or 

useful insights have been well known [3, 4]. However, 

managing and gaining insights from the big data remains a 

challenge. Among several characteristic of big data 

(volume, variety, value, velocity, veracity, and variability),  
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the volume is the primary concern. Efforts are required to 

reduce the volume to effectively analyze big data [2]. 

Data reduction techniques can be applied to obtain a 

reduced representation of the data set that is much smaller in 

volume, yet closely maintains the integrity of the original 

data  [5]. That is, mining on the reduced data set should be 

more efficient yet produce the same (or almost the same) 

analytical results. Data reduction strategies include 

dimensionality reduction, numerosity reduction, and data 

compression. Numerosity reduction techniques replace the 

original data volume by alternative, smaller forms of data 

representation, which can be generated by nonparametric 

methods such as histograms, clustering, sampling, and data 

cube. 

Hadoop with its MapReduce framework, which works in 

distributed systems, has been developed to address the need 

for big data analysis. Small-medium organizations can adopt 

Hadoop as Hadoop clusters can be configured using 

commodity computers with low specification. MapReduce 

supports the processing of large datasets and has the 

advantage of easy scaling of data processing over multiple 

computing nodes [1, 7]. A MapReduce program takes input 

data in the form of key-value pairs, the Mapper and Reducer 

algorithms then manipulate those key-value pairs, and 

produce some other form of key-value pairs.  

Recently, Rehman et.al. [2] reported their survey of big 

data reduction methods. They classified the methods into: 

Network theory, compression, data deduplication 

(redundancy elimination), data preprocessing, dimension 

reduction, and Data Mining and Machine Learning (DM and 

ML). The DM and ML methods can either be applied to 

reduce big data immediately after its acquisition or to 

customize big data to address some specific problems. 

These methods have the potential to be enhanced for 

Hadoop Map-Reduce distributed systems to handle big data. 

However, there still exists a huge research gap between 

these potencies and the works done. There are still very 

limited research results of DM and ML methods (that 

include supervised, unsupervised, semi-supervised, and 

hierarchical deep learning models) for big data reduction. 

For instance, one supervised technique that has been 

developed recently is MRPR [6]. MRPR is based on 

MapReduce. It selects instances from the original data set, 

or build new artificial prototypes, to form a set of prototypes 

that better adjusts the decision boundaries between classes 

in NN classification.  

In this research, we intend to contribute in developing a 

big data reduction technique that can be used regularly. It is 

based on unsupervised (clustering) approach in the 

distributed system that will produce a collection of patterns 
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with smaller size (compared to the raw big data). These 

patterns can then be stored (permanently) while the raw data 

can be discarded to save disk space. Based on the 

organizations’ need, the patterns can then be analyzed by 

suitable data mining techniques (outlier detection, 

summarization, clustering, etc.). To take advantage of 

Hadoop, our proposed techniques is based on MapReduce. 

We find that the non-parallel hierarchical clustering 

algorithm [5] has some advantages to be enhanced into 

parallel algorithm for the purpose of reducing big data. One 

of the important advantages is that it does not take definite 

number of clusters. This algorithm builds a cluster tree 

(known as dendrogram) based on a distance metric, then 

clusters can be formed from the dendrogram by using a 

variable (such as distance cut-off) defined by users. Cluster 

patterns (such as discussed in [4]) can then be computed 

from the clusters as the reduced representations of the big 

data without loosing its semantic meaning.   

A distributed single-linkage hierarchical clustering 

algorithm (DiSC) using MapReduce has been developed [8]. 

The Mapper constructs subgraphs (sub-dendrograms), 

where each is constructed from two data splits. The data 

splits may be used by more that one Mapper, hence 

producing subgraphs that have overlapping edges (this will 

be resolved in next stage for obtaining a complete graph of 

dendrogram). For the purpose of data reduction, we need to 

construct subgraphs (local dendrograms) that are non-

overlapping. Thus, we can not adopt this part of algorithm. 

To be more specific, our proposed big data reductions 

method is based on parallel hierarchical clustering algorithm 

that handles numeric attributes. To the best of our 

knowledge, there is no similar technique yet developed by 

other researchers. The problems that are resolved include: 

(a) How to partition the raw big data into non-overlapping 

datasets to ensure that the resulted patterns are less biased 

towards objects order in the raw data?  

(b) By considering that the data partition may still be large, 

how to construct dendrograms from this partition in every 

node and ensure that it is “fitted” in its memory (which may 

be small in commodity computers)?    

(c) As the results of reduced data, what patterns that 

semantically represent the original data and how to compute 

these? 

(d) There are several distance types that can be adopted in 

constructing dendrogram. How these influence the patterns  

generated and the execution speed? 

(e) How is the time response of the proposed technique in 

Hadoop distributed systems affected by its configuration 

set-up?  

In the rest of the paper, we discuss the related literature, 

proposed technique (the main idea, proposed algorithm, 

Map-Reduce functions design), four series of experiments 

(patterns evaluation, variables influencing the execution 

speed, reduction percentage, the performance related to 

Hadoop cluster configurations) and conclusion. In the 

appendix, we include additional experiment results.  

II. LITERATURE REVIEW 

A. Research Opportunities 

As stated in Section I, Rehman et.al. [2] have conducted 

and reported their survey of big data reduction methods. 

Few of data reduction techniques based on DM and ML that 

are evaluated in [2] are: 

(1)  A MapReduce algorithm used to reduce the search 

space and mine frequent patterns from uncertain big data. It 

facilitates the users to confine their search space by setting 

some succinct anti-monotone (SAM) constraints for data 

analysis and subsequently mines the uncertain big data to 

uncover frequent patterns that satisfy the user-specified 

SAM constraints.  

(2) Artificial neural networks (ANNs) self-organized 

Kohonen network-based that is proposed to reduce big 

hydrographic data acquired from the deep seas. 

(3) Deep learning, which is based on deep neural network 

architectures, as an option for big data reduction methods. 

However, the models become computationally inefficient 

with the increase in big data complexity.  

Based on their survey results, [2] formulates research 

opportunities related to big data reduction methods. The 

ones that are related to our interest are: 

(1) Data preprocessing approach: The investigations of 

research problems relevant to preprocessing techniques of 

big data are still at the initial level. The forefront data 

preprocessing methods in the big data knowledge discovery 

process requires new, efficient, robust, scalable, and 

optimized preprocessing techniques for both historical and 

streaming big data.  

(2) DM and ML approach: The DM and ML methods for 

big data reduction can be used at various levels of big data 

architectures. These methods find interesting patterns from 

big data streams as highly relevant and reduced data for 

further analysis. The DM and ML methods also have the 

potential to be implemented in the Hadoop MapReduce. 

There still exists a huge research gap for the implementation 

of other DM and ML methods for big data reduction that 

include supervised, unsupervised, semi-supervised, and 

hierarchical deep learning models.  

One of the DM technique for reducing big data that have 

been developed recently is MRPR [6], which is based on 

supervised approach. It selects instances from the original 

data set, or build new artificial prototypes, to form a set of 

prototypes that better adjusts the decision boundaries 

between classes in NN classification. The core of Map and 

Reduce functions are as follows: Map reads a training set 

TR, which is stored as distributed blocks in the HDFS as a 

single file (TR contains records that have been randomized). 

By reading each split/block locally, each Map produced RSj, 

which is a reduced set of records in a split. By taking RSj 

and approach for reducing dataset (filtering or fusion) as its 

input, a single Reduce function computes the final reduced 

dataset RS. The experiment conducted with few datasets 

(PokerHand, KDDCup, Susy, RLCP) show that the 

accuracy depends on the approach selected (filtering or 

fusion) and the dataset used, where for KDDCup and RLCP 

reach more than 99%. MRPR is also proved scalable in the 

used distributed Hadoop cluster. 
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B. Hadoop, HDFS and Map-Reduce 

Hadoop is a platform that has been developed for storing 

and analyzing big data in distributed systems [1, 7, 9]. It 

comes with master-slave architecture and consists of the 

Hadoop Distributed File System (HDFS) for storage and 

MapReduce for computational capabilities. Its storage and 

computational capabilities scale with the addition of slave 

hosts/nodes to a Hadoop cluster, and can reach volume sizes 

in the petabytes on clusters with thousands of hosts. The 

following is some brief overview of HDFS and MapReduce. 

HDFS: HDFS is a distributed file system designed for 

large-scale distributed data processing under frameworks 

such as MapReduce and is optimized for high throughput. It 

automatically re-replicates data blocks on nodes (the default 

is 3 replications).   

MapReduce: MapReduce is a data processing model that 

has the advantage of easy scaling of data processing over 

multiple computing nodes. Map and Reduce functions run 

in each slave node parallely. Where as Map functions read 

local blocks, Reducer functions take input from Map. A 

MapReduce program processes data by manipulating key-

value pairs in the general form:  

map: (k1,v1) ➞ list(k2,v2) 

reduce: (k2,list(v2)) ➞ list(k3,v3). 

Map reads (key, value) pairs, then based on the algorithm 

designed by developers, it generates one or more output 

pairs list (k2, v2). Through a complex shuffle and sort 

phase, the output pairs are partitioned and then transferred 

to Reducer: Pairs with the same key are grouped together as 

(k2, list(v2)) and then each partition with unique value of k2 

is sent to a Reducer. The Reduce function (with a specific 

algorithm assigned) generates the final output pairs list(k3, 

v3) for each group. Fig. 1 illustrates Map Reduce processes 

for computing average attribute values (column 2 and 3) for 

every record with specific Id (column 1) stored in blocks. 

The overall MapReduce processed is as follows [1]: A 

client submits a job to the master, which then assign and 

manage Map and Reduce job parts to slave nodes. Map 

reads and processes blocks of files stored locally in the slave 

node, sent list of key-value to Reduce via shuffle and sort, 

then Reduce may write its computation results to HDFS. 

 

23 34 67

12 34 98

10 34 45 
Map

Map

Map

Reduce

Reduce

Reduce

Block in node-1:

10 34 67

52 20 98

23 44 55 

80 45 67
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23 {34 67, 44 55, 64 23}

12 {34 98, 23 90}

10 {34 45, 34 67}

52 {20 98, 30 77}
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Block in node-2:

Block in node-3::

23 {47.3 48.3}

12 {28.5 94}

10 {34 56}

52 {25 87.5}

80 {45 67}
 

Fig. 1. Illustration of MapReduce processes. 

C. Parallel Clustering based on MapReduce 

Along with the popularity of Hadoop for analyzing big 

data, we found few research results for enhancing non-

parallel into parallel (based on MapReduce) clustering 

techniques. The following are our findings:  

(a) The most popular clustering algorithm, k-Means: 

Taking k (the number of cluster and initial cluster center), 

this algorithm iteratively assign objects into the closest 

center, then update the center based on the newly formed 

clusters. The technique in [11] is based on the core concept 

that the Map function assigns each sample to the closest 

center while the Reduce function performs the procedure of 

updating the new centers. Ma et al. in [12] add the 

capability of pre-computing the value of k and initial 

clusters (to reduce iterations). [4] and [10] enhance the 

technique in [11] to compute cluster patterns.  Then, [13] 

enhances the fuzzy version of k-Means based on 

MapReduce.   

(b) k-Medoids: The k-medoid that works similar to k-

Means but by minimizing the absolute distance between the 

objects and the selected centroid, has been enhanced for 

MapReduce in [14].  

(c) DBSCAN: The grid-based clustering algorithm that 

takes input of minimum points in a cluster and radius of a 

cluster (eps) form clusters by “connecting” objects with 

previously-formed clusters (from previous iteration) by 

using eps. Objects that are far from formed clusters will be 

regarded as outliers. Fu, Hu and Wang [15] have enhanced 

this algorithm based on MapReduce.     

(d) Hierarchical: Aiming for clustering internet users by 

mining a huge volume of web access log, Vadivel and 

Raghunath [16] have developed MapReduce hierarchical 

clustering consisting three batches: First, selecting top N 

users with highest similarity values to form initial clusters. 

Second, adding other users to the initial clusters and 

merging clusters. Third, updating user-matrix file and 

modify the similarity values. As the clustering process are 

conducted in batches, the objects are queued (each queue 

contains m objects). By this approach, [16] intends to reduce 

the high IO and distributed communication overhead due to 

the read/write operations on distributed file system, caused 

by both matrix updating and similarity value modification. 

Another algorithm is DiSC [8] that is discussed below.  

DiSC (distributed single-linkage hierarchical clustering 

algorithm) consists of two stages. The first stage (Prim map 

and Kruskal reducer) constructed subgraphs from data split 

and write the output as HDFS files that will be fed into the 

second stage (Kruskal map and Kruskal reducer) to “unite” 

those subgraphs. 

The part that relates to our technique is the first stage, 

hence we only discuss this part in more detailed. The 

algorithm of the algorithm of the first stage is depicted in 

Algorithm 1 below.  

 

Algorithm 1. Outline of DiSC, a distributed SHC algorithm 
Input: a dataset D, K 

Output: a MST for D 

Steps: 

1: Divide D into s roughly equal-sized splits: D1, D2, …., Ds 

2: Form   subgraphs containing the complete subgraph for every 

pair in {(Di, Dj) | | i < j and i, j ε [1; s]} 

3: Use Prim's algorithm to compute the local minimum spanning 

tree (MST) for each subgraph in parallel, and output the MST's 

edge list in increasing order of edge weight 
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4: repeat 

5:    Merge the intermediate MSTs for every K subgraphs using the 

idea of Kruskal's algorithm 

6: until all vertices belong to the same MST 

7: return the final MST 
 

In implementing the algorithm using MapReduce scheme, 

step 1, 2 and 3 are computed in the Mapper,  while step 4 

until 7 are performed in the Reducer. In the Mapper, the 

original dataset is divided into s splits (D1, D2, …., Ds). Then 

subgraphs will be constructed from every two of these splits 

by allowing that some edges might be duplicated on 

multiple subgraphs. For example, a subgraph Gij is 

constructed from a split pair (Di, Dj) and a subgraph Gik 

from (Di, Dk), hence edges that are exclusively formed by 

the data points in Di are duplicated for both Gij and Gik. 

Once a much smaller subgraph with the number of vertices 

roughly being 2k and the number of edges being , where 

, a serial MST algorithm is run locally for each 

subgraph using Prim's algorithm (starting with any random 

vertex, and growing the MST one edge at a time). With K is 

the number of subgraphs, Reducer is then merge those K 

subgraphs to form the final MST.   

While the algorithms discussed above are applied to 

vectored-based objects, [17] has developed parallel 

clustering algorithms for non-vectored objects (such as bag 

of words).  

It has been discussed previously that clustering can be 

adopted for reducing data. With regards to this objective, 

our opinions towards those parallel clustering techniques are 

as follows: Adopting clustering techniques that take k 

(number of clusters) and other variables (minimum points, 

radius in a cluster, etc.) that limit the clusters formed are not 

suitable for data reductions. These variables need to be 

defined in advance (by knowing the properties of the 

dataset), which require some computation (before clustering 

process). In this research, we aim to reduce the vectored-

based objects. Thus, we can not adopt parallel k-Means, k-

Medoids, DBSCAN and the technique proposed in [17].   

Our better option is hierarchical clustering.  However, we 

would not adopt the algorithm that employ three batches 

[16], as it needs to supply N (number of objects having the 

highest similarity) as it will require prior computation (to 

define N). As for DiSC [8], our comments: The Mapper 

constructs subgraphs, where each is constructed from two 

data splits. The data splits may be used by more that one 

Mapper, hence producing subgraphs that have overlapping 

edges (this will be resolved in Stage 2 for obtaining a 

complete graph of dendrogram). For reducing data, we need 

to construct subgraphs (local dendrogram) from data splits 

that are non-overlapping. Thus, we can not adopt this 

algorithm. 

D. Agglomerative Hierarchical Clustering 

 Clustering techniques consider data tuples as objects. 

They partition the objects into groups, or clusters, so that 

objects within a cluster are “similar” to one another and 

“dissimilar” to objects in other clusters. In data reduction, 

the cluster representations of the data are used to replace the 

actual data [5].  The effectiveness of this technique depends 

on the data’s nature. It is much more effective for data that 

can be organized into distinct clusters than for smeared data. 

A hierarchical clustering method can be either 

agglomerative or divisive, depending on whether the 

hierarchical decomposition is formed in a bottom-up 

(merging) or top down (splitting) fashion. 

An agglomerative hierarchical clustering method uses a 

bottom-up strategy. It starts by letting each object form its 

own sub-cluster and iteratively merges sub-clusters into 

larger and larger sub-clusters, until all the objects are in a 

single cluster or certain termination conditions are satisfied 

(Fig. 2). The single cluster becomes the hierarchy’s root. 

For the merging step, it finds the two clusters that are 

closest to each other (according to some similarity or 

distance measure), and combines the two to form one 

cluster. Because two clusters are merged per iteration, 

where each cluster contains at least one object, an 

agglomerative method requires at most n iterations.  A tree 

structure called a dendrogram is commonly used to 

represent the process of hierarchical clustering. In an 

agglomerative method, it shows how objects are grouped 

together step-by-step. 
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 Fig. 2. Steps of the agglomerative (left) and the dendrogram tree (right). 

 

The following are three distance measures that can be used: 

(1) Minimum/single distance: A sub-tree/sub-cluster (or 

object) cp is grouped with another sub-cluster cq using the 

minimum distance between object members in cp and cq (the 

closest edge): 

dmin = min(dij), where 1≤ i ≤ m; 1≤ j ≤ n; dij = distance 

between the object i in cp and j in cq; m = number of objects 

in sub-cluster cp and n = number of objects in sub-cluster cq.  

(2) Maximum distance:  A sub-tree/sub-cluster (or object) ci 

is grouped into another sub-cluster cj using the maximum 

distance between object members in ci and ci (the furthest 

edge): 

dmax = max(dij). 

(3) Means distance: A sub-tree/sub-cluster (or object) ci is 

grouped into another sub-cluster cj using the distance 

between centroids of ci and ci. 

dmeans = distance(centroidcp, centroidcq), where centroidcp= 

the attributes means of all objects in sub-cluster cp and  

centroidcq = the attributes means of all objects in sub-cluster 

cq. 

 

E. Data Stream Mining 

A data stream, DS, can be defined as a sequence of data 

objects or samples. DS = {x1, x2, . . . , xt , . . .}, where xi is 

the i-th arrived data object [18]. In the data stream mining 

system, when a data stream comes, a temporary storage is 

used to store the most recent data. Then, the system may 
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apply different time window approaches to create data 

synopsis that would be computed by analytical algorithms to 

produce useful patterns. 

The time window can be selected from the following 

approaches: 

(a) Landmark window: The data selected is the data stream 

from starting time instant 1 to the current time instant tc, 

hence, the window is W[1, tc].  

(b) Sliding window:  The data selected is in the w most 

recent transactions (and the others are eliminated).  

(c) Fading window: Each data object is assigned a different 

weight according to its arrival time so that the new 

transactions receive higher weights than the old ones. 

(d) Tilted time window: It is somewhere between the fading 

window and sliding window variants.  

More discussion of these can be found in  [18]. 

Computational approaches applied to the synopsis can be: 

(a) Incremental learning: The mining model incrementally 

evolves to adapt to changes in incoming data (an instance or 

a window). 

(b) Two-phase or online–offline learning: In the first 

(online) phase, the data synopsis is updated in a real-time 

manner; in the second (offline) phase, the mining process is 

performed (based on a user request) on the stored synopsis. 

Data stream mining may produce approximate results and 

has to satisfy the following constraints [18]: 

(a) Single-pass: Each sample in a data stream is examined at 

most once and cannot be backtracked. The reason is: I/O 

operations are quite expensive than memory operations. 

(b) Real-time response: The data processing must be fast.  

(c) Bounded memory: The amount of arriving data is 

extremely large or potentially infinite. Ones may compute 

and store a small summary of the data streams and possibly 

throw away the rest of the data. Approximate results are 

acceptable. 

(d) Concept-drift detection:  The discovered patterns (or the 

underlying data distribution) change over time.   

 

III. PROPOSED TECHNIQUE 

The proposed technique, namely BDRT-ParAgglo, can be 

used as part of big data stream mining  (see Subsection II.E) 

using clustering technique.  BDRT-ParAgglo is used to 

reduce the synopsis dataset stored as HDFS files.  It handles 

dataset having numeric attribut 

es (or ones that can can be transformed into numeric) in 

the two-phase learning system: Once the synopsis of raw 

big data is available, BDRT-ParAgglo is executed to 

generate patterns (see Fig. 4 3). The function to collect raw 

big data may adopt landmark or sliding window. The 

outputs of BDRT-ParAgglo, which are patterns with a lot 

smaller size (compared to the raw dataset),  can be stored 

permanently while the raw big data itself can then be erased. 

The resulted patterns can be analyzed by parallel data 

mining techniques in the distributed systems or exported to 

non-distributed and be analyzed by “traditional” (non-

parallel) techniques provided by many existing tools or 

applications.   
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Fig. 3. Scheme of batch big data reducer. 

 

BDRT-ParAgglo is designed based on agglomerative 

clustering algorithm. By employing this algorithm, BDRT-

ParAgglo handles big dataset of matrices (all objects 

possess the same number of numerical attributes) only. 

Missing values and/or wrong value of attributes should be 

addressed in the data preprocessing step.  

The concept our proposed technique is as follows: 

(a) To ensure that large volume of data can be handled, we 

randomly divided the objects into n disjoint partitions, then 

a dendrogram tree is built from each partition (in every 

slave node of Hadoop cluster) using agglomerative 

hierarchical clustering method. The maximum number of 

objects in a dendrogram is defined as a parameter 

(maxObject ) such that its value can be defined by 

considering the slave node memory capacity. Hence, if a 

partition contains greater than maxObject, the Reducer 

processing this partition will create more than one 

dendrogram. 

(b) To allow flexibility, we provide three choices of distance 

type for constructing dendrograms, which are single 

(minimum), complete and means (average). 

(c) Once a complete dendrogram is constructed from a 

partition, it is “cut” using certain distance value (defined by 

users) to form clusters.  

(d) Cluster patterns (such as centroids, number of objects in 

each cluster, etc.) are computed from each cluster formed, 

then written to HDFS. As the objects in each 

partition/dendrogram are obtained by random selection from 

the raw big data, it is expected that the patterns are less 

biased (by the incoming sequence of objects).  
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Fig. 4. (a) Data distribution; (b)  Dendroram with its cut-off;  

(c) The patterns or reduced data (red points). 

 

 

The illustration of “cutting” dendrogram to obtain 

patterns is depicted on Fig. 4: (a) The distribution of  a 

dataset having 21 objects; (b) cutting the dendrogram 

constructed from dataset using certain distance that forms 

C1, C2 clusters with few members and other clusters each 

having one object member; (c) if cluster centroids  are 

regarded as the patterns, from those 21 objects can be 

obtained 10 patterns (red dots), hence the dataset is reduced 

by approximately 50% (10/21). As shown on the figure, the 

dense objects are replaced by its centroids while the sparse 

objects are preserved as is. 

By selecting the agglomerative method and MapReduce, 

the objectives and advantages of our proposed technique 

include: 

(a) Reducing the volume of “dense objects” with their 

cluster patterns having a lot smaller size;  

(b) Allowing flexibility in defining cut off distance to adjust 

the granularity (fine-grain) of the the reduced dataset 

(resulted cluster patterns);  

(c) Permitting flexibility in using single, complete or mean 

distance in constructing dendrogram such that users can 

select the most suitable one for a certain dataset;  

(d) Outliers are preserved as they may be needed by data 

analysis technique; 

(e) Numbers of data partitions (n) can be adjusted for 

optimal computation in the distributed network (by 

considering the slave/data nodes number and their 

specification, i.e. available memory).   

 

A. The Proposed Algorithm 

Our proposed overall algorithm for reducing dataset is 

depicted in Algorithm 2 and its visualization is presented in 

Fig. 5.  
 

Algorithm 2: Reduce dataset  
Input: raw dataset (TO); number of partitions (n), distance type for 

constructing dendrogram (distType), cut-off distance (co)  

Output: cluster patterns CP = {CPj} as the reduced dataset 

Steps: 

(1) for each object (oi) in TO 

(2)     check and preprocessed each attribute value then put the 

object in a bin/partition (TOj), send TOj to one of the parallel 

processes   

(3)  for each TOj: construct dendrogram, cluster the objects in 

dendrogram using cut-off co, compute local patterns CPj  

(4) collect and store all CPj in CP then write CP into files 

 

As discussed in [19] and [4], patterns generated from 

clusters may include the number of objects in each cluster, 

the average (means), minimum, maximum, standard 

deviation of each attribute values and percentage of objects 

having each of the attribute values. Hence, the attribute of 

the pattern (CPj) can be selected from these components. In 

doing so, the characteristic of the dataset and purpose of 

reducing data should be considered. 

 

1

 preprocess 

& split 

objects

2.1 cluster 

& compute 

patterns

3 

collect 

patterns

2.2 cluster 

& compute 

patterns

2.n cluster 

& compute 

patterns

2 

reduce dataset  

raw dataset (TO)

cluster 

patterns 

(CP)

TO1

TO2

TOn

CP1

CP2

CPn

 
 

Fig. 5. The proposed parallel algorithm. 

 

B. Map-Reduce Functions Design 

Algorithm 2 is implemented as Map and Reduce 

functions as illustrated in Fig. 6 and described as follows. 

As discussed in Subsection II.B,  each Reducer receives and 

processes a collection of <key, value> pairs having the same 
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key value. We view this strict rule as an advantage and use 

it in our Mapper to partition the dataset by simply assigning 

a random number as the output key (for every value of 

record emitted). As stated in [1, 7], each Reducer that runs 

in every slave node is allowed to write its output directly 

into HDFS files. We embrace this advantage for eliminating 

the process of merging of all Reducer results (as employed 

in [8]) to speed up the computation. Hence, our Reducer 

write the output (reduced dataset) into HDFS files directly. 

 

Map-1 

Map-2 

Map-n 

Red-1 

Red-2 

Red-k 

raw dataset (TO) 

stored as HDFS 

blocks

peprocessed 

partitions of 

object (TOn)  

cluster patterns

 
Fig. 6. Illustration of the Map-Reduce function. 

 

As sown in Fig. 6, each Mapper (Map-i) read local blocks 

of HDFS containing consecutive of records/objects (Oi) then 

distributes every records randomly to every Reducer. The 

Reducer then perform data reduction computations and 

write the results (cluster patterns, CPi) to files.  Here, we do 

not use local HDFS blocks (read by local Mapper) as data 

partition because: Hadoop creates HDFS blocks 

consecutively by “chunking” the input file. Hence, each 

block contains ordered (not random) that are not proper for 

constructing representative dendrograms.   

The detailed steps of Mapper and Reducer functions are 

depicted in Algorithm 3 and 4.      
 

Algorithm 3: Mapper  
Input: raw dataset (TO); number of partitions (nPar) 

Output: key = an integer number ε {1… nPar }, value = text of 

preprocessed set of attribute values 

Description: Split TO object disjointly by assigning a random 

number for each object 

Steps: 

(1) value ← read a line (an object) and preprocessed its attributes 

accordingly 

(2) key  ← a random integer k, where 1 ≤ k  ≤ nPar // By assigning 

key  with a random integer k, where 1 ≤ k  ≤ nPar, we intend to 

split the records (values) evenly (approximated) to every Reducer. 

(3) emit pair of <key, value>  

 

Depending on the k value, the number of randomized 

objects (values) received by Reducer may still be very large 

such that forming a dendrogram from these large objects 

may not fit into the node memory. Cluster patterns created 

from very large large of objects may not highly accurate in 

representing the semantic of the objects as well. Hence, in 

Reducer, we introduce maxObject variable that is used to 

limit the maximum number of objects in a dendrogram.      

 

Algorithm 4: Reducer  
Input: list of records <key, value> emitted by Mapper where key 

has the same value in every record, maxObject, distType ε {single, 

complete, means}, cut-off distance (co)  

Output: cluster patterns, CPj  

Description: Construct dendrograms from list of value by applying 

constraint that a dendrogram has at most maxObject objects, form 

clusters from dendrograms using co, compute and write the 

patterns from each cluster formed into files 

Steps: 

(1) listTrees ← [] // array of single_tree 

(2) for each pair of <key, value>  

(3)      form an independent tree, single_tree, from value  

(4)      add single_tree to listTrees 

(5)      isProcessed = false 

(6)      if the number of single_tree in listTrees = maxObject   

(7)           form dendrogram_tree from listTrees using distance 

measure of distType  

(8)           form object clusters from dendrogram_tree using co  

(9)           compute patterns CPj from every cluster formed in step 

(8) then write to files 

(10)         clear object trees in listTrees // remove objects from node 

memory 

(11)         isProcessed = true 

(12) if isProcessed = false // there are objects in listTrees that have 

not been reduced 

(13)         do step (7, 8, 9, 10) // compute the cluster patterns from 

the remaining objects 

 

Data structure used in Algorithm 4 is as follows: 

(a) single_tree = {atrVal[], clsLabel} where atrVal[] = 

array of the object attribute values, clsLabel =  an integer 

denoting the number of cluster that this tree belongs (filled 

at the clustering process using cut-off distance).  

(b) dendrogram_tree = {leftCls, distType, distance, 

clsLabel, rightCls} where  leftCls = reference/pointer to 

left-side of single_tree, rightCls = pointer to right-side of 

single_tree, distType ε {0, 1, 2} where 0 is single, 1 is 

complete, 2 is mean distance type used to form dendrogram, 

and distance = a real number denoting the distance between 

its pair of left and right tree/cluster (Fig. 7). 

(c) CPj = {nObjects, minAtrVal[], maxAtrVal[], 

meansAtrVal[]}, where nObjects = number of objects, 

minAtrVal[] = array of minimum attribute values, 

maxAtrVal[]= array of maximum attribute values, 

meansAtrVal[]= array of average (means) attribute values. 

As for computing attribute deviations and the value 

percentages require one more iteration for visiting objects in 

every cluster (see Subsection III.A), we exclude these 2 

components as elements in the cluster patterns to simplify 

Reducer time complexity. 

 

 
Fig. 7. The dendrogram tree structure. 

 

The visual illustration of the Reducer algorithm in 

processing a single dendrogram is depicted on Fig. 8.  Each 

Reducer constructs a dendrogram tree from the data 

partition containing a collection of objects fed into this 

function. Then all Reducer functions “cut” the dendrogram 

using the same value of distance cut-off (co) where each 

branch below the cut-off will form one cluster having the 

member objects included in the branch. Hence, each
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Fig. 8. Illustration of three Reducer functions that produce 2, 4 and 1 cluster patterns from records emitted by Map functions. 

 

Reducer may form different number of clusters. Generally, 

the smaller the value of cut-off, the more clusters will be 

resulted (but this depends on the dendrogram structure).  As 

a pattern is computed from a cluster, the number of cluster 

pattern dispatched by every Reducer is equal to the clusters 

number. 

The detailed of three steps in Algorithm 4 is discussed 

below. 
  
Step-7: form dendrogram_tree from listTrees based on 

distType 

(7.1.) if no dendrogram_tree existed, get two single_tree  

from listTrees having the shortest distType distance and 

form a dendrogram_tree from these two trees, store the 

distance in the tree, then remove these two from listTrees   

(7.2.) else: get the next element of single_tree in listTrees 

then  

    (a) if distType = single or complete, find the shortest (or 

longest) distance of this single_tree to every single_tree in 

dendrogram_trees,  

     (b) if distType = means, compute the average distance 

between the sub-tree/branches of the dendrogram_tree 

using the stored distance and by adding  this single-tree in 

it, select the shortest mean distance, construct left branch as 

the existing dendrogram_tree having the shortest/longest 

distance, store the distance in the tree, and the right branch 

as single_tree  (or the opposite), remove this single_tree 

from listTrees  

(7.3) repeat (7.2) until listTrees is empty.  
 

The method for computing the distance between 2 objects 

can be selected from Euclidean, Manhattan, etc., which are 

applicable for numeric attributes. As every object attribute 

must be read, the complexity is O(n), where n is the number 

of attributes.  The complexity for finding shortest distance 

of single and complete type between a single_tree object 

and single_tree objects in previously formed 

dendrogram_tree is O(n), where n is the count of 

single_tree. For finding shortest distance of average or 

means, the computation is more efficient, as the centroid of 

every sub-dendrogram-tree is stored in the tree then each 

time an object is added the tis centroid is recomputed. The 

complexity is also O(n) but with n is the number of 

branches, which is smaller than the count of single_tree. 

Hence, the overall complexity of Step-7 is between O(n 

log(n)) to O(n2) where n = count of nodes listTrees.   
 

Step-8: form object clusters from dendrogram_tree using 

cut-off distance co 

(8.1.) create list of empty tree, clsResults 

(8.2)  if dendrogram_tree has only a single tree, add (the 

reference of) this to clsResults as its element 

(8.3) else  

(8.4)     if the dendrogram_tree distance <= distance add 

(the reference of) this dendrogram_tree to clsResults as its 

element  

(8.5)     else repeat (6.2) for dendrogram_tree left and right 

branch of the tree 
 

The complexity of Step-8 is O(m), where 1 ≤  m ≤  depth of 

the dendrogram_tree.  
 

Step-9: compute patterns CPj from every cluster formed  

for each cluster element in clsResults (the result of Step 6): 

visit each object member of this cluster for computing each 

element of its pattern, CPj (the elements are nObjects, 

minAtrVal[], maxAtrVal[] and  meansAtrVal[]).   

The complexity of Step-9 is O(stn), where s = count of 

elements in clsResults, t = count of elements in a cluster in 

the particular element of clsResults (here, 1 ≤ t ≤ count of 

objects in this data partition received by Reducer), n = 

count of object attributes. 
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In our proposed algorithm, Mapper only partitions the 

dataset. The complex computation is performed by Reducer. 

Hence, we present the complexity of the Reducer algorithms 

only.  

IV. EXPERIMENTS, ANALYSIS AND DISCUSSION 

To evaluate BDRT-ParAgglo, three series of experiment, 

where each has specific objective, were performed. All of 

the experiments were conducted in Hadoop clusters with N 

slave nodes (Fig. 9) where all are commodity computers 

with low specification. 

Master Slave-1 Slave-2

Slave-3 Slave-4 Slave-N. . . . 
 

Fig. 9. Hadoop cluster with N slave nodes. 

 

A. Patterns Evaluation 

The intention of the experiments are to evaluate the 

proposed techniques and to answer the following questions: 

Q-1: Will the proposed technique generate reduced dataset 

(patterns) that semantically represent the original data? 

Q-2: How are the comparison among the three distance 

types computation (in generating the reduced dataset)? 

Q-3: What variables that affect the  percentage of the 

reduced data? Will the number of partition and maximum 

object in a dendrogram correlate to that percentage? 

 

Experiments using Synthetic Datasets 

For these experiments, we used synthetic and real 

datasets. The experiments were performed on a Hadoop 

Cluster having one master with four slave nodes (Fig. 10 9) 

where each node has the following specifications: The 

processor is Quad-Core running at 3.2 GHz with 8 Gbyte of 

memory. 

In the first experiments, which is intended to answer Q-1 

and Q-2, we use two synthetic datasets with 2 numeric 

attributes, where objects are created randomly such that they 

have particular distributions. The first and second dataset 

contains 400 and 1200 objects. The patterns as the reduced 

dataset consist of two elements (proposed in [4]), which are  

the attributes means/centroids and the number of objects in 

the sub-clusters.  

The dataset with 400 objects has three dense-objects and 

outliers. We reduce this dataset using the parameters:  

(a) nPar = 1, maxObject = 20, distType ε {single, complete, 

means}, co = 0.5  

(b) nPar = 3, maxObject = 20, distType ε {single, complete, 

means}, co = 0.5  

By observing the results, we conclude that the results of 

(a) and (b) are similar, which can be interpreted that 

partitioning the dataset (nPar = 3)  will not greatly change 

the patterns computed from the dataset without being 

partitioned (nPar = 1). Also, by visualizing the original 

dataset vs the resulted output of patterns, we found that the 

distance type of single, complete and average linkage 

produce similar patterns.  However, patterns of  complete 

and average distance type are closer.  

The dataset with 1200 objects has six dense-objects and 

outliers. We reduce this dataset using combination 

parameters of nPar = 3, maxObject ε {30, 50, 70}, distType 

ε {single, complete, means}, co ε {0.2, 0.4, 0.6, 0.8, 1.0}. 

Some sample of the experiment results are presented in Fig.  

10. By comparing the distribution of original dataset and the 

cluster centroids, it can be seen that the centroids (red) 

represents the original dataset (green). On Fig. 11 we 

present the count of cluster centroid members using circles 

with the size of the diameter represents the count of cluster 

centroid members. It shows that among the original dataset 

with green dense objects, the circles have larger diameter. 

Hence, similar/close objects are greatly reduced, while 

sparse objects are less reduced. 

(a) 

 
(b) 

 
Fig. 10. The distribution of dendrogram cluster centroids (red) vs original 

data (green) for 2-d 1200 objects with nPar = 3, maxObject = 50, distType 

=  means with co =  (a) 0.6 and (b) 0.8. 
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Fig. 11. The object member counts of sub-clusters in Fig. 10(b), where the 

more members represented by larger size of blue circle. 

 

By observing the plots of the experiments using those two 

datasets (400 and 1200 objects), we conclude that: The 

generated reduced dataset (patterns) semantically represents 

the original dataset, where: 

(a) Dense original objects are represented with fewer 

patterns but with larger member counts;  

(b) Outliers are preserved (with small member counts). 

Thus, Q-1 is resolved.  

By observing the experiment results using distType of 

single, complete and means, we find that while the results of 

complete and means/average are similar, where as the 

results of single is slightly different. The cluster centroids 

generated using complete and average distance represents 

the original data better.  Thus, Q-2 is partially answered. 

For finding more answer of Q-2 and Q-3, we use the 

synthetic dataset of 1200 objects and reduce this dataset 

using combination variables of nPar ε {2, 3, 4, 5}, 

maxObject ε {50, 70}, distType ε {single, complete, mean}, 

co ε {0.2, 0.4, 0.6, 0.8, 1.0}.  The sample of the results are 

presented in Table I and II. 

By analyzing the results, the following are findings of the 

variables influences:  

(a) co (cut-off distance): As discussed in Subsection III.B 

and illustrated in Fig. 8, the larger value of co, the less 

clusters or patterns will be created, which means less 

percentage of the reduced dataset (compared to the original 

one). Our experiment results confirm this (as shown in 

Table I and II).  

(b) nPar: Frequently, the larger the partitions, the larger the 

number of patterns resulted (but sometime it is smaller). 

This fact is justified, as the larger the partitions, the more 

dendrograms will be produced (by more slave nodes) and 

the more clusters/ patterns will be resulted (using certain 

co). Hence, the experiment results prove this.  

(c) maxObject: The larger value of maxObject, the smaller 

number of patterns created. Using larger number of 

maxObject will result in fewer dendrogram being created. 

Hence, the clusters/patterns will also be fewer.  

(d) distType: Using single distType will reduced the original 

dataset the most, follow by means, then complete (the least). 

Creating dendrogram using single distance type (the closest 

distance between object in two sub-cluster) will produce 

smaller distance among clusters and when be cut using 

certain value of co will produce fewer clusters/patterns. Our 

experiments results conform to this. 

 
TABLE I . COMPARISON OF REDUCED DATA USING SEVERAL VARIABLES 

mO co 

nPar = 2 
d.t. = single d.t. = 

complete 

d.t.=mean 

#ptrn % #ptrn % #ptrn % 

50 

0.2 673 56.1 734 61.2 737 61.4 

0.6 234 19.5 398 33.2 328 27.3 

1.0 101 8.4 243 20.3 207 17.3 

70 

0.2 574 47.8 683 56.9 679 56.6 

0.6 199 16.6 334 27.8 311 25.9 

1.0 68 5.7 198 16.5 179 14.9 

 nPar = 3 

mO co 

d.t. = single d.t. = 

complete 

d.t.=mean 

#ptrn % #ptrn % #ptrn % 

50 

0.2 703 58.6 761 63.4 779 64.9 

0.6 265 22.1 426 35.5 383 31.9 

1.0 116 9.7 288 24.0 241 20.1 

70 

0.2 646 53.8 699 58.3 687 57.3 

0.6 197 16.4 367 30.6 306 25.5 

1.0 77 6.4 207 17.3 171 14.3 
Note: mO = maxObject, co= cut-off distance,  d.t. = distType, 

#ptrn = patterns count, % = (#ptrn /original object counts) x 100% 

 
 

TABLE II.  COMPARISON OF REDUCED DATA USING DISTTYPE = MEAN  
nPar co maxObj=50 maxObj=70 

#ptrn % #ptrn % 

2 

0.2 737 61.4 679 56.6 

0.6 328 27.3 311 25.9 

1.0 207 17.3 179 14.9 

3 

0.2 779 64.9 687 57.3 

0.6 383 31.9 306 25.5 

1.0 241 20.1 171 14.3 

4 

0.2 804 67.0 764 63.7 

0.6 381 31.8 339 28.3 

1.0 256 21.3 197 16.4 

5 

0.2 767 63.9 733 61.1 

0.6 413 34.4 350 29.2 

1.0 237 19.8 203 16.9 

Note: co= cut-off distance, #ptrn = patterns count, 

% = (#ptrn/original object counts) x 100% 

 

Thus, from those experiments, it can be concluded that: 

(1) The larger the partition (nPar), the more patterns 

(reduced data) resulted; 

(2) The smaller the co (distance cut-off) applied to 

dendrograms in forming clusters, the more patterns resulted; 

(3) The larger the maximum objects in a dendrogram, the 

smaller patterns resulted; 

(4) The selection of distance type influence the resulted 

number of patterns or percentage of reduction, with the 

following order: single (reduced the dataset the most), 

mean, complete (the least. 

 

Experiments using Real Large Dataset  

The experiments are conducted with larger size of 

Hadoop cluster, which has 1 master and 14 slave nodes 

(Fig. 9), where each node machine has processor of Quad-

Core running at 3.2 GHz, the memory of 7 machines is 4 

Gbyte and of 8 machines is 6 Gbyte, the HDFS block (for 

input and output) size is configured as 16 Mbyte. 
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As a sample of reducing real dataset, we use: The dataset 

of household energy consumption, which is obtained from  

https://archive.ics.uci.edu/ml/datasets/ with the size of 

approximately 132 Mb. This archive contains 2075259 

measurements (records/objects) gathered between 

December 2006 and November 2010. The sample of the 

dataset are as follows: 
9/6/2007; 17:31:00 ; 0.486 ; 0.066; 241.810; 2.000; 0.000 ; 0.000 ; 0.000 

9/6/2007; 17:32:00 ; 0.484 ; 0.066; 241.220; 2.000 ; 0.000 ; 0.000; 0.000 

9/6/2007; 17:33:00 ; 0.484 ; 0.066 ; 241.510; 2.000; 0.000 ; 0.000 ; 0.000 

Each line presents a record with 9 attributes, the excerpts 

are: (1) Date; (2) Time; (3, 4, 5, 6) some results of metrics;  

(7) sub_metering_1: energy sub-metering (watt-hour) that 

corresponds to the kitchen, (8) sub_metering_2: energy sub-

metering that corresponds to the laundry room; (9) 

sub_metering_3: energy sub-metering that corresponds to a 

water-heater and an air-conditioner. 

The reason that we select that dataset is: We can 

preprocess the dataset and obtain numeric attributes that are 

meaningful and can be mined to obtain interesting patterns 

(see [10] for more discussion). The data preprocessing 

performed in Map function (see Algorithm 3) is as follows:  

(a) Number of day (1, 2, …7) is extracted from Date and 

stored as attribute-1;  

(b) Hour (1, 2,…24) is extracted from Time and stored as 

attribute-2;  

(c) The value of sub_metering_1, _2 and _3 are taken as is 

and stored as attribute-3, -4, -5.  

Thus, the preprocessed dataset has 5 attributes, which are 

day number, hour and 3 sub-metering measures. 

The results of reducing the dataset using distType = single 

and means, for several value of nPar, maxObj and co are 

presented in Table III.  As shown in the table,  we find that 

the experiment results are very much consistent with the 

results with synthetic dataset (see Table I and II), which are: 

a) Reducing the dataset using single distType will produce 

fewer patterns compared to using mean distType.  

b) The larger the partition (nPar), the larger the count of 

patterns resulted;  

c) The larger the maximum objects (maxObj) used in a 

dendrogram, the fewer the patterns resulted; 

d) The smaller the co (distance cut-off), the more patterns 

resulted (the smaller reduced percentage). 

 

B. Variables Influencing Execution Speed 

The objective of this experiment is to find BDRT-

ParAgglo variables that influence the execution time. The 

data used is the dataset of household energy consumption as 

discussed in Subsection IV.A. In conducting experiments, 

each run was repeated five times and the execution times 

were averaged. 

 
TABLE III. THE RESULTS OF REDUCING REAL DATASET 

distType = single, nPar = 10 
maxObj co #patterns % exec time 

(min:sec) 

50 

1 798,980 38.5

0 

1:35 

1.5 674,265 32.4

9 

1:21 

2 590,422 28.4

5 

1:35 

100 1 636,668 30.6 6:12 

8 

1.5 508,425 24.5

0 

6:03 

2 412,906 19.9

0 

5:58 

200 

1 494,078 23.8

1 

23:08 

1.5 359,842 17.3

4 

21:52 

2 281,691 13.5

7 

22:18 

distType = single, nPar = 20 

maxObj co #patterns % exec time 

(min:sec) 

50 

1 1,053,13

0 

50.7

5 

1:41 

1.5 641,642 30.9

2 

2:50 

2 723,728 34.8

7 

2:03 

100 

1 865,759 41.7

2 

4:11 

1.5 641,642 30.9

2 

4:50 

2 494,815 23.8

4 

4:00 

200 

1 676,871 32.6

2 

19:27 

1.5 444,253 21.4

1 

22:31 

2 315,646 15.2

1 

21:59 

distType = mean, nPar = 10 

maxObj co #patterns % exec time 

(min:sec) 

50 

1 996,653 48.0 3:55 

1.5 638,426 30.8 4:24 

2 521,195 25.1 4:18 

100 

1 896,315 43.2 4:33 

1.5 638,426 30.8 4:24 

2 521,195 25.1 4:18 

200 

1 801,405 38.6 14:53 

1.5 523,971 25.2 14:53 

2 408,027 19.7 15:37 

distType = mean, nPar = 20 

maxObj co #patterns % exec time 

(min:sec) 

50 

1 1,241,87

6 

59.8 2:19 

1.5 992,973 47.8 2:02 

2 847,262 40.8 1:53 

100 

1 1,121,01

3 

54.0 4:33 

1.5 824,520 39.7 4:31 

2 669,022 32.2 4:26 

200 

1 1,018,25

7 

49.1 15:06 

1.5 678,300 32.7 14:51 

2 513,655 24.8 14:54 

 

Table III shows that maxObj is the most important 

variable that influences time executions. The variable of 

distType, nPar and co do not influence the time significantly 

(using the same maxObj value, the use of different distType, 

nPar and co only slightly affect the execution time). This is 

in accordance with the time complexity analysis (see 

Subsection III.B), where the most complex computations is 

the dendrogram creation, which is O(n2) with n is the object 

number.  

It also shows in Table III that the execution time using 

single distance type is longer than mean distance type. This 
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complies to the Step 7 of the Reducer algorithm (Algorithm 

4), where mean distance computation is more efficient.   

Another finding, the use of larger nPar, which means that 

through Hadoop shuffle process more data partitions are 

created and each is sent to a Reducer running in a slave 

node, slightly increase the time execution. Our analysis: As 

discussed in [20], the Hadoop shuffle process is a 

complicated phase between Map and Reduce functions. It 

involves sorting, grouping (among pairs of (k,v), pairs 

having the same value of k is placed in one group), and 

HTTP transferring. During this shuffle phase, a large mount 

of time is also consumed disk I/O (storing the grouping 

results and reading the grouped records) with a low speed of 

data throughput. In the case of sorting, depending on the 

algorithm used (Quicksort, Mergesort, Heapsort, etc.), the 

best complexity is O(n) where as the worst is O(n log n) or 

O(n2). The complex computation, disk I/O and data transfer 

through HTTP are the caused why the larger nPar used the 

more time needed. 

C. Reduction Percentage  

The objective of this experiment is to observe the 

percentage of data reduction when the input is big dataset. 

Since we can not find real big dataset with numerical 

attributes, we create the big data by “multiplying” the 

preprocessed household energy consumption dataset (used 

in the previous experiments) up to 5 gigabyte.   

Some example of the results, the reduction statistics with 

nPar = 9, distType = mean and co = 1 is depicted in Table 

IV.  It shows in the table that using this value of nPar, 

although the input data size vary, the percentage of 

reduction (number of output records/input records), more or 

less is constant. Other results are depicted on Table V that 

shows the average of reduction percentage for  nPar = 5, 9, 

14 and 18. It can be observed that the larger nPar value, the 

more the number of output records or patterns. The analysis 

is: The more number partitions (nPar) the more 

dendrograms created. Hence, cutting these dendrograms 

using the same value of co will produce more number of 

subclusters and their patterns (computed for each sub-

cluster). 

 

 
TABLE IV. DATA REDUCTION WITH nPar = 9 AND distType = means 

Input 

Size 

(Gb) 

#Input 

Records  
#Bk 

Time 

(sec) 

# Output  

Records  

%Re-

duced 

0.51 8,301,036 32 302 3,389,523 40.83% 

1.01 16,602,072 64 307 6,794,618 40.93% 

1.49 24,903,108 96 319 10,236,593 41.11% 

1.98 33,204,144 127 469 13,582,097 40.90% 

2.48 41,505,180 159 527 17,001,881 40.96% 

2.97 49,806,216 191 612 20,377,226 40.91% 

3.47 58,107,252 222 647 23,778,819 40.92% 

Input 

Size 

(Gb) 

#Input 

Records  
#Bk 

Time 

(sec) 

# Output  

Records  

%Re-

duced 

3.96 66,408,288 254 823 27,177,419 40.92% 

4.46 74,709,324 286 892 30,578,403 40.93% 

4.95 83,010,360 318 955 33,956,222 40.91% 

     #Bk = #Blocks, %Reduced = #InputRecords/#OutputRecords 

 

 

 

 
TABLE V. AVERAGE PERCENTAGE OF RECORDS 

nPar %Reduction 

5 30.9107 

9 40.9329 

14 48.3333 

18 52.2957 

 

 

D. Evaluating Hadoop Configuration towards BDRT-

ParAgglo 

As BDRT-ParAgglo is based on Hadoop MapReduce, in 

these experiments, we intend to evaluate the influence of 

Hadoop cluster configuration towards BDRT-ParAgglo. 

The data used is from 1 Gb up to 20 Gb, obtained by 

multiplying the household energy consumption dataset. The 

Hadoop cluster (Fig. 9) is configured with (maximum of) 14 

slave nodes  (each node has 4Gb of memory and  Quad-

Core processor running at 3.2 GHz). The Hadoop 

configuration that are evaluated are number of slave nodes 

and HDFS block size. Here, maxObj is set to 100 as this is 

the largest that can be handled by the slave nodes with that 

limited memory (we experimented with larger size of 

maxObj, but the executions were failed due to lack of slave 

nodes memory capacity).  As one important finding of the 

previous experiments (see Subsection IV.B) suggest that 

nPar  influence the execution speed, to obtain more facts, 

we use 3 values of nPar that are related to the number of 

slave nodes (5, 9 and 14).  

The first series of experiments are performed by 

executing the algorithm using distType = means and varying 

the values of data input size, number of slave nodes, 

partition (nPar) and HDFS block size. The results are 

presented using plots.  

The plots of the experiments results using block size of 

32 and 64 Mb are presented on Fig. 12 and 13, while using 

16 Mb  is depicted on Fig. A.1 in Appendix A.  (Note: 

Block size = 16 Mb is actually too small and not 

recommended. The experiments using 16 Mb block size are 

performed for comparison intention only.) 
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Fig. 12.  Plot of execution time for distance type = means, HDFS block size = 32 Mb. 

 

 

 
Fig. 13.  Plot of execution time for distance type = means and HDFS block size = 64 Mb 

 

The experiment findings using block size of 16Mb (Fig. 

A.1) and 32 Mb (Fig. 12) are similar, which are: (a) By 

adding slave nodes, bigger size of dataset can be processed 

(using node = 1, the maximum of data input that can be 

processed is up to 5Gb only, using node = 5 is up to 15 Gb); 

(b) The more slave nodes, the faster the execution time. (c) 

Execution using nPar = 14 is the slowest;  (d) Using larger 

block size (32Mb) on 14 nodes, the speed of nPar = 9 is 

almost equal to nPar = 5. 

The experiment findings using block size of  64 Mb (Fig 

.14) are similar to the 16 Mb and 32 Mb findings, with this 

additional fact: Using block size of 64 Mb, the execution 

speed on 10 and 14 nodes with nPar = 5, 9 and  14 are 

approximately equal.  

Thus, the summary of the above findings are:  
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(a) Using more slave nodes will increase the size of big data 

that can be processed as well as the speed of the execution 

time;  

(b) In general, using larger block size reduces the execution 

time (the input dataset itself can be partitioned into up to the 

count of slave nodes);  

(c) Using larger value of nPar will slow down the 

execution. 

Analysis of the findings:  

(a) The findings of (a), using more nodes will increase the 

input data size and faster execution, is due to the fact that 

the computation are performed parallely in more nodes with 

more processor and memory.  Ideally, by parallelizing a 

computation, the time complexity is divided by the number 

of processor, np. Hence, the execution should be np faster. 

On Fig. 12 and 13, and data size = 5 Gb, however, it can be 

seen that the execution on nodes = 14 is approximately only 

5 times compared to node = 1. In the Hadoop cluster 

environment, this is due to network cost and the complexity 

of shuffle process as discussed in Subsection IV.B.   

(b) By using larger HDFS block size, less data will be sent 

to the network in the Hadoop shuffling stage (as more 

objects are computed locally), hence it reduces the overhead 

of  data communication and increases overall execution 

speed. (In the shuffling process, the smaller the block size, 

the more grouping and sorting computation are performed 

for distributing the outputs of Mapper to the corresponding 

destination Reducers.) 

(c) The cause has been discussed in Subsection IV.B. But, 

here, we find that the influence of nPar also depends on the 

block size. To obtain more facts, additional plots for 

observing the influence of block size towards nPar have 

been created.  The sample plot is selected for node = 14 and 

is depicted on Fig. 14. It can be observed that using nPar = 

9 and 14, the fastest is execution is achieved with block size 

of 64 Mb. The reason is discussed in item (b) as stated 

above. 

The second series of experiments are performed by 

repeating all of the experiments discussed above but using 

distType = single (the complexity of computation using 

single and complete distance is the same, so here only single 

distance is evaluated). The results are presented on 

Appendix B. As discussed on the appendix, the execution is 

slower and BDRT-ParAgglo can handle smaller input 

dataset. However, it shows similar patterns compared to the 

results using distType = means, which are: adding more 

nodes and using larger block size will speed up the 

computation. 

 

 

 

 
Fig. 14. Time execution on Hadoop cluster with 14 slave nodes. 
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E. Experiment Conclusions 

The overall conclusion of experiments discussed in 

Subsection IV.A, B. C and D  are excerpted as follows:  

(1) The influence of BDRT-ParAgglo variables: (a) The 

counts of patterns created are affected by the value of 

maxObj (larger maxObj – fewer patterns), nPar (larger nPar 

–more patterns), distType (descending order: means-

single/complete) and co (smaller co – more patterns); (b) On 

a specific configured Hadoop cluster, the larger value of 

maxObj or nPar, the slower the execution; (c) The size of 

big data that can be processed on a specific configured 

Hadoop cluster is influenced by the selection of maxObj and  

distType values. 

(2) The influence of Hadoop cluster configuration: (a) 

Execution times are affected by number of slave nodes and 

HDFS block size; (b) Adding slave nodes will increase the 

size of the data that can be processed. 

(3) The main objective of partitioning the input dataset 

(using nPar value in Mapper) is to randomize the objects 

fed into Reducer. Hence, the larger the nPar value, the more 

randomized the data partitions received by Reducer that will 

produce patterns that are less biased towards the object 

order. However, the cost is the execution time, which can be 

reduced by using larger HDFS block size. 

 

F. Evaluating Towards Constraints 

As discussed in Subsection  II.E, data stream mining 

technique has to satisfy four constraints. Based on the 

experiment results and their analysis, Table VI shows the 

results of the proposed techniques evaluation towards the 

four constraints.  

 

 
TABLE VI. THE RESULTS OF CONSTRAINTS EVALUATION 

Constraint Comply? Rationale 

Single-pass Yes 

BDRT-ParAgglo reads and 

processes (to generate patterns) a 

dataset once only. 

Real-time 

response 
Somewhat 

The variables of maxObj and nPar, 

HDFS block size and number of 

slave nodes affect the BDRT-

ParAgglo execution speed. Thus, 

real-time response can be 

approached by selecting the proper 

variables’ values and Hadoop 

configurations. 

Bounded 

memory 
Yes 

Achieved by adopting landmark or 

sliding window  and assigning a 

value of maxObj that fit into slave 

node memory. 

Concept-

drift 

detection 

Yes 

The dataset being processed or 

discovered patterns change over 

time. 

 

 

 

G. Open  Discussion: Measuring Clusters Quality 

As discussed in [5], there are two approach for measuring 

clustering quality, which are extrinsic and intrinsic methods. 

Extrinsic methods compare the cluster results against the 

group truth and measure. If the ground truth is unavailable, 

ones can use intrinsic methods, which evaluate the goodness 

of a clustering by considering how well the clusters are 

separated. Generally, group truth for big data is unavailable, 

so only intrinsic methods can be adopted.   

The silhouette coefficient is a measure of intrinsic 

methods, which is described as follows: For a data set, D, of 

n objects, D is partitioned into k clusters, C1, ….,Ck.  For 

each object o ϵ D, a(o) is the average distance between o 

and all other objects in the cluster to which o belongs. 

Similarly, b(o) is the minimum average distance from o to 

all clusters to which o does not belong. The silhouette 

coefficient of o is then defined as:  

 
If s(o) < 0, it indicates that o is wrongly clustered. The 

closer the value of s(o) to 1, the better o is clustered. To 

measure the quality of a clustering, ones may use the 

average silhouette coefficient values of all objects in the 

data set. The larger the value, the better the quality of 

clustering.  

The complexity of computing all of s(o) values is 

approximately O(kn2m), where k = count of clusters, n = 

count of objects and m = count of object attributes. Then, 

the complexity to compute the average of all s(o) values 

would be O(n).  Thus, including functions in the 

MapReduce program to compute every s(o) and the average 

will slow down the computation and require lots of memory 

space in the slave nodes (for storing the objects, distances, 

objects’ cluster membership and all of s(o) values). For 

these reasons, we have not implemented this function.    

Ideally, a function for measuring the quality of clusters is 

provided such that before patterns are computed, ones can 

measure the quality of the formed clusters (in Algorithm 4, 

it should be called after line 8, form clusters using co).  

Thus, in this research, this remains unresolved yet. 

As discussed in  [5] and [18] agglomerative clustering 

algorithm has the advantage that it derives more meaningful 

cluster structures (compared to other approaches) as 

illustrated on Fig. 8.  But its limitations are high complexity 

(or not suitable for high dimensional data) and sensitive to 

the order of the data records. In our proposed techniques, 

the second limitation has been resolved by randomly 

partitioning the objects (see Subsection IV.E). As a 

consequence of the first limitation, BDRT-ParAgglo is 

suitable for reducing big data having small to medium 

dimension (number of attributes). 
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Fig. 14. Time execution on Hadoop cluster with 14 slave nodes. 

V. CONCLUSION 

A parallel method for reducing big data based on 

hierarchical clustering algorithm for Hadoop environment 

has been developed. In essence, Map preprocesses and 

randomly partitions the data, whereas Reduce computes the 

cluster patterns from each data partition. The components of 

the pattern can be selected from object counts, the attribute 

average, minimum, maximum and deviation value of each 

attribute in every cluster.   

The variables of BDRT-ParAgglo as well as Hadoop 

cluster configuration may influence the execution time and 

the size of big data that can be processed. Hence, the 

variable values and configuration should be selected such 

that the performance is the best.   

Through the experiments using low specification of 

computers as master and slave nodes, it has been shown that 

up to 20 Gb of big data can be processed with certain speed. 

Those experiments have proved that BDRT-ParAgglo can 

be implemented on Hadoop clusters configured using just 

commodity computers. By improving the hardware 

specifications (increasing memory and speed of processors), 

the size of data input that can be handled will be larger and 

the speed will also be increased.  

Further research is suggested as follows:  

(a) To increase the execution speed and addressing the 

complex shuffle process problem, the technique proposed in 

[20] for improving the Hadoop configuration, may be 

studied and, if found as the solution, can be adopted. 

Another option is: Creating HDFS blocks from 

preprocessed data that contains random objects, then 

Reducer is designed to form dendrogram without involving 

shuffling process.  

(b) Designing and implementing functions to measure 

clustering quality suitable to handle big data in the 

distributed systems. 

(c) By adopting the cloud clustering technique discussed in 

[21], this technique can further be enhanced such that it 

works in cloud platform. 

APPENDIX 

A.  Experiment Results using Distance Type = Means and 

HDFS block size = 16 Mb 

Fig. A.1 shows that: (a) By adding slave nodes, bigger 

size of dataset can be processed: Using single node, only 5 

Gb of dataset can be processed (using nPar = 5 only), while 

using 5 nodes, it is up to 15 Gb and using 10 and 14 nodes, 

it is up to 20 Gb; (b) The more slave nodes, the faster the 

execution time; (c)  The larger value of data partition 

(nPar), the more execution time needed. 

 

B.  Experiment Results using Distance Type = Single 

Compared to using distance type = means, when using 

distance type = single, the proposed algorithm can only 

handle smaller size of dataset. An example of the 

experiment results are depicted on Fig. B.1. The broken 

charts mean that the execution were failed due to lack of 

memory (in the slave nodes).  This is because we implement 

the function for finding the shortest distance using recursive 

functions (in a class method) that occupy large space of 

memory during its computation (involving large size of 

objects). By comparing Fig. B.1 with  Fig. 12 and 13, it can 

also be noted that the execution with single distance is 

slower. This is inline with its complexity that is discussed in 

Subsection III.B. 
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Fig. A.1.  Plot of execution time for distance type = means, HDFS block size = 16 Mb 

 

 
 

 

 
Fig. B.1. Plot of execution time for distance type = single. 

 

C. Example of Proposed Technique Applications 

The results of data reduction can be used for: (a) Direct 

applications: Histogram analysis and outlier detection; (b) 

Indirect applications: As the input of data mining techniques  

that can process the sub-cluster patterns. In this experiment, 

we intend to show the example of the direct application 

using histogram analysis. The data used is the one discussed 

in Subsection IV.A. 

Table C.1 depicts some example of the histogram of the 

reduced dataset of household energy consumption from 
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experiments in Subsection IV.A using Npar = 20, dType = 

single, maxObj = 50 and co = 1.5. It can be seen that there 

are five patterns having object members 46-50 (patterns 

with the most object members). To find the insights of those 

five patterns, Table C.II shows the values of each pattern 

(presented here for example). The interpretation patterns 

depicted in Table C.II is: The household mostly use 

electricity power in sub-meter 2 and 3 in the morning or late 

afternoon on Tuesday, Wednesday (the most) or Thursday. 

Other histogram component having large object members 

can also be examined to find the information or insights. In 

these experiments, we find that the information (that can be 

dig from the data reductions) is more detailed compared to 

our previous results published in [10], where patterns were 

obtained from parallel k-Means clustering algorithm. 

 

 
TABLE C.I.  EXAMPLE OF PATTERNS HISTOGRAM 

No #Objects 

in a Pattern Count 
1 1-5 590,611 

2 6-10 34,301 

3 11-15 10,285 

4 16-20 3,915 

5 21-25 1,541 

6 26-30 656 

7 31-35 224 

8 36-40 75 

9 41-45 29 

10 46-50 (47-48) 5 

 Total 641,642 

 

 

 

 

 

TABLE C.II.  FIVE PATTERNS WITH THE LARGEST OBJECT MEMBER 

CP 
#Objec

t 

Minimum attribute value Maximum attribute value Cluster centroids 

D H M-1 M-2 M-3 D H M-1 M-2 M-3 D H M-1 M-2 M-3 
1 47 4 0 0 0 0 4 1

3 
0 2 0 4 6.45 0 0.13 0.00 

2 47 3 8 0 0 0 3 2

3 
0 2 1 3 15.2

3 
0 0.19 0.55 

3 47 2 2 0 0 0 2 1

5 
0 1 1 2 7.79 0 0.17 0.60 

4 48 3 0 0 0 0 3 1

5 
0 2 1 3 7.71 0 0.27 0.77 

5 48 3 6 0 0 0 3 1

9 
0 2 1 3 13.5

6 
0 0.21 0.75 

Note: Attribute of each pattern: D = day number, H = hour, M-1 = meter-1, M-2 = meter-2, M-3 = meter-3 
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