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Abstract—In this paper, the adaptive synchronization of
fractional-order muscular blood vessel (MBV) model subject to
input nonlinearity is investigated. The parameters of controlled
systems are assumed to be unknown in advance, moreover, the
effects of model uncertainties and external disturbances are
fully taken into account. On the basis of frequency distributed
fractional integrator model and Lyapunov stability theory, a
robust control law and fractional-order type parametric update
laws are designed to ensure the synchronization. Simulation
results demonstrate that the proposed control scheme can steer
the abnormal muscular vessel into normal orbit with good
robustness.

Index Terms—Adaptive synchronization, Muscular blood
vessel model, Input nonlinearity, Fractional-order nonlinear
system.

I. INTRODUCTION

B IOLOGICAL systems are often complicated and highly
nonlinear. Due to many biological systems can behave

chaotically, the research for biological systems based on
chaotic theory has grown significantly over past decades and
became a popular topic.

Muscular blood vessel model is one of intriguing non-
linear biological systems. It has been reported by WHO
that cardiovascular disease is the main cause of death in
developed countries. Particularly, coronary artery lesions are
deemed to be the major reason of heart attacks. Coronary
artery refers to the vessel which supplies the oxygen and
nutriment to the vessel of cardiac muscle and known as
muscle type vessel. Obstruction of coronary artery can leads
to many disease, such as stenocardia, angina, myocardial
infarction, etc. According to the chaotic theory of coronary
artery, the key problem is how to make the biomedical model
of MBV synchronize with a prescribed chaotic system of
a normal vessel. That is, from the medical perspective, the
chaos synchronization means that the state trajectories of the
vessel with pathological changes can be synchronized with
those of the normal vessel, and then the treatment can be
achieved. At present, some researches about the coronary
artery have been reported [1-4].

However, all of above mentioned literatures are only focus
on the integer-order model of MBV. It is well known that
with the help of fractional-order calculus, systems can be
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described more accurately. Lately, Aghababa et al. [5] first
developed the fractional-order model of MBV, and studied
the finite-time chaos control. But, it is worth noting that the
system’s parameters in [5] are assumed to be known. As a
matter of fact, many systems’ parameters cannot be exactly
determined in advance. The chaos control/synchronization
will be not achieved under the effect of unknown uncertain-
ties.

On the other hand, since the presence of input nonlin-
earities can lead to unpredictable and undesirable behaviors,
thus the effect of nonlinear inputs should be considered in
the synchronization of chaotic systems. However, to the best
of our knowledge, up until now, there is no information
available about the synchronization of fractional-order MBV
model with unknown parameters and nonlinear inputs.

Motivated by the above discussions, in this paper, we
design a robust controller to realize the synchronization of
two fractional-order MBV systems with input nonlinearity.
The systems’ parameters are assumed to be unknown in
advance. Moreover, the effects of model uncertainties and
external disturbances are fully taken into account. To prove
the robustness and stability of the proposed scheme, the fre-
quency distributed fractional integrator model and Lyapunov
stability theory are applied. Finally, a simulation example is
provided to verify the effectiveness and applicability of the
proposed control scheme.

II. PRELIMINARIES

The Caputo definition is the most commonly used defini-
tion of fractional calculus.

Definition 1 The Caputo fractional derivative of order α
is defined as

t0D
α
t f(t)=

{
1

Γ(m−α)

∫ t

t0

f(m)(τ)

(t−τ)α−m+1 dτ, m− 1<α<m
dm

dtmf(t), α = m
(1)

where m is the smallest integer number, larger than α.
In the rest of this paper, we will use Dα instead of 0D

α
t .

Lemma 1 (see [6]) Consider a nonlinear fractional-order
system

Dαx(t) = f(x(t)) (2)

where α ∈ (0, 1). Then the system can be equivalently
converted to the following continuous frequency distributed
model

∂z(ω, t)

∂t
= −ωz(ω, t) + f(x(t))

x(t) =

∫ ∞

0

µ(ω)z(ω, t)dω (3)
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where µ(ω) = ((sin(απ))/π)ω−α. In above equations,
z(ω, t) is the true state variable, and x(t) is the pseudo state
variable.

III. MAIN RESULTS

According to the contribution from Ref.[5], fractional-
order MBV can be mathematically model as follows

Dαx1 = −bx1−cx2

Dαx2 = −(λ+ bλ)x1−(λ+ cλ)x2+λx3
1+E cos t (4)

where α ∈ (0, 1), x1 is the change of internal diameter of
vessel, x2 is the pressure change of vessel, E cos t is the
periodical stimulating disturbance term, b, c and λ are system
parameters. It has been proved by Aghababa, when b = 0.15,
c = −1.7, λ = −0.65, E = 0.3, ω = 1 and 0.01 ≤ α ≤
0.99, system (4) can behave chaotically. Selecting x1(0) =
x2(0) = 0.1, the strange attractor of system (4) for α = 0.99
is shown in Fig. 1.
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Fig. 1. Strange Attractors of System (4) with Different Fractional
Orders

Take system (4) as master system, the slave system with
model uncertainties and external disturbances is described by

Dαy1 = −by1 − cy2 +∆f1(y) + d1(t) + ϕ1(u1(t))

Dαy2 = −(λ+ bλ)y1 − (λ+ cλ)y2 + λy31 + E cos t

+∆f2(y) + d2(t) + ϕ2(u2(t)) (5)

where y = (y1, y2)
T , ∆fi(y) and di(t), i = 1, 2 are model

uncertainties and external disturbances, respectively. u(t) =
(u1(t), u2(t))

T is a vector of controller to be designed later.
ϕi(ui(t)), i = 1, 2 are continuous nonlinear functions inside
the sector [ρi1, ρi2], ρi1 > 0, and satisfying

ρi1u
2
i (t) ≤ ui(t)ϕi(ui(t)) ≤ ρi2u

2
i (t) (6)

A typical nonlinear input is shown in Fig.2.
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Fig. 2. A Typical Nonlinear Input

Letting B = λ+bλ, C = λ+cλ, and subtracting (4) from
(5), it yields

Dαe1 = −be1 − ce2 +∆f1(y) + d1(t) + ϕ1(u1(t))

Dαe2 = −Be1 − Ce2 + λe1(e
2
1 + 3e1x1 + 3x2

1) + ∆f2(y)

+d2(t) + ϕ2(u2(t)) (7)

Obviously, the synchronization problem between systems
(4) and (5) is equivalently transformed to the stabilization
problem of error system (7).

Our goal in this paper is to design an appropriate controller
to ensure the stabilization of system (7) with unknown
parameters. To make the proposed control scheme more
reasonable and practical, an assumption is given.

Assumption 1 In general, the model uncertainties, external
disturbances are bounded by

|∆fi(y) + di(t)| ≤ δi, i = 1, 2. (8)

where δi are known positive constants.
Theorem 1 Consider the error system (7), if the system

is controlled by the controller

ui(t) = −ξiηisgn(ei) (9)

where i = 1, 2, ξi = 1
ρi1

, η1 = |e1||b̂|+|e2||ĉ|+δ1+k1|e1| >
0, η2 = |e1||B̂|+ |e2||Ĉ|+ |(e21 +3e1x1 +3x2

1)e1||λ̂|+ δ2 +
k2|e2| > 0, k1 and k2 are two positive constants.

The parametric update laws are selected as

Dαb̃ = Dαb̂ = −e21

Dαc̃ = Dαĉ = −e1e2

DαB̃ = DαB̂ = −e1e2

DαC̃ = DαĈ = −e22

Dαλ̃ = Dαλ̂ = (e21 + 3e1x1 + 3x2
1)e1e2 (10)

where b̃ = b̂ − b, c̃ = ĉ − c, B̃ = B̂ − B, C̃ = Ĉ − C,
λ̃ = λ̂ − λ are estimate parameter errors, b̂, ĉ, B̂, Ĉ, λ̂ are
estimate values of b, c, B, C, λ, respectively.

Then the synchronization between systems (4) and (5) can
be achieved.

Proof. According to Lemma 1, system (7) and adaptation
laws (10) constitute the following closed-loop system

∂ze1(ω, t)

∂t
= −ωze1(ω, t)− be1 − ce2 +∆f1(y)

+d1(t) + ϕ1(u1(t))

e1(t) =

∫ ∞

0

µ(ω)ze1(ω, t)dω

∂ze2(ω, t)

∂t
= −ωze2(ω, t)−Be1−Ce2+λe1(e

2
1+3e1x1

+3x2
1) + ∆f2(y) + d2(t) + ϕ2(u2(t))

e2(t) =

∫ ∞

0

µ(ω)ze2(ω, t)dω

∂z̃
b
(ω, t)

∂t
= −ωz̃

b
(ω, t)− e21

b̃ =

∫ ∞

0

µ(ω)z̃
b
(ω, t)dω

∂z
c̃
(ω, t)

∂t
= −ωz

c̃
(ω, t)− e1e2

c̃ =

∫ ∞

0

µ(ω)z
c̃
(ω, t)dω
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∂z
B̃
(ω, t)

∂t
= −ωz

B̃
(ω, t)− e1e2

B̃ =

∫ ∞

0

µ(ω)z
B̃
(ω, t)dω

∂z
C̃
(ω, t)

∂t
= −ωz

C̃
(ω, t)− e22

C̃ =

∫ ∞

0

µ(ω)z
C̃
(ω, t)dω

∂z
λ̃
(ω, t)

∂t
= −ωz

λ̃
(ω, t) + (e21 + 3e1x1 + 3x2

1)e1e2

λ̃ =

∫ ∞

0

µ(ω)z
λ̃
(ω, t)dω (11)

Selecting a Lyapunov function in the form of

V (t)=V1(t)+V2(t)+V3(t)+V4(t)+V5(t)+V6(t)+V7(t) (12)

where

V1(t) =

∫ ∞

0

µ(ω)v1(ω, t)dω, v1(ω, t) =
1

2
z2e1(ω, t)

V2(t) =

∫ ∞

0

µ(ω)v2(ω, t)dω, v2(ω, t) =
1

2
z2e2(ω, t)

V3(t) =

∫ ∞

0

µ(ω)v3(ω, t)dω, v3(ω, t) =
1

2
z2
b̃
(ω, t)

V4(t) =

∫ ∞

0

µ(ω)v4(ω, t)dω, v4(ω, t) =
1

2
z2
c̃
(ω, t)

V5(t) =

∫ ∞

0

µ(ω)v5(ω, t)dω, v5(ω, t) =
1

2
z2
B̃
(ω, t)

V6(t) =

∫ ∞

0

µ(ω)v6(ω, t)dω, v6(ω, t) =
1

2
z2
C̃
(ω, t)

V7(t) =

∫ ∞

0

µ(ω)v7(ω, t)dω, v7(ω, t) =
1

2
z2
λ̃
(ω, t) (13)

Taking time derivative of V (t), it yields

V̇ (t) =

∫ ∞

0

µ(ω)ze1
∂ze1
∂t

dω +

∫ ∞

0

µ(ω)ze2
∂ze2
∂t

dω

+

∫ ∞

0

µ(ω)z̃
b

∂z̃
b

∂t
dω +

∫ ∞

0

µ(ω)z
c̃

∂z
c̃

∂t
dω

+

∫ ∞

0

µ(ω)z
B̃

∂z
B̃

∂t
dω +

∫ ∞

0

µ(ω)z
C̃

∂z
C̃

∂t
dω

+

∫ ∞

0

µ(ω)z
λ̃

∂z
λ̃

∂t
dω (14)

Inserting (11) into (14), we obtain

V̇ (t) =

∫ ∞

0

µ(ω)ze1 [−ωze1−be1−ce2+∆f1(y)

+d1(t)+ϕ1(u1(t))]dω+

∫ ∞

0

µ(ω)ze2 [−ωze2

−Be1−Ce2+λe1(e
2
1+3e1x1+3x2

1)+∆f2(y)

+d2(t)+ϕ2(u2(t))]dω+

∫ ∞

0

µ(ω)z̃
b
[−ωz̃

b

−e21]dω+

∫ ∞

0

µ(ω)z
c̃
[−ωz

c̃
− e1e2]dω

+

∫ ∞

0

µ(ω)z
B̃
[−ωz

B̃
− e1e2]dω+

∫ ∞

0

µ(ω)×

z
C̃
[−ωz

C̃
− e22]dω+

∫ ∞

0

µ(ω)z
λ̃
[−ωz

λ̃
+(e21

+3e1x1+3x2
1)e1e2]dω

= −J+
[
− be1−ce2+∆f1(y)+d1(t)

+ϕ1(u1(t))
] ∫ ∞

0

µ(ω)ze1dω+
[
−Be1−Ce2

+λe1(e
2
1+3e1x1+3x2

1)+∆f2(y)+d2(t)

+ϕ2(u2(t))
] ∫ ∞

0

µ(ω)ze2dω−e21

∫ ∞

0

µ(ω)z̃
b
dω

−e1e2

∫ ∞

0

µ(ω)z
c̃
dω− e1e2

∫ ∞

0

µ(ω)z
B̃
dω

−e22

∫ ∞

0

µ(ω)z
C̃
dω+(e21+3e1x1+3x2

1)e1e2 ×∫ ∞

0

µ(ω)z
λ̃
dω

= −J+[−be1−ce2+∆f1(y)+d1(t)

+ϕ1(u1(t))]e1+[−Be1−Ce2+λe1(e
2
1+3e1x1

+3x2
1)+∆f2(y)+d2(t)+ϕ2(u2(t))]e2−e21b̃

−e1e2c̃− e1e2B̃−e22C̃+(e21+3e1x1+3x2
1)×

e1e2λ̃

= −J − e21b̂− e1e2ĉ+ (∆f1(y) + d1(t))e1

+e1ϕ1(u1(t))− e1e2B̂ − e22Ĉ

+(e21 + 3e1x1 + 3x2
1)e1e2λ̂+ (∆f2(y)

+d2(t))e2 + e2ϕ2(u2(t)) (15)

where J =
∫∞
0

µ(ω)ωz2e1dω +
∫∞
0

µ(ω)ωz2e2dω +∫∞
0

µ(ω)ωz2
b̃
dω +

∫∞
0

µ(ω)ωz2
c̃
dω +

∫∞
0

µ(ω)ωz2
B̃
dω +∫∞

0
µ(ω)ωz2

C̃
dω+

∫∞
0

µ(ω)ωz2
λ̃
dω > 0.

Through surveying (6) and (9), one has

ui(t)ϕi(ui(t)) = −ξiηisgn(ei)ϕi(ui(t))

≥ ρi1u
2
i (t) = ρi1ξ

2
i η

2
i sgn

2(ei) (16)

since ξi =
1
ρi1

, ηi > 0, then

−sgn(ei)ϕi(ui(t)) ≥ ηisgn
2(ei) (17)

Multiplying both sides of (17) by |ei|, according to
|ei|sgn(ei) = ei, then we obtain

eiϕi(ui(t)) ≤ −ηi|ei| (18)

Substituting (18) into (15), using Assumption 1, we have

V̇ (t) ≤ −J+|e21||b̂|+|e1e2||ĉ|+δ1|e1|−η1|e1|+ |e1e2||B̂|
+|e22||Ĉ|+|(e21 + 3e1x1 + 2x2

1)e1e2||λ̂|
+δ2|e2|−η2|e2|

= −J − k1e
2
1 − k2e

2
2 < 0 (19)

According to Ref.[6], we known that system (7) is asymp-
totically stable, thus, the proof is completed.

IV. SIMULATION EXAMPLE

In this section, some simulation results are provided to
demonstrate our theoretical results. Take the system (7) as
the controlled system. Let α = 0.99, the unknown parameters
b = 0.15, c = −0.17, λ = −0.65, the initial conditions are
randomly chosen as x(0) = 0.1, y(0) = 0.2, b̂(0) = 0.1,
ĉ(0) = 0.1, B̂(0) = 0.11, Ĉ(0) = 0.11, λ̂(0) = 0.1. The
model uncertainties and external disturbances as follows

∆f1(y) + d1(t) = −0.01 cos(y1t)

∆f2(y) + d2(t) = −0.01 cos(y2t) (20)
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the nonlinear inputs are

ϕi(ui(t)) = [1− 0.5 cos(ui(t))]ui(t), i = 1, 2. (21)

clearly, ρi1 = 0.5, ξi = 2. According to Theorem 1, select
the positive control constants k1 = k2 = 2, the controller and
parametric update laws can be designed. When the controller
is activated, we can obtain the desired state trajectories of
system (7), meanwhile, for observe the control effect of the
proposed control strategy, the state trajectories of master (4)
and slave system (5) are also shown, the simulation results
are presented in Figs. 3, 4 and 5.
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Fig. 3. State Trajectories of Error System (7) with Controller
Activated
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Fig. 4. Time Response of Estimate Parameters in Error System (7)
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Fig. 5. State Trajectories of Master (4) and Slave System (5) with
Controller Activated

From Fig. 2, we can see that all error states asymptotically
converge to zero, which implies that the designed controller
is applicable. In Fig. 3, it is obvious that all unknown
parameters gradually converge to their actual values, which
implies that the proposed parametric update laws are correct.
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In Fig. 4, which can be seen that the master and slave system
can reach synchronization asymptotically. All simulation
results demonstrate the effectiveness and feasibility of our
control scheme.

V. CONCLUSION

This paper researched the synchronization of fractional-
order MBV systems with unknown parameters. The effects
of model uncertainties, external disturbances and nonlinear
inputs are fully taken into consideration. The frequency dis-
tributed model of fractional integrator and Lyapunov stability
theory are applied to prove the asymptotic stability of closed-
loop system. Simulation results have verified the correctness
and applicability of the proposed synchronization scheme.
Since our results are very useful to both bioengineering and
medical science, we believe that there is high potential in the
proposed approach.
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