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Abstract—Components as the smallest granularity are used
to composite the software architecture, and they communicate
with each other by their interfaces. Effective cooperative work
ability is guaranteed by correct component interaction. So,
component interaction testing is one of the most important role
of software architecture testing when we examine quality of
software architecture. Existing researches show that component
path coverage is an important test adequacy criterion for
software architecture testing. We have presented a set of
component path coverage criteria for the test with component
interaction relationships. Based on the existing methods of
component path coverage and component path-analysis, we
propose two component path coverage criteria, component path
with node coverage criterion and component path with edge
coverage criterion, and discuss the subsumption relationships
among these coverage criteria. These coverage criteria define
the adequacy of component path test suites at different levels
and the test suites satisfying these coverage criteria can detect
respectively different types of faults. On this basis, two algo-
rithms are proposed to realize the automatic generation of the
corresponding component paths according to two component
path coverage criteria, and an experimental method is proposed
to analyze the component interaction. The experimental results
show that the component interaction for a given component and
coverage path coverage criteria is more, the coverage rate of
the component is higher, which indicates that its fault-detection
capability is stronger.

Index Terms—software architecture, C2-style, component
interaction, component path, coverage criteria.

I. INTRODUCTION

SOFTWARE architecture describes the elements of a
software system, interoperability of elements, and guides

software system pattern and constraint of pattern [1]. It is
a bridge between the demand and the realization of the
software development process, the explicit description of the
overall structure of the software system in abstract layer [2].
In order to describe and design software architecture and
verify whether a software architecture satisfies the desired
system requirements, the development of an optimal software
architecture suitable for system performance requirements is
the core problem that must be studied and solved in software
architecture development methods [3]. The function of the
application system is expressed by the way of the interactions
of composed components. Component interaction problem is
associated not only with the inner implementation and but
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also with the closely related to the interactive connection be-
tween components. To improve software quality and support
software development and software reuse, it is necessary to
test the interactive connection between components as early
as possible [4].

Component interaction technology is built on message
passing principle. The interface is the channel between com-
ponent and other component. The sender component sends
messages through its interfaces, and the receiver component
receives the message through its interfaces. A component can
directly interact with other components through its interface,
or indirectly interact with other components through the
interface of intermediate components. Because there may
be interaction between components, and the components of
system may be used in the system many times. So, modifying
a component may have an impact on its related components,
even affect the function of the whole system [5]. Therefore,
it is necessary to test the component interaction as early as
possible to find faults in component interaction [6].

Software architecture testing technology includes the de-
termination test content, the test coverage criteria selection,
and the generation of test suites, where the test coverage
criteria selection is the central issue in research of software
architecture. Traditional software testing can usually be clas-
sified into structural coverage [7] and functional coverage
[8], Of all the structural coverage criteria, path coverage is
relatively rigorous test coverage criterion [9], it requires that
enough test suites be designed to ensure that every possible
path is executed at least once during testing, so, it has a
broader coverage than other coverage criteria.

We have presented a set of component path coverage
criteria for C2-style architecture [10], these coverage criteria
provide a coverage measure to quantify the testing activity
and thus contribute to the improvement of the quality of this
activity in C2-style architecture. This paper discusses testing
approach of component interaction for C2-style architecture.
Firstly, set of interactions relationships is defined correspond-
ing to the relationship between component and connector.
Then the component interaction graph is constructed to
represent static structure of C2-style architecture on the
basis of interaction relationships. Based on the component
interaction graph introduced, component path with node
coverage criterion and component path with edge coverage
criterion are proposed to represent test requirements between
components, and two algorithms to obtain the component
path with node and with edge on coverage criteria are
proposed, and an experimental analysis method is proposed.
Finally, experimental results and conclusion are given.

II. RELATED WORK

A number of coverage criteria have been proposed in the
literature to handle the problem from different aspects. This
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section reviews closely related work on path coverage criteria
and software architecture coverage criteria.

A. Path Coverage Criteria

McCabe proposed basic path coverage criterion [11]. The
criterion considers all possible path sets in a program as a
vector space, if there is a group of bases in vector space,
then the whole vector space can be covered by the linear
combination of the bases. So, we can find out the base in
the vector space to test, and if the base doesn’t problem,
then there isn’t problem with all the combinations of paths
represented by the base.

Hennell et al. proposed Linear Code Sequence and Jump
(LCSAJ) coverage criterion [12]. A LCSAJ is a set of
sequentially executed code in a program that it starts the
entry point of the first line of program, the branch statement,
or the statement that the control flow can jump to arrive. If
there exist a number of LCSAJs, and the starting point of
first the LCSAJ is the starting point of the program, and the
last LCSAJ is the end of the program, then these LCSAJs
make up a program path. A LCSAJ path can be composed
of multiple LCSAJ.

Miller proposed DD-PATH coverage criterion [13]. The
DD-PATH is a chain from a decision node to another decision
node in program graph. There is not any internal branch in
the chain. The length of a chain represents as the number
of edges that the chain contains. Each chain can be divided
into a different type of DD-PATH. The DD-PATH is a chain
of program graph, and satisfies the following conditions: (1)
A single node with an in-degree = 0, (2) A single node with
an out-degree = 0, (3) A single node with in-degree ≥ 2 or
out-degree ≥ 2, (4) A single node with in-degree = 1 and
out-degree = 1, and (5) The chain is of a maximal length ≥
1.

Zhu proposed elementary path coverage criterion [14]. An
elementary path is a path if there are no repeated occurrences
of any node. The elementary path coverage criterion requires
every feasible complete elementary paths q. there is one
path p at least in program graph such that p covers q.
In general, an elementary path must be a simple path.
The simple path coverage criterion and the elementary path
coverage criterion have subsumption relationship. A test suite
satisfying the simple path coverage criterion must also satisfy
the elementary path coverage criterion, so, the simple path
coverage criterion subsumes the elementary path coverage
criterion.

Ammann and Offutt proposed simple path coverage crite-
rion [15]. A simple path is a path if no node is visited more
than once with the exception that the first node and the last
node may be identical. The simple path coverage criterion
requires each feasible simple complete path q, there is at
least one path p in program graph such that p covers q.

Li et al. proposed R N(K) path coverage criterion [16].
The coverage criterion obtains the basic path table of pro-
gram graph through the K value division, which any two
paths are independent. The R N(K) path coverage criterion
denoted the set of all paths of length is less than or equal to
N in program graph.

For the feasibility of integrity path-tested coverage, Li et
al. proposed Length N path coverage criterion [17]. The

coverage criterion conducts the static analysis of the test
program, and obtains the branch statement of program which
has little affect in program graph, then obtains the corre-
sponding path coverage table according to a certain length
of experience. The Length N path coverage criterion covers
the path of length is less than or equal to N of path coverage
table.

B. Software Architecture Coverage Criteria

Rosenblum defined two formal adequate test models for
component-based software [18]. The first model is known
as C − adequate− for −P , which is defined for adequate
unit testing of a component where C refers to test adequacy
criteria and P refers to a program. The other model is known
as C − adequate− on−M, which is defined for adequate
integration testing of component based system. In essence,
software architecture coverage is a kind of coverage based
on software architecture specification. The adequacy testing
of two models is based on the test adequacy condition of
subdomains.

Stafford et al. described chaining which the goal is to
reduce the portions of an architecture that must be exam-
ined by an architect for some purpose, such as testing or
debugging [19]. In chaining, links represent the dependence
relationships that are available in an architectural specifica-
tion. Links connect elements of the specification that are
directly related, producing a chain of dependencies that can
be followed during the analysis.

Richardson et al. proposed a family of architecture-based
test criteria based on the chemical abstract machine mod-
el [20], such as all-data-elements criterion, all-processing-
elements criterion, all-connecting-elements criterion, all-
transformations criterion, all-transformation-system criterion,
and all-data-dependences criterion, in order to satisfy the
requirements of software architecture testing. At the same
time, they proposed metrics based on software architecture
testability, and used metrics to guide the selection of archi-
tecture and the generation of test plans.

Bertolino et al. proposed the formal description of software
architecture using chemical abstract machine [21]. From
description, they derived Labelled Transition Systems which
represented the global system behavior of a concurrent,
multi-user software system. They defined the model and
test coverage criterion based on chemical abstract machine,
derived the integrated test plan of software architecture in
order to help guide software architecture testing.

Jin and Offitt [22] defined five software architecture
testing criteria to cover all identified software architecture
relationships. These coverage criteria can be epitomized as
individual component interface coverage criterion, individual
connector interface coverage criterion, all direct component-
to-component coverage criterion, all indirect component-to-
component coverage criterion, and all connected components
coverage criterion.

Hashim et al. presented Connector-based Integration Test-
ing for Component-based Systems (CITECB) with an ar-
chitectural test coverage criteria [23], and describe the test
models used that are based on probabilistic deterministic
finite automata which are used to represent gate usage
profiles at run-time and test execution. It also provides a
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measuring mechanism of how well the existing test suites are
covering the component interactions and provides a test suite
coverage monitoring mechanism to reveal the test elements
that are not yet covered by the test suites.

Lun and Chi presented a component dependency path
coverage approach based on component dependency graph,
and proposed three component dependency path coverage
criteria [10], which are direct component dependency path
coverage criterion, indirect component dependency path cov-
erage criterion, and Length-N component dependency path
coverage criterion. It covered all testing component and
connector, and reduced scale of testing coverage set. Mean-
while, they presented three algorithms to compute the com-
ponent dependency path coverage rate on these component
dependency path coverage criteria. Lun et al. proposed basis
component path coverage method for software architecture
testing [24], and proposed an automatic method to generate
basis component paths.

III. C2-STYLE ARCHITECTURE MODEL

In this section, we first introduce the related concepts
of the C2-style architecture, and then give the definition
of component interaction graph to abstract represent the
component interactions. Based on the component interaction
graph, we give the definition of component path.

A. C2-Style Architecture Representation

We have selected the C2-style architecture as a vehicle
for exploring our ideas because it provides a number of
useful rules for high-level system composition, demonstrated
in numerous applications across several domains [25]; at the
same time, the rules of the C2-style are broad enough to
render it widely applicable [6].

The C2-style architecture [26] consists of components,
connectors, and their constraints. All components and con-
nectors have two interfaces, “top” and “bottom”. The top
(bottom) of a component can only be attached to the bottom
(top) of one connector. It is not possible for components to
be attached directly to each other. Each connector always
has to act as intermediaries between them. Furthermore, a
component cannot be attached to itself. However, connector
can be attached together. In this case, each connector consid-
ers the other as a component with regard to the publication
and forwarding of events. Component communicates by
exchanging two types of events: service requests to top of the
component and notifications of completed services to bottom
of the component.

We define our intermediate representation Component
Interaction Graph (CIG) model and discuss how a C2-style
architecture can be represented using our notation [24].
CIG is used to depict the interaction relationships between
interface of component and interface of connector.
Definition 1 Let CIG = (V, E, Vstart, Vend) be a component
interaction graph, where V = Comp ∪ Conn is the set of
nodes, Comp is a finite set of components, each component
Compi ∈ Comp has four interfaces, they are top output
interface Compi.Ipt o, top input interface Compi.Ipt i,
bottom output interface Compi.Ipb o, and bottom input
interface Compi.Ipb i. Conn is a finite set of connectors,
each connector Connj ∈ Conn has four interfaces too, they

are top output interface Connj .Int o, top input interface
Connj .Int i, bottom output interface Conni.Inb o, and
bottom input interface Conni.Inb i. E = eComp−Conn ∪
eConn−Comp ∪ eConn−Conn is a finite set of edges, where
eComp−Conn = {e | e ∈ (Compi.Ipt o, Connj .Inb i) ∨
(Compi.Ipb o, Connj .Int i)} represents the set of edges
from top (bottom) output interface of component Compi
to the bottom (top) input interface of connector Connj .
eConn−Comp = {e | e ∈ (Conni.Int o, Compj .Ipb i) ∨
(Conni.Inb o, Compj .Ipt i)} represents the set of edges
from the top (bottom) output interface of connector Conni
to the bottom (top) input interface of component Compj .
eConn−Conn = {e | e ∈ (Conni.Int o, Connj .Inb i) ∨
(Conni.Inb o, Connj .Int i)} represents the set of edges
from the top (bottom) output interface of connector Conni
to the bottom (top) input interface of connector Connj .
Vstart ⊆ Comp is the set of initial component nodes,
these components transmit messages only. That is Vstart =
{Compi | Compi.Ipb i = ∅ ∧ Compi.Ipb o = ∅, Compi
∈ Comp}. Vend ⊆ Comp is the set of terminal component
nodes, these components receive messages only. That is Vend
= {Compi | Compi.Ipt o = ∅ ∧ Compi.Ipt i = ∅, Compi
∈ Comp}.

In C2-style architecture, a component (connector) can
interact with the other component (connector) in several
ways, i.e., from component to connector, from connector
to component, and from connector to connector. The CIG
for C2-style architecture should be able to represent these
interactions between components and connectors.
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Fig. 1. KLAX Architecture in the C2-Style

In order to construct a representation for the CIG, we
conduct the static analysis of the C2-style specification. First,
we identify all components and connectors and represent
as nodes. Then we identify all interaction relationships
between components and connectors and represent as edges.
If there exists a information flow from component Compi to
connector Connj , in such a case, an edge e ∈ eComp−Conn

is added to connect from the top (bottom) output interface of
Compi to the bottom (top) input interface of Connj of CIG.
If there exists a information flow from connector Conni to
component Compj , in such a case, an edge e ∈ eConn−Comp

is added to connect from the top (bottom) output interface of
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Fig. 2. CIG of KLAX System

Conni to the bottom (top) input interface of Compj of CIG.
If there exists a information flow from connector Conni to
connector Connj , in such a case, an edge e ∈ eConn−Conn

is added to connect from the top (bottom) output interface
of Conni to the bottom (top) input interface of Connj of
CIG.

In order to illustrate our approach in a better way, we
used the well-known KLAX video game application [25]. For
this application C2-style architecture has been used. KLAX
system includes 16 components and 6 connectors, which
is depicted in Fig. 1. Where the rectangle node represents
component, such as GraphicsBinding and TileArtist etc. The
long rectangle with shadow node represents connector, such
as LAConn and TAConn etc. The edge between compo-
nent and connector, and between connectors represents that
there exists messages transmission between component and
connector, such as the edge between GraphicsBinding and
GLConn represents that there exists messages transmission
between GraphicsBinding and GLConn, and the edge be-
tween LTConn and TAConn represents that there exists
messages transmission between LTConn and TAConn.

According to the construction method of CIG, Fig. 2 shows
the corresponding CIG for the example KLAX system of
Fig. 1 according to C2-style architecture specification [26].

In order to simplify the representation, the name of the
component and the connector are abbreviated. Where nodes
represent the interface of the component and the connector,
and component interface with a hollow circle, connector
interface with a solid circle represents. GB.Ipt o, SL.Ipt o,
and NTPL.Ipt o are initial nodes. CL.Ipb i, PADT.Ipb i
and so on are terminal nodes.

B. Component Path

Software architecture has many new characteristics, such
as component, connector and so on, the behavior of each
element is part of software architecture, which reflects the
interaction between elements. When we describe the software
architecture with CIG, the interaction between components
can be represented as the component path in the CIG.
Definition 2 Let CIG =< V, E, Vstart, Vend > be a
component interaction graph for C2-style architecture, Cs,
Cs+1, . . . , Ct ∈ V. A path is a sequence nodes Cs → Cs+1

→ . . .→ Ct such that (Ci, Cj) ∈ E for i, j = s+1, s+2, . . .,
t-1, denoted as πP . If Cs ∈ Comp ∧ Ct ∈ Comp, the path
πP is called component path, denoted as πCP .

From the definition 2, we can see that the πCP has two
forms according to the type of edges, one is all edges from
the beginning of top output interface of component and
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connector to the end of bottom input interface of component
and connector, other is all edges from the beginning of
bottom output interface of component and connector to the
end of top input interface of component and connector.

The traditional method to generate test path doesn’t suit-
able for CIG of software architecture. We propose methods
to generate component path of CIG.

IV. COMPONENT PATH COVERAGE CRITERIA

In order to ensure the adequacy of testing component path,
we must consider the component path coverage criteria of
test suites. Component path coverage criteria can measure
different test suites in quality and full test; determine the
validity of the software architecture testing, decide what time
we can stop the software architecture testing, and guide the
test suites generation [27]. In this section, we propose a set
of component path coverage criteria of software architecture
using the CIG. The number of test suites required by each
component path coverage criterion is often different.

A. Component Path with Node Coverage Criterion

Node coverage is one of the most basic coverage method
in component path generation. It requires that each node
of component path can be covered in software architecture
testing.
Definition 3 For a component path πCP : Cs → Cs+1 →
. . .→ Ct in CIG of the C2-style architecture, and for any
node Ci ∈ V for i = s+1, s+2, . . . , t-1, if the πCP covers all
nodes and node Ci reachable from Cs to Ct, we call the πCP

to satisfy the component path with node coverage criterion,
denoted as CPNCC.

For example in Fig. 2, we can see that there are two πCP s
from component StatusLogic to ChuteADT on CPNCC are
shown as follows.

StatusLogic → LLConn → TileMatchLogic → LAConn
→ ChuteADT

StatusLogic → LLConn → RelativePosLogic → LAConn
→ ChuteADT

The CPNCC is not complete because it doesn’t require
all edges from beginning node to stopping node in CIG to be
covered, so the fault-detecting ability of CPNCC is limited.

B. Component Path with Edge Coverage Criterion

Edge coverage is strictly stronger than node coverage in
component path generation because if we have covered all
edges then we have definitely covered all nodes. If we cover
all nodes it doesn’t necessarily mean that we have covered
all edges. It requires that each edge of component path can
be covered in software architecture testing.
Definition 4 For a component path πCP : Cs → Cs+1 →
. . .→ Ct in CIG of the C2-style architecture, and for any
edge eCi, Cj

∈ E for i = s+1, s+2, . . . , t-2, j = i+1, i+2, . . . ,
t-1, if the πCP covers all nodes and edge eCi, Cj

reachable
from Cs to Ct, we call the πCP to satisfy the component
path with edge coverage criterion, denoted as CPECC.

For example in Fig. 2, component path coverage set
from component StatusLogic to ChuteADT on CPNCC
doesn’t cover edge (LLConn, LAConn), so, on the basis
of component path coverage set on CPNCC, adding a

component path can satisfy CPECC. Thus, we can see
that there are three πCP s from component StatusLogic to
ChuteADT on CPECC are shown as follows.

StatusLogic → LLConn → TileMatchLogic → LAConn
→ ChuteADT

StatusLogic → LLConn → RelativePosLogic → LAConn
→ ChuteADT

StatusLogic → LLConn → LAConn → ChuteADT

C. Direct Component Path Coverage Criterion

In the process of component interaction, it is necessary to
check the messages transmission between components. So,
it requires to cover connection of two components through
a number of connectors in software architecture testing.
Definition 5 For a component path πCP : Cs → Cs+1 →
. . .→ Ct in CIG of the C2-style architecture, if each edge
(Ci, Cj) ∈ eConn−Conn for i, j = s+1, s+2, . . . , t-1, we
call the πCP to satisfy the direct component path coverage
criterion, denoted as DCPCC.

For example in Fig. 2, we can see that there is a πCP from
component LayoutManager to StatusArtist on DCPCC is
shown as follows.

LayoutManager → LTConn → TAConn → StatusArtist
Meanwhile, there is a πCP from component LayoutMan-

ager to GraphicsBinding on DCPCC is shown as follows.
LayoutManager → GLConn → GraphicsBinding
From the definition 5, we can see that there may not

exist component path on DCPCC between components. For
example in Fig. 2, we can see that there doesn’t exist πCP

from component LayoutManager to WellADT on DCPCC.

D. Indirect Component Path Coverage Criterion

In the process of component interaction, it is necessary to
check the messages transmission among components. So, it
requires to cover connection of two components through a
number of components and connectors in software architec-
ture testing.
Definition 6 For a component path πCP : Cs → Cs+1 →
. . .→ Ct in CIG of the C2-style architecture, if each edge
(Ci, Cj) E for i, j = s+1, s+2, . . . , t-1, we call the πCP

to satisfy the indirect component path coverage criterion,
denoted as ICPCC.

From the definition 6, we can see that ICPCC is a more
stringent component path coverage criterion, it requires to
cover all component paths between two components. Thus,
ICPCC has a high practical value.

For example in Fig. 2, we can see that there are two πCP s
from component LayoutManager to StatusArtist on ICPCC
are shown as follows.

LayoutManager → LTConn → TileArtist → TAConn →
StatusArtist

LayoutManager → LTConn → TAConn → StatusArtist

E. Basis Component Path Coverage Criterion

Because ICPCC is a more stringent component path
coverage criterion, even if the software architecture is small,
there may be a number of components and connectors
involved in component interaction, so, there exist a number
of component paths and increase the cost of software archi-
tecture testing. Therefore, it requires to adopt a simplified
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method of component path coverage in component path
generation.
Definition 7 For a component path πCP : Cs → Cs+1 →
. . .→ Ct in CIG of the C2-style architecture, if the πCP

covers all nodes and edges reachable from Cs to Ct, we
call the πCP to satisfy the basis component path coverage
criterion, denoted as BCPCC.

From the definition of BCPCC, a component path on
BCPCC can be differentiated from all other component
paths on BCPCC by at least an edge.

For example in Fig. 2, we can see that there are five πCP s
from component LayoutManager to ChuteADT on BCPCC
are shown as follows.

LayoutManager→ LTConn→ TAConn→ StatusArtist→
ALAConn → LAConn → ChuteADT

LayoutManager→ LTConn→ TAConn→ ChuteArtist→
ALAConn → LAConn → ChuteADT

LayoutManager → LTConn → TAConn → WellArtist →
ALAConn → LAConn → ChuteADT

LayoutManager → LTConn → TAConn → PaletteArtist
→ ALAConn → LAConn → ChuteADT

LayoutManager → LTConn → TileArtist → TAConn →
StatusArtist → ALAConn → LAConn → ChuteADT

However component path πCP : LayoutManager → LT-
Conn→ TileArtist→ TAConn→ ChuteArtist→ ALAConn
→ LAConn→ ChuteADT doesn’t satisfy BCPCC, because
all edges in this πCP appear in the above five πCP s, this
πCP violates the characteristics of the basis component path
coverage criterion.

F. Relationships among Component Path Coverage Criteria

Five component path coverage criteria have subsumption
relationships among them. According to the definition [28],
if any test suite satisfying the coverage criterion CA satisfies
the coverage criterion CB , then the coverage criterion CA

subsumes the coverage criterion CB , which can be repre-
sented by CB ⊆ CA. It is obvious that the subsumption
relationships between coverage criteria has reflexivity and
transitivity, that is, the reflexivity is represented that CA ⊆
CA, transitivity is represented that if CB ⊆ CA and CC ⊆
CB , then CC ⊆ CA. Thus, for two component path coverage
criteria CPCCA and CPCCB and a component path πCPC

,
if a triple (πCPC

, TS, CPCCA) can also satisfy another triple
(πCPC

, TS, CPCCB) for the same πCPC
and test suite TS,

then CPCCB ⊆ CPCCA.
The test suite TS satisfying the indirect component path

coverage criterion also ensures that the CIG satisfies the
component path with edge coverage criterion and basis
component path coverage criterion. In fact, any test suite
satisfying the indirect component path coverage criterion
satisfies the component path with edge coverage criterion and
basis component path coverage criterion, that is CPECC
⊆ ICPCC ∧ BCPCC ⊆ ICPCC. The test suite TS
satisfying the component path with edge coverage criterion
also ensures that the CIG satisfies the component path with
node coverage criterion, and direct component path coverage
criterion. In fact, any test suite satisfying the component path
with edge coverage criterion satisfies the component path
with node coverage criterion and direct component path cov-
erage criterion, that is CPNCC ⊆ CPECC ∧ DCPCC

⊆ CPECC. In the same way, CPNCC ⊆ BCPCC ∧
DCPCC ⊆ BCPCC. According to the transitivity between
coverage criteria, CPNCC ⊆ ICPCC ∧ DCPCC ⊆
ICPCC. Because component path coverage set generated on
BCPCC is unique, so, it doesn’t determine the relationship
between BCPCC and CPECC.

Thus, we obtain the subsumption relationships among five
component path coverage criteria are shown as Fig. 3.

 
ICPCC 

CPECC 

DCPCC 

BCPCC CPNCC 

Fig. 3. Subsumption Relationships Among Component Path Coverage
Criteria

G. Component Path Coverage Rate

In real applications, when we need to measure the compo-
nent path coverage criteria on test suits, we need to calculate
the component path coverage rate.
Definition 8 A component path coverage criterion be a
function CPCC, CPCC: C2 × C2Spec × TS → [0, 1].
CPCC(C2, C2Spec, TS) = R means that the adequacy of
testing of the C2-style architecture C2 by the test suite TS
with respect to the specification C2Spec is of coverage rate R
according to the component path coverage criterion CPCC.
The greater the real number R, the more adequate the testing.
R is calculated as follows:

R =
||ΠCPCC ||

||EP (ΠCPCC(CIG))||
× 100% (1)

where ΠCPCC represents the set of component paths on
component path coverage criterion CPCC that covered by
test suite TS, ||ΠCPCC || represents the number of elements
in ΠCPCC , ||EP (ΠCPCC(CIG))|| represents the number of
component paths on corresponding component path coverage
criterion CPCC in CIG.

V. ALGORITHMS OF COMPONENT PATH GENERATION

In this section, we propose two algorithms to generate
component path coverage set from beginning component Cs

to stopping component Ct on CPNCC and CPECC. Two
algorithms contain three procedures as follows:

• Procedure isConnected(Cs, Ct): is used to determine the
connectivity of nodes Cs and Ct passing through nodes
Ci, Cj , . . . , and Ck. In these nodes, select the closest
node from Cs as a beginning node, depth first traversal
of the CIG, if the other nodes can be traversed, it is
connected; conversely, it is not connected.

• Procedure Prefix(Ck, πPk): is used to obtain the prefix
of node Ck of component path πPk.

• Procedure Postfix(Ck, πPk): is used to obtain the postfix
of node Ck of component path πPk.
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A. Algorithm for determining πCP on CPNCC

Algorithm CPNA can be used to generate the component
path coverage set on CPNCC. Algorithm CPNA accepts
component interaction graph CIG, beginning component
Cs and stopping component Ct. The main idea of CPNA
algorithm can be briefly stated as follows: Firstly, it de-
termines the connectivity between beginning component Cs

and stopping component Ct. Then, it saves nodes into set
CPNSet. Finally, it connects nodes of set CPNSet to form
the component path coverage set.

Algorithm 1 CPNA(CIG, Cs, Ct, CPNSet)
Require: CIG, Cs is beginning component, Ct is stopping
component.
Ensure: CPNSet is component path coverage set on
CPNCC.
Begin
1 if (!isConnected(Cs, Ct)) then
2 return;
3 end if
4 CPNSet = ∅;
5 for (k1 = s; k1 < t; k1 ++)
6 add Ck1 to CPNSet;
7 for (k2 = k1 + 1; k2 <= t; k2 ++)
8 if (eCk1, Ck2

∈ E ∧ Ck2 /∈ CPNSet) then
9 if (Ck2 = Ct) then
10 add Ck2 to CPNSet;
11 break;
12 else
13 add Ck2 to CPNSet;
14 end if
15 end if
16 end for
17 end for
18 Output the every node of CPNSet to obtain component
path coverage set;
End CPNA

We employ the CIG shown in Fig. 2 to demonstrate
algorithm CPNA. Let us consider example showing the
component path coverage set on CPNCC from component
GraphicsBinding to component ClockLogic. That is Cs =
GraphicsBinding, Ct = ClockLogic.

Firstly, according to step 1, isConnected(GraphicsBinding,
ClockLogic) = true, so, there exists πCP from GraphicsBind-
ing to ClockLogic.

Secondly, according to step 6, CPNSet =
{GraphicsBinding}. According to steps 8-14,
(GraphicsBinding, GLConn) ∈ E ∧ GLConn /∈ CPNSet,
CPNSet = {GraphicsBinding, GLConn}. Repeated steps 8-
14, CPNSet = {GraphicsBinding, GLConn, LayoutManager,
LTConn, TileArtist, StatusArtist, ChuteArtist, WellArtist,
PaletteArtist, ALAConn, LAConn, ClockLogic}.

Thus, according to step 18, CPNSet = {GraphicsBinding
→ GLConn → LayoutManager → LTConn → TileArtist
→ TAConn → StatusArtist → ALAConn → LAConn →
ClockLogic, GraphicsBinding → GLConn → LayoutMan-
ager → LTConn → TileArtist → TAConn → ChuteArtist
→ ALAConn → LAConn → ClockLogic, GraphicsBinding
→ GLConn → LayoutManager → LTConn → TileArtist
→ TAConn → WellArtist → ALAConn → LAConn →

ClockLogic, GraphicsBinding → GLConn → LayoutMan-
ager → LTConn → TileArtist → TAConn → PaletteArtist
→ ALAConn → LAConn → ClockLogic}.

As we can see from the above example, the CPNA
algorithm can obtain all component paths from beginning
component to stopping component on CPNCC when the
beginning component and the stopping component are given.

B. Algorithm for determining πCP on CPECC

Algorithm CPEA can be used to generate the component
path coverage set on CPECC. Algorithm CPEA accepts
component interaction graph CIG, beginning component Cs

and stopping component Ct. The main idea of CPEA algo-
rithm can be briefly stated as follows: Firstly, it determines
the connectivity of beginning component Cs and stopping
component Ct. Then, it calls CPNA algorithm to obtain
component path coverage set on CPNCC. Finally, it checks
all edges eCk1,Ck2

that have not been covered by CPNA
algorithm, calls procedure Prefix(Ck1, πPk1) to obtain the
prefix of node Ck1 of πPk1 and calls procedure Postfix(Ck2,
πPk1) to obtain the postfix of node Ck2 of πPk1, it connects
the prefix with Ck1, Ck2, and the postfix to generate the
component path coverage set on CPECC.

Algorithm 2 CPEA(CIG, Cs, Ct, CPESet)
Require: CIG, Cs is beginning component, Ct is stopping
component.
Ensure: CPESet is component path coverage set on
CPECC.
Begin
1 if (!isConnected(Cs, Ct)) then
2 return;
3 end if
4 CPESet = ∅;
5 CPNA(CIG, Cs, Ct, CPNSet);
6 for (k1 = 1; k1 <= |CPNSet|; k1 ++)
7 πP = ∅;
8 if (πPk1 ∈ CPNSet) then
9 CPESet = CPESet + πPk1;
10 for (k2 = 1; k2 <= |E|; k2 ++)
11 if (eCk1,Ck2

∈ E ∧ Ck1 ∈ πPk1 ∧ Ck2 ∈ πPk1 ∧
eCk1,Ck2

/∈ CPESet) then
12 TempP1 = Prefix(Ck1, πPk1);
13 TpmpP2 = Postfix(Ck2, πPk1);
14 πP = TempP1 + Ck1 + Ck2 + TempP2;
15 end if
16 end for
17 if (πP /∈ CPESet) then
18 CPESet = CPESet + πP ;
19 end if
20 end if
21 end for
22 return CPESet;
End CPEA

We employ the CIG shown in Fig. 2 to demonstrate
algorithm CPEA. Let us consider example showing the
component path coverage set on CPECC from compo-
nent WellADT to component LayoutManager. That is Cs =
WellADT, Ct = LayoutManager.
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Firstly, according to step 1, isConnected(WellADT, Lay-
outManager) = true, so, there exists πCP from WellADT to
LayoutManager.

Secondly, according to step 5, call CPNCC algorithm to
obtain component path coverage set CPNSet = {WellADT
→ LAConn → ALAConn → StatusArtist → TAConn →
TileArtist → LTConn → LayoutManager, WellADT → LA-
Conn→ ALAConn→ ChuteArtist→ TAConn→ TileArtist
→ LTConn → LayoutManager, WellADT → LAConn →
ALAConn→WellArtist→ TAConn→ TileArtist→ LTCon-
n → LayoutManager, WellADT → LAConn → ALAConn
→ PaletteArtist → TAConn → TileArtist → LTConn →
LayoutManager}.

Thirdly, according to step 8, we get πP1 = WellADT
→ LAConn → ALAConn → StatusArtist → TAConn →
TileArtist → LTConn → LayoutManager. According to
step 9, CPESet = {WellADT → LAConn → ALAConn
→ StatusArtist → TAConn → TileArtist → LTConn →
LayoutManager}.

Fourth, according to step 11, because eTAConn,LTConn ∈
E ∧ TAConn ∈ πP1 ∧ LTConn ∈ πP1 ∧ eTAConn,LTConn

/∈ CPESet, so, according to steps 12-13, obtains the prefix
TempP1 = WellADT → LAConn → ALAConn → Sta-
tusArtist of TAConn of πP1 and the postfix TempP2 = Lay-
outManager of LTConn of πP1. Then, according to step 14,
connects the prefix with TAConn, LTConn, and the postfix
to generate component path πP = WellADT → LAConn
→ ALAConn → StatusArtist → TAConn → LTConn →
LayoutManager and adds to CPESet. According to step 17,
πP /∈ CPESet, so, according to step 18, CPESet = {WellADT
→ LAConn → ALAConn → StatusArtist → TAConn →
TileArtist → LTConn → LayoutManager, WellADT → LA-
Conn → ALAConn → StatusArtist → TAConn → LTConn
→ LayoutManager}.

Fifth, according to step 8, we get πP2 = WellADT
→ LAConn → ALAConn → ChuteArtist → TAConn →
TileArtist → LTConn → LayoutManager. According to
step 9, CPESet = {WellADT → LAConn → ALAConn
→ StatusArtist → TAConn → TileArtist → LTConn →
LayoutManager, WellADT → LAConn → ALAConn →
StatusArtist → TAConn → LTConn → LayoutManager,
WellADT → LAConn → ALAConn → ChuteArtist →
TAConn → TileArtist → LTConn → LayoutManager}. Ac-
cording to step 11, because eTAConn,LTConn ∈ E ∧ TAConn
∈ πP1 ∧ eTAConn,LTConn ∈ CPESet, CPESet still contains
three component paths.

Sixth, according to step 8, we get πP3 = WellADT→ LA-
Conn → ALAConn → WellArtist → TAConn → TileArtist
→ LTConn→ LayoutManager. According to step 9, CPESet
= {WellADT → LAConn → ALAConn → StatusArtist
→ TAConn → TileArtist → LTConn → LayoutManager,
WellADT → LAConn → ALAConn → StatusArtist →
TAConn → LTConn → LayoutManager, WellADT → LA-
Conn→ ALAConn→ ChuteArtist→ TAConn→ TileArtist
→ LTConn → LayoutManager, WellADT → LAConn →
ALAConn → WellArtist → TAConn → TileArtist → LT-
Conn → LayoutManager}. According to step 11, because
eTAConn,LTConn ∈ E ∧ TAConn ∈ πP1 ∧ eTAConn,LTConn

∈ CPESet, CPESet still contains four component paths.
Seventh, according to step 8, we get πP4 = WellADT
→ LAConn → ALAConn → PaletteArtist → TAConn →

TileArtist → LTConn → LayoutManager. According to
step 9, CPESet = {WellADT → LAConn → ALACon-
n → StatusArtist → TAConn → TileArtist → LTConn
→ LayoutManager, WellADT → LAConn → ALAConn
→ StatusArtist → TAConn → LTConn → LayoutMan-
ager, WellADT → LAConn → ALAConn → ChuteArtist
→ TAConn → TileArtist → LTConn → LayoutManag-
er, WellADT → LAConn → ALAConn → WellArtist
→ TAConn → TileArtist → LTConn → LayoutManager,
WellADT → LAConn → ALAConn → PaletteArtist →
TAConn → TileArtist → LTConn → LayoutManager}. Ac-
cording to step 11, because eTAConn,LTConn ∈ E ∧ TAConn
∈ πP1 ∧ eTAConn,LTConn ∈ CPESet, CPESet still contains
five component paths.

Thus, the component path coverage set on CPECC
is CPESet = {WellADT → LAConn → ALAConn →
StatusArtist → TAConn → TileArtist → LTConn →
LayoutManager, WellADT → LAConn → ALAConn →
StatusArtist → TAConn → LTConn → LayoutManag-
er, WellADT → LAConn → ALAConn → ChuteArtist
→ TAConn → TileArtist → LTConn → LayoutManag-
er, WellADT → LAConn → ALAConn → WellArtist
→ TAConn → TileArtist → LTConn → LayoutManager,
WellADT → LAConn → ALAConn → PaletteArtist →
TAConn → TileArtist → LTConn → LayoutManager}.

As we can see from the above example, the CPEA
algorithm can obtain all component paths from beginning
component to stopping component on CPECC when the
beginning component and the stopping component are given.

VI. EXPERIMENTAL STUDIES

In this section, we take KLAX system as an example and
apply the proposed component path coverage criteria and al-
gorithms to investigate the effectiveness and performance of
our proposed component path coverage criteria, and propose
an analysis of the experimental results.

A. Experimental Results

We use KLAX system to perform the experiments. To
simplify the experimental results, we statistic the component
path coverage set for component StatusLogic on CPNCC
and CPECC are shown in Table I. In the table, the
first column represents the component paths for component
StatusLogic on CPNCC, the second column represents the
component paths for component StatusLogic on CPECC.

From Table I, it is can be seen that the number of
component paths for component StatusLogic on CPNCC is
12, that is ||ΠCPNCC || = 12. By calculation, the total number
of component paths for all components on CPNCC in CIG
is 244, that is ||EP (ΠCPNCC(CIG))|| = 244. So, according
to Equation (1), the coverage rate for component StatusLogic
on CPNCC is RCPNCC = 12 / 244 × 100% = 4.92%. The
number of component paths for component StatusLogic on
CPECC is 17, that is ||ΠCPECC || = 17. By calculation,
the total number of component paths for all components on
CPECC in CIG is 290, that is ||EP (ΠCPECC(CIG))||
= 290. So, according to Equation (1), the coverage rate for
component StatusLogic on CPECC is RCPECC = 17 / 290
× 100% = 5.86%.
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TABLE I
COMPONENT PATH COVERAGE SET FOR COMPONENT STATUSLOGIC ON CPNCC AND CPECC

CPNCC CPECC
StatusLogic→LLConn→TileMatchLogic StatusLogic→LLConn→TileMatchLogic

StatusLogic→LLConn→TileMatchLogic→LAConn→ClockLogic StatusLogic→LLConn→TileMatchLogic→LAConn→ClockLogic
StatusLogic→LLConn→TileMatchLogic→LAConn→StatusADT StatusLogic→LLConn→TileMatchLogic→LAConn→StatusADT
StatusLogic→LLConn→TileMatchLogic→LAConn→ChuteADT StatusLogic→LLConn→TileMatchLogic→LAConn→ChuteADT
StatusLogic→LLConn→TileMatchLogic→LAConn→WellADT StatusLogic→LLConn→TileMatchLogic→LAConn→WellADT

StatusLogic→LLConn→TileMatchLogic→LAConn→PaletteADT StatusLogic→LLConn→TileMatchLogic→LAConn→PaletteADT
StatusLogic→LLConn→RelativePosLogic StatusLogic→LLConn→RelativePosLogic

StatusLogic→LLConn→RelativePosLogic→LAConn→ClockLogic StatusLogic→LLConn→RelativePosLogic→LAConn→ClockLogic
StatusLogic→LLConn→RelativePosLogic→LAConn→StatusADT StatusLogic→LLConn→RelativePosLogic→LAConn→StatusADT
StatusLogic→LLConn→RelativePosLogic→LAConn→ChuteADT StatusLogic→LLConn→RelativePosLogic→LAConn→ChuteADT
StatusLogic→LLConn→RelativePosLogic→LAConn→WellADT StatusLogic→LLConn→RelativePosLogic→LAConn→WellADT
StatusLogic→LLConn→RelativePosLogic→LAConn→PaletteADT StatusLogic→LLConn→RelativePosLogic→LAConn→PaletteADT

StatusLogic→LLConn→LAConn→ClockLogic
StatusLogic→LLConn→LAConn→StatusADT
StatusLogic→LLConn→LAConn→ChuteADT
StatusLogic→LLConn→LAConn→WellADT

StatusLogic→LLConn→LAConn→PaletteADT
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Fig. 4. Coverage Rate for Different Component Path Coverage Criteria on KLAX System

B. Experimental Results Analysis

We evaluate our approaches by five component path cov-
erage criteria case studies, and calculate the coverage rate
of all components. The range of coverage rate is given in
Fig. 4. From the experimental results of coverage rate, we
can clearly see that the component path coverage rate for
all components on DCPCC is between 0.96% and 7.69%,
the component path coverage rate for all components on
ICPCC is between 1.43% and 14.29%, the component path
coverage rate for all components on BCPCC is between
1.72% and 12.07%, the component path coverage rate for
all components on CPNCC is between 2.05% and 10.66%,
and the component path coverage rate for all components on
CPECC is between 1.72% and 12.07%.

Summary statistics based on the coverage rate for five
component path coverage criteria are given in Table II. In the
table, the first column represents the component of KLAX
system, the second to sixth columns represent the mean, the
median, the standard deviation, 95% confidence interval, and
98% confidence interval of coverage rate on five component

path coverage criteria.
The means represent the average value of coverage rate

for each component on five component path coverage criteria.
From Table II, we can see that the mean of component Next-
TilePlacingLogic is the smallest, indicating that the number
of components that interact with NextTilePlacingLogic is the
least. Meanwhile, the mean of component LayoutManager is
the largest, indicating that the number of components that
interact with LayoutManager is the most.

The medians represent the dividing line of coverage rate
for each component on five component path coverage criteria.
From Table II, we can see that the median of component
NextTilePlacingLogic is the smallest, and it also indicates
that the number of components that interact with NextTile-
PlacingLogic is the least. Meanwhile, the median of com-
ponent GraphicsBinding and LayoutManager is the largest,
indicating that the number of components that interact with
GraphicsBinding and LayoutManager is the most.

The standard deviations illustrate the dispersion of com-
ponent rate for each component on five component path
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TABLE II
DESCRIPTIVE STATISTICS OF THE ANALYZED COMPONENT PATH COVERAGE RATE

Component RCPCC (%)
name Mean Median Standard deviation 95% Confidence interval 98% Confidence interval

GraphicsBinding 10.4540 12.0700 5.52765 [3.5905, 17.3175] [1.1914, 19.7166]

LayoutManager 11.4160 12.0700 3.51413 [7.0526, 15.7794] [5.5274, 17.3046]

TileArtist 7.8600 7.4300 2.16474 [5.1721, 10.5479] [4.2326, 11.4874]

StatusArtist 3.8360 3.2800 1.63848 [1.8016, 5.8704] [1.0904, 6.5816]

ChuteArtist 3.8360 3.2800 1.63848 [1.8016, 5.8704] [1.0904, 6.5816]

WellArtist 3.8360 3.2800 1.63848 [1.8016, 5.8704] [1.0904, 6.5816]

PaletteArtist 3.8360 3.2800 1.63848 [1.8016, 5.8704] [1.0904, 6.5816]

StatusLogic 5.4460 4.9200 0.83419 [4.4102, 6.4818] [4.0482, 6.8438]

NextTilePlacingLogic 2.2880 1.7200 1.43284 [0.5089, 4.0671] [-0.1130, 4.6890]

TileMatchLogic 2.7440 2.0700 1.71973 [0.6087, 4.8793] [-0.1377, 5.6257]

RelativePosLogic 2.7440 2.0700 1.71973 [0.6087, 4.8793] [-0.1377, 5.6257]

ClockLogic 8.4340 8.5700 0.38882 [7.8612, 8.8268] [7.6925, 8.9955]

StatusADT 8.4340 8.5700 0.38882 [7.8612, 8.8268] [7.6925, 8.9955]

ChuteADT 8.4340 8.5700 0.38882 [7.8612, 8.8268] [7.6925, 8.9955]

WellADT 8.4340 8.5700 0.38882 [7.8612, 8.8268] [7.6925, 8.9955]

PaletteADT 8.4340 8.5700 0.38882 [7.8612, 8.8268] [7.6925, 8.9955]

coverage criteria. From Table II, we can see that the standard
deviation of component GraphicsBinding is the highest,
indicating that there is distinct difference between most
coverage rate and its mean. The standard deviation of com-
ponent ClockLogic, StatusADT, ChuteADT, WellADT, and
PaletteADT is the smallest, indicating that coverage rate is
close to mean. The standard deviation of the component
StatusArtist, RelativePosLogic and so on is less than the
standard deviation of component GraphicsBinding and is
larger than the standard deviation of ClockLogic and so on,
indicating that there is a small difference between component
coverage and its mean. Thus, the gap of coverage rate of
component GraphicsBinding on five component path cover-
age criteria is much larger than the gap of coverage rate of
component ClockLogic, StatusADT, ChuteADT, WellADT,
and PaletteADT on five component path coverage criteria.

The confidence intervals illustrate the precision with which
we are able to report the effect data. In Table II for five
component path coverage criteria, if the confidence interval
for mean is referred to as 95%, then the average confidence
for mean for the [4.2790, 8.2230]. If the confidence interval
for mean is referred to as 98%, then the average confidence
interval for mean for the [3.5897, 8.9123].

From the experimental results, it can be observed that
the confidence interval for mean from 95% to 98% for
component path coverage criteria, the average confidence
interval for mean increases from 3.9440 to 5.3226, increasing
the proportion of 1.3786%. The length of the confidence
interval is the smaller the better, because the length of the
confidence interval reflects the degree of precision of the
parameter estimates.

VII. CONCLUSION

We have presented a set of component path coverage
criteria in software architecture testing. For test coverage,
we extend component path coverage criteria in order to
capture the component interactions information of software
architecture, that is component path with node coverage cri-
terion and component path with edge coverage criterion. We

then propose two algorithms to generate the component path
coverage set using corresponding component path coverage
criteria. The component path coverage sets that satisfy these
component path coverage criteria can detect respectively
different types of faults. This paper provides a method
to analyze experimental results of coverage rate for five
component path coverage criteria. The experimental results
show the component interaction for a given component is
more, the coverage rate of the component is higher, its fault-
detection capability is stronger. For component in the middle
level, because of its interactive component is less, so the
coverage rate is low, the fault-detection ability is lower than
other components. At the same time, we will examine the
adequacy of these component path coverage criteria.
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