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Abstract—We present an efficient financial portfolio selection
and optimization implementation of Anticor’s algorithm. Our
solution utilizes the OpenCL framework to offer the most
optimal speedups on heterogeneous hardware platforms that
take advantages of multi-core CPU and many-core GPU archi-
tectures. To our knowledge, this work is the first accelerated
Anticor portfolio selection implementation that solves com-
putationally intensive portfolio optimization problems across
heterogeneous platforms using both multi-core CPUs and GPU.

Index Terms—Big Data Portfolio Simulation, Portfolio Selec-
tion, Online Portfolio Selection and Optimization, Accelerated
Portfolio Optimization, Anticor, GPGPU.

I. INTRODUCTION

FUND and portfolio managers often need to analyze
large amount of financial data to make investment

decisions. The most common decision they have to make
is on how to optimize the allocation of investors’ wealth
across a set of assets. In achieving this, the portfolio selection
and optimization method is often used in their daily work
routines. Most recently, many modern portfolio optimization
algorithms have been developed to optimize the allocation
of a set of assets from existing portfolio selection. These
algorithms rely on large amount of historical data to make
accurate decisions.

In 2004, [1] published an influential paper titled "Can
We Learn to Beat the Best Stock" in the Journal of Artifi-
cial Intelligent Research", demonstrating how their proposed
Anticor portfolio optimization algorithm was able to consis-
tently outperform the best stocks in NYSE, TSX, S&P500,
and DJIA stock markets for 9 years from 1994 to 2003.
Interestingly, the proposed algorithm was able to significantly
outperform existing algorithms in the literature. However, the
Anticor algorithm is computationally intensive algorithm due
to three main reasons: (i) the algorithm needs to compute the
cross-correlation between all possible asset pairs, (ii) for each
asset, the algorithm needs to compute the cross-correlation
between all different window sizes to find the most optimal
configuration, and (iii) the algorithm requires large repetitive
computations based on the positive and negative correlations
during the several phases of its execution.

Recently, general purpose computation on graphics pro-
cessing units (GP-GPUs) have emerged as a competitive par-
allel computing platform for computationally expensive and
demanding tasks, which offers significant speedup compared
to the central processing unit (CPU). GP-GPUs are especially
well-suited for computing the Anticor algorihm because it
has several hundreds/thousands of streaming processors that
would enable computationally intensive computations to be
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performed independently in parallel. Further, the graphic card
has became so widespread to the point that they are now
embedded in most recent and modern consumer laptops.
Since fund/portfolio managers often need to travel to meet
their clients, this provides a significant advantage to the
fund/portfolio managers as it offers them the ability to
perform complex financial analysis while travelling.

The objective of our work is to tailor an Anticor algorithm
for GPU devices, enabling massive computations of cross-
corelations and sorting operations required for the algorithm
phases. Acceleration of the algorithm using GPUs would
certainly be of benefit to the financial community, but,
there are many challenges involved in achieving this. First
of all, the number of historical prices is commonly not
fixed for each asset. This makes GPU optimization difficult
because we will not be able to provide a generic optimization
procedure. Effective scheduling is required at the host level in
which the kernel will need to adapt different historical sizes.
Second, financial optimization calculations rely on many
dependent parameters such as the historical window sizes
and the total number of assets. For example, the calculation
for the moving average reversion in the Anticor algorithm
largely depends on the lookup up window size. There is no
reliable way to determine the optimal historical window size
before the algorithm execution.

Third, the Anticor algorithm will need to compute the
moving average reversion with different window sizes until
the accuracy of the direction movement reaches the profit
and/or risk threshold. Fourth, to complicate matter, the op-
timal window size may not be the same for different types
of assets. Hence, there is a need to determine the threshold
based on the historical data for each stock, which is only
known after several iterations of the cross-correlation phases.

The above issues pose a serious challenge for Single
Instruction, Multiple Thread (SIMT) architectures like the
GPU, where context switching between groups of threads
is used to hide memory latency. Threads are dispatched as
work items, and are grouped into a set of workgroups, with
threads performing the same task as their workgroup peers,
but on different data items. There is a need to ensure that
all these threads compute the same amount of computations
concurrently, as to avoid redundant operations when some
some threads are assigned with less work.

Finally, the Anticor algorithm has a moving average re-
version computation which may finish soon if the optimal
window size is detected early, or the computation may take
significantly longer if the optimal window size threshold
is large. Hence, there is a need to constantly balance the
workloads based on the window sizes at run-time to avoid
any redundant operations from threads which are assigned
with less work.

In this paper, we present an efficient financial portfolio
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selection and optimization of Anticor’s algorithm. Our solu-
tion utilizes the OpenCL to offer the best speedups, taking
advantages of the GPU architectures on heterogeneous hard-
ware platforms. We also implemented an optimized multi-
core CPU implementation to provide fair comparison of the
acceleration benefits. To our knowledge, this work is the first
Anticor implementation that uses the OpenCL programming
framework to optimize the portfolio optimization across both
multi-core CPUs and GPU.

Section II reviews background and related work on port-
folio selection and optimization algorithms, the Anticor
algorithm, as well as related work on portfolio optimization
on the GP-GPU. An overview of the GPU architecture is
given is Section III. Section IV describes our implementation
details including specific GPU optimization techniques, and a
cost benefit analysis. Section V provides information on the
experimental setup and parameters. Benchmarks, empirical
comparisons and discussions are provided in Section VI.
Section VII concludes our paper.

II. BACKGROUND AND RELATED WORK

A. Portfolio Selection and Optimization Algorithms

There are two different categories of portfolio selection
and optimization algorithms. The first category is based on
theoretically grounded algorithms, while the other category
is based on heuristics. Earlier portfolio optimization algo-
rithms were developed based on the theoretical guarantee of
exponential growth, aiming to achieve as much wealth as the
best constant rebalanced portfolio. The concept is to allocate
a proportionate amount of investment to a set of individual
stocks so that the wealth can accumulated at exponential rate
until the end of investment period. Such algorithms include
Universal Portfolio [2], Exponential Gradient [3], and Online
Newton Step [4]. These algorithms aim to accumulate the
wealth a through sequential rebalancing strategy possessing
explicit lower bounds given a sufficiently long period of time.
Although very elegant in terms of their mathematical formu-
lation, they have displayed very disappointing performance
in practical applications [1], [5].

More recent algorithms have employed heuristic strategies
to maximise the total wealth as well as minimizing invest-
ment risk. They have been shown to outperform all theoreti-
cal algorithms in empirical studies. However, there are only
a handful of heuristic strategies that have been promising
recently. These include Anticor [1], Kalman Filtering [6]
and OLMAR [5], [7]. Anticor is the first algorithm which
was shown to outperform all theoretical-based algorithms,
including Nonparametric Nearest Neighbor [8], Nonparamet-
ric Nearest Neighbor Log-optimal [9], Exponential Gradient
[3], Exponential Gradient [3], Universal Portfolio [2], Online
Moving Average Reversion [5], Robust Median Reversion
[10], and Confidence Weighted Mean Reversion [11], [12].
However, the latest empirical studies have shown that the
OLMAR outperformed both Anticor and all other algorithms
in the literature on three major historical datasets: NYSE,
S&P500, and TSX markets. Independent studies conducted
by Paul Perry ([13]) on more recent ETF datasets have
also validated the superior of OLMAR algorithm over other
existing algorithms. Interestingly, the OLMAR algorithm
is based on the original concept of Anticor’s price mean

reversal. However, the difference is that Anticor is based on
a single-period price reversal, while OLMAR exploits the
multi-period price reversal correlation to further increase the
accuracy of the prediction. Recently, [6] also claims that its
proposed algorithm gives better profitability than Anticor,
but the algorithm has not been validated extensively for
consideration as a serious contender.

B. Anticor Algorithm
In 2004, [1] published a novel online portfolio selection

algorithm that has been demonstrated to outperform all other
existing portfolio selection and optimization algorithms in
the literature. While traditional universal algorithms and
technical trading heuristics attempt to predict winners or
trends, their approach, known as the Anticor algorithm, relies
on predictable statistical relations among all pairs of stocks
in the portfolio. The principle of the Anticor (AC) algorithm
is to evaluate changes in overall stocks’ performance by
dividing the historical sequence of past returns series into
equal-size periods known as windows, each with a length
of w days, where w is an adjustable parameter. Following
the mean reversion principle, the algorithm will then transfer
the wealth from recently high-performing stocks to anti-
correlated low-performing stocks. The idea is that low-
performing stocks will eventually increase to the prices’
mean. Initially, Anticor captures a short stock market history
between two consecutive windows LX1 and LX1, each of
w trading days [14], [1]:

LX1 =log(xt−2w+1), ..., log(xt−w)
T

LX2 =log(xt−w+1), ..., log(xt)
T

The LX1 and LX2 are the two vector sequences constructed
by taking the logarithm over market subsequences corre-
sponding to the time windows [t − 2w + 1; t − w] and
[t−w+1; t], respectively. Further, window size w is chosen
based on historical performance. In [1]’s empirical studies,
the chosen value is w = 30 for the best performance.
However, empirical studies have also shown that the value
will need to be modified based on the historical data to
achieve the the best result. Next, the cross-correlation matrix
between column vectors in LX1 and LX2 is calculated as
follows:

Mcov(i, j) =(LX1i − µ1i)
T (LX2j − µ2j)

Mcov(i, j) =

{
Mcov(i,j)

σ1iσ2j
σ1i, σ2j 6= 0

0 otherwise.

The strategy of the algorithm is to generate signal based
on two important conditions. The first condition is when it
detects that stock i has outperformed stock j during the
last window. The second condition is when the stock i’s
performance in the last window is anti-correlated to stock
j’s performance in the second last window [µ2(i) ≥ µ2(j)∧
Mcorr(i, j) > 0]. If both criteria are met, the algorithm then
transfer weigh allocation from stock i to stock j in the hope
that stock j will increase, leading to higher profits gained.
Despite the algorithm’s simplicity, the empirical results for
four major market indices (NYSE, S&P500, DJIA, and TSX)
from July 1962 to April 2013 have provided strong evidence
that the Anticor algorithm is able to significantly beat the
market [7].
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C. Portfolio Optimization on GP-GPU

There are a few attempts in the literature to develop
parallel algorithms for portfolio selection and optimization.
Recent approaches to the use of CPU and GPU to speed up
the portfolio selection execution include [15] who accelerated
the genetic algorithm on the GPU to compute value-at-
risk (VaR), which is a risk measure of potential loss on
a specific portfolio. The main uses of VaR are in risk
management and financial reporting. [16] further optimizes
the GPU code for VaR using three techniques: using problem
reformulation, module selection, and kernel merging. Based
on these optimization techniques, they were able to achieve
538× speedup over the sequential VaR implementation.

[17] implemented a different portfolio optimization tech-
nique, which accelerates a Numerical Particle swarm opti-
mization (NPSO) algorithm on the GPU to price complex
option pricing. [18] also accelerated a simulated annealing
algorithm on the GPU to derive the optimal portfolio from
randomly generated portfolios. The author indicated that
he was able to achieve 4× speedup over the sequential
implementation. [19] further accelerated the Critical Line
Algorithm to optimize portfolios using Markowitz’s Efficient
Frontier, in which they were able to achieve 8× speedup over
the sequential implementation. To our knowledge, there has
been no previous attempt to accelerate the Anticor algorithm
on a GPU.

III. THE GPU ARCHITECTURE

A number of frameworks have emerged for general pro-
gramming of GPUs in recent years. There have been quite
remarkable efforts on the GPU implementations from the
academia [20], [21], [22], [23], [24]. The implementations
are more geared towards NVDIA’s CUDA frameworks. How-
ever, the CUDA framework is only able to run on NVDIA
devices only. In this paper, we present the first heteroge-
neous implementation of Anticor algorithm. The OpenCL
framework will be used to achieve this goal. OpenCL is an
open standard for parallel programming on heterogeneous
architectures, which makes it possible to express parallelism
in a portable way so that applications written in OpenCL
can run on different architectures without code modification.
This is particularly beneficial for financial analysts as it
will provide them with the abilities to conduct analysis
independently of the hardware platforms.

A. Parallel Execution

At the highest level, OpenCL divides tasks between a
CPU host and GPU device. The kernel functions are invoked
from the host, but executed on the device by multiple
threads concurrently. Threads are generally known as work
items, and they can be dispatched into 1 dimension (1D),
2 dimension (2D), or 3 dimension. From the kernel, the
work items can be identified by their local IDs, group IDs,
and/or group IDs. From the host, it is possible to specify
the number of work items that need to be dispatched, the
dimension configuration (i.e., 1D, 2D, or 3D), and the local
item size. The local item size (also known as the work group
size) specifies how the work items should be grouped. For
example, specifying the local size to be 64 with 128 work
items imply that the work items should be partitioned into

2 groups, in which each group comprises 64 work items.
A set of work items that belong to the same work group
will be able to share their data with each other through a
local memory of the GPU. However, the local memory size
is typically very small (e.g., 32 KB). Hence, excessive use
of the local memory may impede the performance of the
GPU. Further, it is not possible for threads to share data
between different work groups. Therefore, the final results
from a work group must be written to the global memory so
that the results can be fetched by other work items at later
point of the algorithm execution. In OpenCL, the number
of work items (i.e., local item size) that can be assigned to
work group is limited by hardware capacity. For example, the
AMD Radeon HD 8650G has a maximum capacity of 256 for
a work group size. Moreover, the OpenCL has a limitation
whereby the number of work items must be a multiple of
the work group size. For example, dispatching 100 work
items with 64 work group size will not be permitted. Such
restriction has been removed in OpenCL 2.0. However, the
OpenCL 2.0 is still considered a new development and most
modern laptops do not support OpenCL 2.0 yet at the time
of writing.

In hardware, the GPU comprises a number of compute
units. The number of compute units vary from a device to
another device. For example, the AMD Radeon HD 8650G
has 6 compute units with processing clock of 720MHz. Each
compute unit includes 4 separate SIMD units for vector
processing. Each SIMD further comprises 16 ALUs. Each
16-wide SIMD processes will need to process one 64-wide
wavefront over 4 clock cycles. This implies that a wavefront
is comprised of 64 work items, and is issued to a SIMD, but
it takes 4 cycles to execute operations for all 64 work items.
To support massive parallelism, each SIMD simultaneously
executes a single operation across 16 work items (on 16
ALUs), and each SIMD can execute different wavefronts.

B. Memory Management

The GPU has its own physical memory, which is separate
from the host’s main memory. The GPU comprises transistors
of ALUs and registers. Registers store thread state and allow
fast switching between work items. The memory hierarchy
begins with global memory, which is capable of storing few
gigabytes. While plentiful, it is approximately 100 times
slower in comparison to on-chip memory. However, the
global memory has the advantage with the ability to be
read and written by the host and all work items on the
device. GPUs also have caches which provide the ability
to run multiple threads concurrently, interleaving to hide
the latency. It provides a unified read/write caching system
with virtual memory support and excellent atomic operation
performance.

In order to optimize the algorithm efficiently, it is crucial
to understand how the OpenCL memory model maps to
the actual physical GPU model. In OpenCL, the memory
management is explicit. The programmer must explicitly
transfer data from host, to the global/constant memory, and
further to the private, local, or back to the global memory.
The private memory is accessible only by a work item. On
the other hand, the local memory can be shared within a
work group. The global and constant memory are visible
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to all work groups and each work item. In OpenCL, these
memory assignments can be explicitly assigned using such
variables: __global, __local, __constant and __private. In
order to ensure efficient access to memory, we may need
to apply various techniques such as the memory coalescing,
memory alignment, and employ careful allocation of private
or local memory, in order to avoid high register usage and
low GPU occupancy.

IV. IMPLEMENTATIONS

Algorithm 1 shows a sequential Anticor procedure for the
execution of the Anticor algorithm. At the initial algorithm
execution, all possible asset pairs are identified from a
sequence of asset examples. Given two different asset i and
j, the aim is to find a positive correlation between asset i
during the second last window and asset j during the last
window. Based on the window size, the algorithm computes
the logarithms between two different time windows (line
7). Further, the algorithm computes the means from the
two logarithms, and finally computes the cross correlation
(lines 11-12). Based on the results of the cross correlation,
the algorithm determines the weight allocation for the new
portfolio. This is done by comparing the calculated means
with the calculated cross correlations to determine the new
weight allocation that is needed to be transferred from asset
i to asset j, or vice versa (lines 19-29). Finally, the algorithm
updates the allocation weight of current portfolio p to a new
allocation weight as computed by the claims (lines 31-36).

We implemented the single-core CPU version of the
algorithm as a single thread using C. The most computa-
tionally expensive part of the algorithm is the cross corre-
lation computation. The computational complexity signifi-
cantly increases as the number unique assets increases. For
example, for 100 unique assets, a maximum 4950 cross-
correlation computations are required. As the number of
unique assets increase to 1000, the algorithm will need to
compute 1,999,000 computations. We further optimize the
cross-correlation code using matrix operations, rather than
loop, as the for loop implementation will be extremely slow
when the number of assets increases.

Next, our aim is to port and implement the Anticor algo-
rithm for multi-core CPUs and GP-GPU using OpenCL. The
immediate action is to translate the key Anticor procedures
to OpenCL kernel code. However, this would require some
insights on determining the most expensive operations that
require accelerations. If we were able to identify the key
performance bottleneck, we could effectively select and par-
allelize the most important code at the kernel. We conducted
a preliminary CPU benchmark within each segment of the
procedures to find time critical hotspots and diagnose per-
formance issues. Figure 1 illustrates the performance break-
down for the different procedures of the Anticor algorithm
execution under increasing number of assets.

We can observe that COMPUTECROSSCORRELATION pro-
cedure incurs the most significant performance overhead.
The overhead is in fact 90×-120× when compared to the
other procedures. The APPLYCLAIMS procedure incurs the
second most significant performance overhead. However, its
overhead is considered very much lower than the COMPUTE-
CROSSCORRELATION procedure. It can be observed that the
performance overhead for COMPUTECROSSCORRELATION

Algorithm 1 Sequential Anticor Algorithm
1: Inputs
2: A is a sequence of asset examples
3: ws is the window size
4:
5: procedure ANTICOR(A,ws)
6: for each asset pair i, j
7: Let LX1 and LX2 be the two vector sequences of the

logarithm from time windows [t−2w+1, t−w] and [t−w+1, t]
8: Let p be the portfolio weight allocation
9: claimi→j ← 0

10: transferi→j ← 0
11: µ1, µ2 ← ComputeMean(LX1, LX2)
12: Mcor = ComputeCrossCorrelation(LX1, LX2, µ1, µ2)
13: claimi→j ← APPLYCLAIMS(Mcor, µ1, µ2)
14: APPLYTRANSFER(p, µ1, µ2, claimi→j)
15: end for
16: Sort a set of Mcorr values to determine highest positive

and highest negative correlations
17: end procedure
18:
19: procedure APPLYCLAIMS(Mcor, µ1, µ2)
20: if µ2(i) ≥ µ2(j) ∧Mcor(i, j) > 0 then
21: claimi→j ← claimi→j +Mcor(i, j)
22: if Mcor(i, i) < 0 then
23: claimi→j ← claimi→j +Mcor(i, i)
24: end if
25: if Mcor(j, j) < 0 then
26: claimi→j ← claimi→j +Mcor(j, j)
27: end if
28: end if
29: end procedure
30:
31: procedure APPLYTRANSFER(p, claimi→j)
32: Let t be the index of last trading day
33: transferi→j =

claimi→j∑
j claimi→j

34: bt+1 = bt+1 − transferi→j
35: bt+1 = bt+1 − transferj→i
36: end procedure
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Fig. 1. The runtimes for the different procedures of the Anticor algorithm
under increasing number of assets. The Cross correlation procedure is clearly
the most computationally intensive when compared to other procedures.
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overly suffers with an increase number of assets. On the other
hand, the APPLYCLAIMS only incurs very low overhead with
the increase of asset size. For the remaining procedures,
there is only a slight decline in performance with increase
of asset size. From this observation, we conclude that the
major bottleneck of the Anticor algorithm is due to the cross-
correlation procedure. Hence, this procedure would be the
focus of our optimization for both multi-core CPU and GPU
implementations.

Our initial implementation of the algorithm on OpenCL
does not involve any optimization techniques (Algorithm 1).
We simply ported the same CROSSCORRELATION procedure
as a kernel function in OpenCL. Each asset pair i and j
is identified from the host, and they are sent to the kernel
in a batch. From the kernel, each pair of cross-correlation
computation is assigned as a single work item. The aim is
to maximize the number of cross-correlation throughput by
maximizing the number of work items dispatched on the
device. Since the number of work items have to be multiple
of the work group size in OpenCL 1.2, we will need to
estimate the number of work items required from the host.
This involves identifying the number of m possible cross-
correlation iterations from a set of n assets. In theory, this
can be calculated as follows:

m =
n!

2!(n− 2)!
(1)

However, the combinatorial computation can get very large
as the asset size n increases (e.g., ≥ 200). Furthermore,
for each cross-correlation task, we will need to assign a
work item with a unique beginning and ending indexes of
the asset data items. To address both issues, Algorithm 2
shows a simple method in which both m, the beginning
and ending indexes of the data items can be determined
at the host for each work item. Initially, we will need to
retrieve the asset datasets from the storage into the host
memory (lines 2-3). Next, the Anticor algorithm will need
to determine every possible asset pairs between two different
assets i and j. Hence, lines 10-25 iterates every single pair of
each unique asset, and it keeps tracks the starting and ending
index positions for each cross-correlation computation during
the iteration (lines 14-15). Once all the data items have
been assigned to their respective work items, we initiate
data transfer of the indexA, indexB, and total count to
the device (line 26). In line 36, the main Anticor procedure
invokes the ASSIGNDATAITEMS kernel iteratively for each
asset pair i and j. The APPLYREDUCTION kernel is then
invoked after every ASSIGNDATAITEMS kernel completion
(line 37). The APPLYCLAIMS and APPLYTRANSFER kernels
are further invoked to update the new portfolio weight
allocation (lines 38-39). Finally, the final result is retrieved
from the GPU global memory (line 41).

Once the data transfer has been initiated, we will need to
determine the number of mw work items to be dispatched
on the device, which is calculated as follows:

Algorithm 2 Method to compute the number of cross
correlation iterations, the beginning and ending indexes of
the asset data items for each work item. Further, the the
final reduction phase is performed before APPLYCLAIMS and
APPLYTRANSFER kernels are invoked.

1: Inputs
2: indexA is a sequence of index values for asset i
3: indexB is a a sequence of index values for asset j
4: ws is the window size
5: procedure ASSIGNDATAITEMS(indexA, indexB,ws)
6: Let msize be the total number of data items
7: start← msize

ws−1
. index of starting point

8: incrementB ← 1
9: total← 0

10: for k = start such that k ≥ 1
11: counterB ← incrementB ∗ ws
12: for m = 1 start such that m ≤ start
13: counterA← incrementA ∗ ws
14: indexA(total)← counterA
15: indexB(total)← counterB
16: counterA← counterA+ 1
17: counterB ← counterB + 1
18: total← total + 1
19: m← m+ 1
20: end for
21: incrementA← incrementA+ 1
22: incrementB ← incrementB + 1
23: start← start− 1
24: k ← k − 1
25: end for
26: Initiate data transfer of indexA, indexB, and total count

to the device
27: end procedure
28:
29: procedure ANTICOR(A,ws)
30: for each asset pair i, j
31: Let LX1 and LX2 be the two vector sequences of the

logarithm from time windows [t−2w+1, t−w] and [t−w+1, t]
32: Let p be the portfolio weight allocation
33: claimi→j ← 0
34: transferi→j ← 0
35: µ1, µ2 ← ComputeMean(LX1, LX2)
36: Mcor = ASSIGNDATAITEMS(LX1, LX2, µ1, µ2)
37: Mcor = ApplyReduction(Mcorr)
38: claimi→j ← APPLYCLAIMS(Mcor, µ1, µ2)
39: APPLYTRANSFER(p, µ1, µ2, claimi→j)
40: end for
41: Retrieve final result from the GPU global memory
42: end procedure

mw =
m

lw
(2)

Gs = mw ∗ lw (3)

Ls =

{
Gs if Gs < lw

lw otherwise
(4)

where m represents the amount of data items required to
compute cross-correlation for all possible pairs of unique
assets, and lw is the local item/work group size. The Gs is the
finalized global work size and Ls is the new ideal work local
size which is re-calculated based on the global work size. The
lw is modified differently based on the implementation. For
multi-core CPU, we discovered that assigning larger work
items (i.e., 1024) have a positive impact on the performance,
while the GPU implementation performs better within 64
to 256 work items per work group. Furthermore, the CPU
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implementation achieves better performance when the cross
correlation procedure is merged as a single kernel, whereas
merging such a procedure as a single kernel has significant
performance degradation on the GPU. Hence, we optimize
the multi-core and GPU implementations differently based
on the compute device architectures.

For the GPU implementation, identifying the data item
indexes for each work item from the host has the advantage
of simplifying the kernel code as well as reducing the
amount of register usage within the kernel. However, it
imposes a slight memory transfer overhead to the GPU,
but such overhead does not have a significant impact on
the performance since a global GPU memory with 2GB is
typically sufficient to transfer a large dataset just in a single
trip memory transfer (e.g., the MSCI World index dataset
which is currently the largest stock market index with 1,653
assets only uses a maximum of 255MB of RAM consumption
on the GPU global memory).

However, our initial naive GPU implementation has seri-
ous performance bottleneck. The top Figure 2 shows the run
times for both AMD APU (i.e., multi-core CPUs) and AMD
GPU implementations with increasing number of assets.
With the current naive implementation, the multi-core CPUs
implementation performs better than the GPU by an average
of 2× speedup when experimented on a wide range of
asset sizes. This somewhat indicates a serious inefficiency in
our GPU implementation, and therefore code optimization
is crucial to deliver optimal performance on the GPU. To
analyze this further, the bottom Figure 2 plots the perfor-
mance breakdown of hotspot analysis within each OpenCL
kernel. Interestingly, the GPU almost outperforms the multi-
core CPU in all procedures except the cross correlation. For
cross correlation, we notice the GPU is relatively slower by
120 percent when compared to the AMD APU. We suspect
this performance degradation is due to the overuse of GPU
registers, and ultimately causes the register spilling.

To address this issue, we present a solution that partitions
the cross-correlation computations into three different ker-
nels. The first kernel involves in computing the logarithms
of each asset pair from two different time windows, as well
as computing the mean of the two series (Algorithm 3).
The second kernel (Algorithm 4) calculates the denomina-
tor, which will be used to normalize the cross correlation
coefficient at every point of time series. We use the square
root the OpenCL’s built-in fast math option to calculate the
denominator value. Finally, the third kernel (Algorithm 5)
performs the final correlation coefficient as required.

From lines 7-9 of Algorithm 3, the kernel retrieves both the
start index values of the asset i and asset j from the global
memory. These index values are obtained from the global
memory, which was copied from the host to the GPU global
memory. Within the kernel, line 10 verifies whether the index
value is a valid index (non positive index values do not have
any data items). Hence, a work item with a non positive
index will not execute any further code and the ALU will be
immediately freed for other queue task/kernel. On the other
hand, the index values will determine the workspace area
in the global memory that it needs to compute. In lines 13-
18, all the work items are processed sequentially. Next, the
means are calculated in lines 19-20, and finally, the means are
updated atomically into the global memory as two separate
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Fig. 2. The top figure plots the runtimes for both AMD APU (i.e., multi-
core CPUs) and AMD GPU implementations with increasing number of
assets, while the bottom figure shows the performance breakdown of hotspot
analysis within the kernel for 1000 asset size with historical size of 2000.

array pointers.
Similarly, the second kernel retrieves both the start index

values from asset i and asset j from the global memory in
lines 7-9 of Algorithm 4. Also, the index values of asset i and
asset j pair are verified (line 11). Next, the kernel retrieves
the mx and my values from the global memory, which were
calculated previously in Algorithm 3. The kernel performs
the necessary denominator computations in lines 14-21. The
computations are performed sequentially until it reaches the
window size threshold. In line 21, the square root function
uses a built-in fast-math optimization of the GPU. Finally, the
finalized denominator value is updated to the global memory
as an array pointer (line 22).

The Algorithm 5 shows how the third kernel retrieves the
calculated denominator value from the global memory and
performs the final correlation coefficient. Similarly, the mx
and my values are also obtained from the global memory (in
lines 15-16). The maximum lagging is specified between the
two time windows t − 2w + 1, t − w and t − w + 1, t. The
correlation series are calculated from the first time window
until the second time window (lines 17-27). Given the corre-
lation series, the correlation coefficient is computed based on
the denominator value (line 26). The correlation coefficient
is updated to the global memory (line 28). Note that for each
write update to the global memory in all the three kernels,
we use the atomic built-in functions to avoid any serious
race conditions. Finally, the APPLYREDUCTION kernel of
Algorithm 2 (line 37) will perform the final reduction phase,
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Algorithm 3 Task Cross Corrrelation: Computing Loga-
rithms and Means

1: Inputs
2: A is a sequence of asset examples
3: B is a pre-allocated global memory to store mx
4: C is a pre-allocated global memory to store my
5: ws is the window size
6: procedure MEANCROSSCORRELATION(A,B,C,ws)
7: Let gid be the work item ID
8: Let startA be the index value of the global memory where

the cross-correlation should start
9: Let startB be the second index value of the global

memorywhere the cross-correlation should start
10: if StartA ≥ 0 ‖ StartB ≥ 0 then
11: startA← SA(gi) . Get start index value from

global memory
12: startB ← SB(gi) . Get start end value from global

memory
13: while r < ws do
14: mx← mx+A(startA)
15: my ← my +A(startB)
16: startA← startA+ 1
17: startB ← startB + 1
18: end while
19: mx← mx

ws
20: my ← my

ws
21: B(gid) = mx
22: C(gid) = my
23: end if
24: end procedure

Algorithm 4 Task Cross Correlation: Compute Denominator
1: Inputs
2: A is a sequence of asset examples
3: B is a pre-allocated global memory to store mx
4: C is a pre-allocated global memory to store my
5: ws is the window size
6: procedure CORRELATIONDENOMINATOR(A,B,C,ws)
7: Let gid be the work item ID
8: Let startA be the index value of the global memory where

the cross-correlation should start
9: Let startB be the second index value of the global memory

where the cross-correlation should start
10: Let sx and sy be the temporary variables used to compute

the denominator of the x and y series
11: if StartA ≥ 0 ‖ StartB ≥ 0 then
12: mx← B(gi) . Get mx from global memory
13: my ← C(gi) . Get my from global memory
14: while r < ws do
15: sx← sx+[(A(startA)−mx)∗A(startA)−mx]
16: sx← sy+[(A(startA)−my)∗A(startA)−my]
17: startA← startA+ 1
18: startB ← startB + 1
19: r ← r + 1
20: end while
21: denom← sqrt(sx ∗ sy)
22: D(gid) = denom
23: end if
24: end procedure

before the host reads the result from the GPU global memory
(line 41 of Algorithm 2).

A. A Cost-Benefit Analysis

The major source of overhead derives from the cross
correlations procedures of the multiple kernels. This is due
to the overheads in writing intermediary results to the global
memory, and the overheads from the frequent global memory

Algorithm 5 Task Cross Correlation: Compute Final Corre-
lation Coefficient

1: Inputs
2: A is a sequence of asset examples
3: B is a pre-allocated global memory to store mx
4: C is a pre-allocated global memory to store my
5: D is a pre-allocated global memory to store denom
6: E is a pre-allocated global memory to store correlation

coefficient
7: ws is the window size
8: procedure CORRELATIONSERIES(B,C,D,E,ws)
9: Let gid be the work item ID

10: Let startA be the index value of the global memory where
the cross-correlation should start

11: Let startB be the second index value of the global memory
where the cross-correlation should start

12: Let maxd be the maximum lagging between two series
13: Let begin be the start index on cross-corelation series
14: if StartA ≥ 0 ‖ StartB ≥ 0 then
15: mx← B(gi) . Get mx from global memory
16: my ← C(gi) . Get my from global memory
17: for d = −maxd such that d < maxd
18: sxy ← 0
19: while r < ws do
20: begin← r + d
21: if begin > 0 ∧ begin ≤ ws then
22: sxy ← sxy + [(A(startA) − mx) ∗

A(startB)−my]
23: end if
24: r ← r + 1
25: end while
26: r ← sxy

D(gid)

27: end for
28: E(gid) = r
29: end if
30: end procedure

read accesses. Nonetheless, we can hide these overheads
if our implementation can ensure a balanced load on each
streamed GPU processing element.

Let assume N CPU processors are used to execute W
workload of the Anticor algorithm. On the GPU, we would
expect the number GPU stream processor units N ′ to be
a lot greater than the number of N CPU processors (i.e.,
N ′ > N ).

Since the number of N ′ GPU stream processor units is
higher than the CPU processors, we can increase our original
workload W to workload W ′, while maintaining the average
speed:

W

NTN
=

W ′

N ′TN ′
(5)

W

N(CtN + StN )
=

W ′

N ′(CtN ′ + StN ′)
(6)

where TN is the execution time on N , CtN is the compu-
tational time overhead, and StN is the synchronization com-
munication overhead. Assuming that all tasks are distributed
evenly among all processor units, we have:

IAENG International Journal of Computer Science, 45:3, IJCS_45_3_04

(Advance online publication: 28 August 2018)

 
______________________________________________________________________________________ 



W

N( W
Nµ(W/N)

+ StN )
=

W ′

N ′( W ′
N′µ(W ′/N′) + StN′)

(7)(
1

µ(W/N
− 1

µ(W ′/N ′

)
+
StNN

W
=
StN′N ′

W ′ (8)

(
1

µ(W/N
− 1

µ(W ′/N ′

)
+
StNN

W
> 0 (9)

and the amount of work W ′ required to maintain the average
unit speed is:

W ′ =
StNN

′

1
µ(W/N)

− 1
µ(W ′/N′) +

StNN
W

(10)

From this, we can estimate the scalability from multi-core CPU of
N processors to GPU system with N ′ stream processors, as follows:

N ′W

NW ′
=

W [( 1
µ(W/N)

− 1
µ(W ′/N′) ) +

StNN
W

]

StNN
(11)

=
( W
µ(W/N)

− W
µ(W ′/N′) ) + StNN

StNN
(12)

1 ≥ StN
StN′

+
1

StN′

[
CtN − CtN

µ(W/N)

µ(W ′/N ′)

]
(13)

, which shows that N′W
NW ′ has only a slight overhead cost (i.e.,

N′W
NW ′ < 1). Furthermore, since W ′ > N′W

N
, this indicates that the

overheads of data transfer to the GPU, and the synchronization cost
between kernels, have very little impact on the overall performance
of algorithm execution, provided a sufficiently high amount of task
concurrency (i.e., high GPU occupancy) and the tasks are equally
distributed and dispatched on each GPU stream processor.

V. EXPERIMENTS

The experimental environment for our evaluation is shown in
Table I. Our evaluation is conducted on both CPUs and GPU. CPU
experiments are carried out on a Lenovo laptop with a single quad-
core 2.5 GHz AMD A10-5750M APU of 8,320KB cache and 8
GB of RAM memory at its disposal. GPU experiments are run
on AMD Radeon HD 8650G at 720 Mhz hosted by the same
CPU. This particular graphics card has 384 multiprocesors, 2 GB
of global memory and supports OpenCL 1.2. All implementations
are in C, on both host and compute devices. Both CPU and GPU
implementations are compiled using Visual Studio Community 2013
version 12.0.4 Update 5. For both multi-core CPUs and GPU
compilations, the AMD APP SDK v3.0 for 64-bit Windows is used.

We developed three separate implementations: a single-core
CPU implementation, multi-CPUs implementation, and a GPU
implementation. A single-core CPU implementation is imple-
mented solely in C without OpenCL. However, both the multi-
threaded CPU and GPU implementation are implemented using
OpenCL 1.2. We use the CL_DEVICE_TYPE_GPU or the
CL_DEVICE_TYPE_CPU values for the device type parameter
to switch between the multi-core CPU and GPU implementations.
All implementations are written for a single precision computation.
This is ideal since most GPU units on portable devices (i.e., laptops)
mostly run with single precision.

In order to measure the performance of the algorithm, we mea-
sure the performance from two aspects: (1) the total running time
for the algorithm, and (2) average runtimes for specific operations.
The total running time comprises of several phases including: host
processing time, data transfer time to and from the GPU, and
the run times for all kernels. We measure the average runtimes it
takes to perform a specific kernel operation (e.g., cross-correlation,
claims, transfer etc.). We run the same experiment 20 times and
calculates the average before finalizing the result. Each experiment

TABLE I
EXPERIMENTAL ENVIRONMENT

CPUS AMD A10-5750M APU
Cores 1 Quad-core, 4 single precision FP

Caches (L1/L2) 320KB/8000MB
Core frequency 2.5 GHz

DRAM 8GB
GPUs AMD Radeon HD 8650G
# SMs 384

Caches (Local/Constant) 32KB/64KB
Shader Clock Frequency 720 Mhz

O/S Windows 8.1 64-bit
Platform AMD APP SDK v3.0 for 64-bit Windows
Compiler Visual Studio Community 2013

version 12.0.4 Update 5

is conducted at 20 runs to ensure that the standard devations are less
than 1 percent, before we calculate the average to finalize the result.
The AMD CodeXL is used to measure the performance statistics
across different number of assets and increasing number of window
size parameters, to assess scalability across the parallelization.
Memory requirements are linear with respect to the increase number
of assets and window size parameters. More than sufficient physical
memory is available on both the CPU and GPU, thus, this is not a
limiting factor on performance in either case.

For each experiment, we define a number of parameters to control
the computational workloads. The most important parameters are
the size of data items (M ), historical size (HS), and window size
(ws). For the purpose of benchmarking, the optimal threshold for
window size (k) is set to 180 days (k = 180). we set the historical
sizes into four groups: HS = 200, HS = 400, HS = 800,
and HS = 2000. To validate our implementations on different
types of workloads, we perform multiple experiments of the same
historical size setting with increasing number of assets. To tune the
M parameter for the number of assets, we modify the size of data
items accordingly.

By determining the size of data items and the historical size, we
calculate the number of work items to be dispatched by a kernel
from the host. Based on the historical size, we determine the local
item size as follows:

lw =

{
ms if HS ≥ ms
HS otherwise

(14)

where HS is the historical size, and ms is the maxi-
mum work group size that the compute device is able to sup-
port. This information can be discovered via the OpenCL’s
CL_DEVICE_MAX_WORK_GROUP_SIZE parameter. We do
not highly optimize the local work item size since the performance
impact of this parameter varies on different graphic cards.

VI. DISCUSSION

For each implementation (i.e., a single-core CPU, multi-core
CPUs, and GPU), we conducted extensive experiments to measure
their performance on both AMD Quad-core processor and AMD
Radeon graphics card. We compare their performance in terms of
the total runtimes required to complete the tasks. Benchmark results
for each configuration are given in Table II. Our initial observation
is that the multi-core implementation significantly outperforming
a single-core CPU implementation by a sheer margin. As can be
observed, the speedup gain is higher when the historical size grows.
With historical size of 2000, the multi-core implementation was
able to achieve amazingly 5800.11× speedup when compared to
202.53× speedup for HS = 200. Same observation is made for
both asset size 26 and 29. This was to be expected as our single-core
implementation is unoptimized. On the other hand, the multi-core
implementation was developed using OpenCL, which is optimized
to exploit the instruction level parallelism.

The most interesting discussion is related to the performance
of multi-core and GPU implementations because this will provide
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fair insights into the acceleration benefits of the GPU. With this
regards, our observation is that the speedups between various
implementation configurations are largely influenced by the asset
and historical size. One observation is that the speedup seems to
be higher when the asset size is smaller. For example, an asset
size of 26 achieves higher speedup at 202.53× when compared to
the speedup of 196.50× for multi-core CPUs vs. single-core CPU
configuration with HS = 200. Similarly, the GPU achieves a higher
speed up at 20.37× for an asset of 26, while it only achieves 10.45×
speedup for an asset size of 29.

However, the same observation does not apply for historical size,
as increasing the history size does not have incremental/decremental
pattern on the speedup for the GPU. The speedup pattern of multi-
core over a single core CPU is clearly visible; as the historical size
increases, the speedup also increases. Moreover, it can be observed
that there is an increase in speedup when the asset size grows.
Interestingly, GPU has no visible pattern when the historical size
grows. For example, the GPU achieves the best speedup for 26

assets when the historical size is 400. On the other hand, the GPU
achieves the best speedup for 29 assets when the historical size is
200. Despite having no clear patterns, we notice a few interesting
observations. For example, both asset sizes of 26 and 29 incur the
worst speedups when the historical size is defined to 800.

The Figure 3 further analyzes our results in detail by illustrating
the average runtimes of completing the Anticor algorithm across
different implementation and hardware configurations for 3000 ≤
HS ≥ 200 with increasing number of assets. Increasing the number
of assets has the effect of overloading the compute devices with
more computations, and therefore increases the resource utilization.

For HS = 200, we notice that the speedup is generally
insignificant for smaller size of assets. For example, the speedups
were only between 1× to 3× for when the number of assets is
less than 25. As the size of assets increases beyond 25, we started
to notice an increase of speedup between a single thread CPU
version versus multi-threaded AMD APU version. For example, the
speedup achieved by the multi-core CPU is 67× for an asset size
of 25. This difference is considered significant when we compared
to the speedup between 2× and 3× for small amount of asset size.
Seemingly, the GPU outperforms a single CPU implementation by
an impressive speedup of 1118.3×. When the asset size increases
beyond 29, the GPU amazingly achieves a massive 4004x speedup.
When compared to the AMD APU, the GPU was able to achieve
and an average speedup of 6.52×. We notice that the speedup is
low (within 2 to 3×) when the asset size is smaller (i.e., ≤120).
However, as the number of assets increases to more than 120, we
started to see a significant increase of the speedup from 10× to
20×.

For HS = 800, the GPU achieves an average of 6.85× speedup,
which is approximately similar to the speedup achieved at HS =
200. This poses an interesting question whether the speedup has
achieved its optimal limit? To answer this question, we will need to
examine whether the GPU can offer better speedup when we impose
the historical size to be very large. Hence, we stress the historical
size to 2000 (HS = 2000) in our next experiment to determine
whether it can offer better speedup under very high utilization.
Figure 3 plots the results. From the results, the GPU meets our
expectation by outperforming the AMD APU with a better speedup
when compared to our earlier results with historical size of 800.
The results show that the GPU achieves approximately 8.75×
speedup over the AMD APU. This is approximately two times
higher speedup when compared to the 6.85× speedup achieved for
HS = 800. From this observation, we are convinced that the results
illustrate the importance of utilizing massive parallelism in GPU,
as the GPU has an upper hand in performance advantage over the
AMD APU when it has higher occupancy.

Based on the results, we can observe that the GPU offers a greater
benefit when their capacity is fully maximized. Seemingly, the GPU
does not give good speedups when the capacity of the GPU is not
exhausted. As the capacity is fully utilized with increasing number
of assets, we started to observe a significant difference in speedups.
The explanations are due to the high number of work items which

are dispatched based on the number of historical sizes. When
the amount of historical size is small, less work items are being
dispatched to the OpenCL kernel, which results in low occupancy
of the GPU. As a result, the performance offered by the GPU is
similar to the AMD CPU performance. However, as the historical
size increases, the amount of data items increases too. As a result, a
large number of work items will need to be dispatched concurrently,
which in turn increase the GPU occupancy.

However, the speed up factor suffers when the number of
historical size increases beyond 2000. The bottom right of Figure 3
plots the runtimes for HS = 3000. We can clearly observed that the
speedup of the GPU, in average, never exceeds 5.5× speedup. The
best speedups achieved were in the range between 3.68× and 5.24×
when the number of assets were below 26. This shows the the GPU
has reached its point where the number of registers used exceeded
the limit of the GPU device, which exhausts register space. When
this occurs, computation values then have to be temporarily stored
to and read from the global memory, which cause the performance
degradation.

Next, we examine the impact of introducing the window size in
our Anticor financial portfolio implementation. The window size
is a crucial part of the Anticor algorithm to determine the most
optimal window size range before computing the claim and transfer
weights. Four different configurations with different historical sizes
are prepared: HS = 200, HS = 400, HS = 800, and HS =
2000. For each historical size, we set the number of data items to a
pre-determined value so that the asset size is fixed to 29. The aim is
to examine the impact of increasing the window size when number
of assets remains constant. For each window size parameter, the
search range increases with 10 timesteps (i.e., 10 days) for each
iteration until the number of threshold has been reached.

Figure 4 plots the average run time executions by all multi-core
CPU and GPU implementations. We did not include the results of a
single CPU thread implementation as the runtimes are significantly
higher, which is not even worth analyzing. For each experiment,
we increase the window size to examine the performance under
additional computational workloads.

For all historical sizes, we can observe that the speedup decreases
as the window size increases. This is to be expected as the window
increases, the compute device has additional workloads to perform.
For example, the performance overhead incurred is more significant
when the window size reaches to more than 100 assets (4950 total
pairs), as observed in the plot. However, we notice that the scale
of the speedups change for different historical sizes. For window
size of 10 and HS = 200, the speedup achieved is much higher
at 43.93× when compared to the 17.99× speedup of HS = 400.
Similarly, only a speedup of 3.04× is achieved when HS = 2000.
This shows that the historical size has a large influence on the
overall performance of algorithm execution.

Specifically, for HS = 200 with a window size of 25, the
average runtime increases by a factor of 16.12 when compared to
the multi-core CPU of the same window size in our previus results.
However, we were able to achieve an amazing speedup of 41.24×
over the multi-core CPU for window size of 25. As the window
size increases, the speedup decreases linearly. The speedup declines
by 106 to 141 percent as the window size doubles. However, the
percentage of decline increases to 215 to 262 percent when the
window size increases beyond 250. Overall, the GPU achieves an
average speedup of 26.61× over multi-core implementation.

We notice that for smaller range of window size (W < 190),
the speedup is very similar to the previous experiment (without
window size) under HS = 200. However, we observe a significant
decline in speedup of almost two times (the average speedup was
3.51× for the HS = 200,W < 190 in the previous experiment).
This indicates an additional overhead is imposed when window
size parameter is introduced. Introducing the window size parameter
has the additional overhead of task scheduling, as we now have
two different kernels computing to perform the cross correlations
concurrently.

The overall speedup for HS = 400 is lower than HS = 200
by an average factor of 1.59. The speedup difference between the
two different historical size configurations (i.e., HS = 200 vs.
HS = 400 and HS = 400 vs. HS = 800) somewhat varies in

IAENG International Journal of Computer Science, 45:3, IJCS_45_3_04

(Advance online publication: 28 August 2018)

 
______________________________________________________________________________________ 



TABLE II
BENCHMARK PERFORMANCE FOR VARIOUS CONFIGURATIONS (MULTI-CORE CPUS VS. SINGLE-CORE CPU, AND GPU VS. MULTI-CORE CPUS),

USING k = 180

Asset Size Configurations Historical Size Total Runtime (ms) Speed-up

26 Multi-core CPUs vs. single-core CPU 200 15.78 202.53
26 Multi-core CPUs vs. single-core CPU 400 26.16 479.74
26 Multi-core CPUs vs. single-core CPU 800 24.5 2521.22
26 Multi-core CPUs vs. single-core CPU 2000 70.94 5800.11
29 Multi-core CPUs vs. single-core CPU 200 281.21 196.50
29 Multi-core CPUs vs. single-core CPU 400 304.7 771.90
29 Multi-core CPUs vs. single-core CPU 800 447.9 2132.90
29 Multi-core CPUs vs. single-core CPU 2000 1507.9 4397.63
26 GPU vs. multi-core CPUs 200 1.51 10.45
26 GPU vs. multi-core CPUs 400 2.04 12.82
26 GPU vs. multi-core CPUs 800 4.89 5.01
26 GPU vs. multi-core CPUs 2000 7.54 9.40
29 GPU vs. multi-core CPUs 200 13.8 20.37
29 GPU vs. multi-core CPUs 400 19.52 15.60
29 GPU vs. multi-core CPUs 800 36.48 12.27
29 GPU vs. multi-core CPUs 2000 97.94 15.39

between 1.22 to 1.84 for a wide configuration of historical sizes
(HS < 2000), but the scale factor never goes beyond two. This
shows that the GPU scales considerably as we increase the window
size. Interestingly, we notice that speedup is greatly reduced by 240
to 246 percent under HS = 400 when the window size is small
(ws < 125). On the other hand, the speedup achieved is almost
comparable at large window size (ws ≥ 250), with only 59 to 81
percent decline. This demonstrates that the GPU scales better for
large window size.

The improvement in speedup for large window size may be due
to the sudden increase of the GPU occupancy, as the amount of data
items dispatched to the GPU was increased from 100 thousands to
a 200 thousand in order to maintain the asset size of 500. The
AMD CodeXL profiling tool further confirmed our hypothesis as
we observe a significant increase in GPU occupancy (from 55 to
95 percent for HS = 400) when the window size exceeds 250.
This illustrates that the GPU can achieve significantly a better
performance when the number of work items is maximized. When
the GPU is fully exhausted, we notice the GPU maintains good
speedups, even when the window size increases. It can be observed
that the GPU continuously maintains a speedup between 7.38× and
9.03× even after the window size increases to 600.

The bottom left of the Figure 4 illustrates the results when we
further increase the historical size to 800 while keeping the asset
size constant to 500. This is done by increasing the amount of data
items for 200 thousands to 400 thousands. We would expect the
speedup to decline by 90 to 120 percent only, but instead, it declines
by approximately 184 percent. This may be potentially due to the
additional synchronization overheads between multiple workgroups
for final reduction phase. Since 800 historical sizes now require
at least 3 work groups (i.e., 800

256
), the reduction phase requires

additional read operations from the global memory and finally
merge the results, which cause the degradation in performance. Due
to this overhead, the GPU for HS = 800 only achieves an average
speedup of 9.03× when compared to the average speedup of 16.64×
for the same historical size.

To further validate the performance impact of performance
degradation, we increase the historical size to 2000. We anticipate
the average speedup would further detoriarate as we stress the work
groups to be large. The worst speedup was observed as it never
reaches beyond 4× even for smaller window size. The speedup
increases slightly when the window size is in between 27 to 28.
This signifies the point where the GPU occupancy is in between 90
percent to 95 percent. However, as the GPU occupancy reaches its
peak, the work group synchronization overhead seems to resurface.
Hence, the final average speedup is only 7.38×, when compared to
the 9.03× for HS = 800.

TABLE III
DMA-BI RESULTS IN TERMS OF THE TOTAL WEALTH, SHARPE RATIO,

AND ANNUALIZED RETURNS BASED ON THE HISTORICAL DATASETS FOR
4 MARKET INDICES.

Strategy NYSE S&P500 DJIA TSX
Anticor 1.08 6.20 5.18 0.96

0.03 / 2.41% 0.19 / 12.36% 0.21 / 10.95% -0.01 / -0.24%

Overall, we notice that the historical size range between 200 and
400 achieves the best performance for the GPU over the multi-core
CPU from a series of our experiments. Within this range, the GPU
achieves a minimum average speed up of 16.64× when compared
to an average speedup of 7.38× for HS = 2000.

To validate the accuracy of our Anticor algorithm execution on
the GPU, we present an experimental study of the Anticor algo-
rithm. Four main historical datasets are used, each from different
market. The first NYSE dataset comprises a selection of stocks from
the NYSE market during the period 2000 to 2017. The stocks are
chosen based on a number of criteria. The NYSE comprises 100
top stocks with the largest market capitalization. To avoid data-
snooping bias, market capitalization was selected based on its listing
at the year 2000. Hence, this represents a realistic scenario since the
strategy does not know whether the same 100 stocks will continue
to remain in the largest market capitalization category in the next 15
years. Similarly, the top 100 stocks (by largest market capitalization)
will also be selected for other market indices such as the SP100, and
TSX indices. The only exception is the DJIA since the index only
comprises 30 stocks at a maximum. Hence, all 30 stocks from the
DJIA will be included in the DJIA datasets. The benchmark index
is chosen by the top 20 stocks (by largest market capitalization)
for all markets (i.e., NYSE, S&P500, DJIA and TSX). To facilitate
comparisons, all datasets will begin from Jan 2000 and ends at Dec
2017 (as of today’s date). Hence, we will evaluate the performance
of the Anticor algorithm during the last 15 year period.

Table III provides a performance summary of the Anticor al-
gorithm on four different markets i.e., NYSE, S&P500, DJIA, and
TSX. The performance is shown in terms of the total wealth, Sharpe
ratio, as well as the annualized return. Overall, the S&P500 market
generates higher returns with reasonable risks when compared to the
other markets. In particular, the algorithm produces excellent and
fantastic returns on the DJIA and S&P markets with the total wealth
of 5.18, and 6.20, respectively. These returns are very impressive.

However, we can also observe that the Anticor algorithm fails
to outperform on the TSX market. To understand this lack of
performance, it is necessary to examine the overall index perfor-
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Fig. 3. The impact of runtimes across increasing number of assets. As the number of assets increases, the number of asset pairs also increase significantly,
which require additional computations to compute correlations between unique combinations of all assets. The historical size is kept fixed while the number
of asset size increases with each experiment. Results represent the mean of 20 runs, standard deviations are less than 1 percent.

TABLE IV
AVERAGE TOTAL WEALTH ON FOUR DIFFERENT STOCK PORFOLIOS

DURING 200-2017 INVESTMENT PERIOD.

Average Total Wealth
NYSE S&P DJIA TSX
5.25 4.51 5.05 2.64

mance of both the all the four markets, especially the TSX market.
Table IV shows the average performance of our portfolio on all
four markets. Via close examination, we can observe that the TSX
portfolios perform very poorly when compared to the NYSE, S&P
and DJIA portfolios. For the last 15 years, the TSX only returned
a total wealth of 2.64 on average, whereas all other stock index
portfolios return above 4.5. This explains the reason for the lack
of performance for the Anticor algorithm on the TSX portfolio.
Nonetheless, the Anticor algorithm still achieves higher total wealth
of 2.64, which is higher than the standard’s S&P index average
return of a total wealth of 2.34. This indicates that superiority of
the Anticor algorithm to outperform the market benchmark even
the index itself performs poorly.

For the DJIA dataset, the Anticor is able to achieve a total wealth
of 5.18, which is almost double to that of the DJIA’s standard
index. This is quite impressive but since the Anticor algorithm has
repeatedly given very poor performance on other 3 datasets, it is
interesting to examine why Anticor gives spectacular return in this
case. To examine this further, Table V shows the breakdown of
the largest gains achieved by both strategies during the investment
period. It can be seen that the Anticor strategy generates a very high
return of 46% in a single day. It can be observed that the Anticor
incurred three daily large negative returns with losses more than
20% in a single day. Further examination shows that the Anticor
algorithm has a sharp ratio of 0.21. It can be clearly seen that
the Anticor algorithm only incurs a few large losses in the most

TABLE V
MAXIMUM TRADING DAILY GAINS AND LOSSES INCURRED BY THE
DMA-BI AND ANTICOR ON THE DJIA STOCK MARKET PORTFOLIO.

Anticor’s Top 5 Gains/Losses
Gains (%) Losses (%)
+45.6 -28.7
+20.6 -25.1
+20.3 -22.2
+17.6 -18.0
+16.7 -17.5

volatile DJIA’s stock market, which do not have a large impact on
the overall performance.

We conclude that both OpenCL’s multi core CPU and GPU
implementations significantly outperform a single thread imple-
mentation by a significant margin. This shows a clear benefit in
parallelizing the Anticor portfolio selection algorithm on multi core
CPUs and GPU. Furthermore, the optimized GPU implementations
also clearly perform and scale better than the multi core CPUs
across increasing number of assets and window size parameters.
For serious performance gains, the GPU was able to achieve an
average of eight- to nine-fold improvement in performance for large
window size, while it was able to achieve an average of seven- to
eight speedup for large asset size.

Note that the performance gain on the GPU was only achieved
after code optimization. The naive GPU implementation perform
poorly over a multi-core CPU by 120 percent without any code
optimization. By optimizing the cross correlation procedures into
multiple small kernels, this enables the creation of very large,
efficient workgroups resulting in an average increase in speed-up by
ten fold. The creation of efficient worksgroups also have an impact
of increasing the GPU occupancy from 55 to 95 percent. There are
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Fig. 4. The impact of average runtimes across increasing number of parameters based on 500 asset size. As the number of window size parameter
increases, both the CPU and GPU has to perform extra work to compute additional correlations between the N different periods for each asset. The
number of assets size is fixed to 500 while the number of parameter increases by 10 (w=+10) with each experiment. For each window size parameter, the
search range increases with 10 timesteps (i.e., 10 days) until k = 180 (the optimal threshold). Results represent the mean of 20 runs, standard deviations
are less than 1 percent.

overheads on kernel launch invocations and global memory updates.
However, since the cross correlation procedure is partitioned into
only three kernels, the observed kernel launch overheads were less
than 0.3 ms. Also, as long there is no branch divergence, the global
memory updates also take less than 55 ms for all three kernels using
the built-in atomic operations.

We also see the benefits of dispatching multiple data items for
each work item, as long the historical size does not exceed 2000
(this is potentially due to the limit of 256KB per compute), in
which the point where register spilling occurs to global memory
and is very detrimental to performance. On the other hand, if the
number of data is small (≤ 200), we are not able to maximize the
performance gains of the GPU to more than four speedups.

When the number of data items is assigned to per work item,
the items within a range between two indexes are assigned into the
private memory, before any further computations within the kernel.
Such changes seem to offer a remarkable increase in performance
as the kernel avoids multiple reading operations from the global
memory during the computations of the logarithms, the means, the
denominator and the correlation coefficient.

We have not explored the use of local memory to improve the
speed up for the cross correlation procedures. The local memory
is only used during the sorting operation to store a set of values
for fast comparisons (line 16 of Algorithm 1), which has been
shown to offer 3× speed when compared to the global memory
version. However, the cross correlation operations do not require
synchronization between the work items, and therefore, we opted
out the option of using the local memory. Certainly, as the number
of threads increases per compute unit, the availability of private
memory may drop significantly, which can impede the performance.
A broad applicable approach is to employ some local memory
to balance the use of local and private memory, which may be
worth considering in the future. In the future, we may also con-

sider optimizing the code further using vectorization. Since SIMD
instructions can perform computation on more than one data item
at the same time, we can further pinpoint specific computations,
and perform the computations in a vectorized fashion, so they can
be computed concurrently.

From our analysis, we can conclude that only multi-core CPUs
and GPU implementations seem to be viable for real-time portfolio
optimization analysis. The performance of a single thread CPU im-
plementation greatly suffers as the history size increases. Analysts
often use 10 to 20 years of historical data to make any investment
and risk management decisions. This would require an estimation
of 2000 to more than 5000 daily prices. Given this situation, a
single thread CPU will not be feasible for real-time analysis. While
multi-core CPU implementation has also shown good performance,
the GPU overall offers even a greater performance improvement.

Our results represent performance on mid-range AMD Radeon
HD 8650G card, and it is true to say that GPU architectures are
continuing to undergo some very fundamental changes, particularly
with the recent release of Radeon Fury cards. Such changes are
likely to impact the results reported here. However, the motivation
of our research work is to assess the suitability of conducting
financial portfolio optimization analysis on less powerful cards that
are currently available on portable devices such such as laptops.
More powerful graphic cards will not be likely to available on
laptops in the near future due to their high power consumptions.
More importantly, our work has demonstrated the applicability of
achieving high speedups with only AMD’s mid-range card.

VII. CONCLUSION

This paper presents the first multi-core and GP-GPU accelerated
implementations of Anticor algorithm, which is designed to ac-
celerate the highly intensive computations for conducting portfolio
selection and optimization. Our motivation for this work is to
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offer a cost-effective and a practical solution that would allow
fund and portfolio managers to conduct power intensive portfolio
selection/optimization tasks on handheld computers (e.g., laptops ),
at his/her convenience. The implementation of the solution proposed
here is relatively simple, but it delivered excellent absolute and
relative performance.

Specifically, our work has demonstrated substantial gains in the
use of commodity mid-range GPU (i.e., AMD Radeon graphic card)
for the implementation of Anticor algorithm. We have shown that
the performance gains scale very well under increasing number of
assets and window sizes. Due to the nature of GPU architectures,
however, there is a need to optimize the kernel code to obtain
the acceleration benefits. Despite this, we presented a number of
optimization techniques, which have been shown to offer nontrivial
performance gains.
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