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Abstract—We present a comparative analysis of Time Co-
herent 3D Animation Reconstruction methods from the RGB-
D video data. We analyze the existing methods that can
reconstruct a time coherent 3D animation, and also present
two modified algorithms that extend the earlier work. We show
that using all the methods it is possible to reconstruct a time-
coherent 3D animation using either only the color data, color
and depth data, or only the depth data. We compare all the
methods using a number of error measures and analyze the
strength and weaknesses of each method in terms of their
accuracy and runtime performance. Our analysis demonstrates
that given RGB-D video data, it is possible to select the best
algorithm for time coherent 3D animation reconstruction under
a number of constraints in terms of the required accuracy and
runtime performance.

Index Terms—3D Animation, RGB-D Video, 3D Reconstruc-
tion, Multi-view Video, Free-viewpoint Video.

I. INTRODUCTION

THE field of time coherent 3D animation or free-
viewpoint video reconstruction has been an active area

of research in both computer graphics and computer vision.
A number of methods [1] [2] [3] [4] [5] [6] are proposed
in the last fifteen years that directly reconstruct a 3D ani-
mation from multi-view color (RGB) data. These methods
can not only capture the shape of the actor, but also its
appearance and motion. One of the earliest work in this area
was presented by Carranza et al. [1]. They created a free-
viewpoint video of a moving actor from eight synchronized
RGB cameras through an optimization process that estimated
the rigid body transform of each joint of a template 3D mesh.
Later their work was extended by Theobalt et al. [2], who
not only captured the shape and motion of the moving actor
but also the surface material properties of the actors clothes.

De Aguiar et al. [4] presented a surface deformation-based
optimization method that could reconstruct a time coherent
3D animation from eight synchronized RGB cameras. Simi-
larly, Vlasic et al. [5] presented another method of skeleton-
based deformation to achieve similar results. Both of these
methods rely on a high quality scan of real-world actor
that was used as a template model. In contrast, Ahmed et
al. [6] directly reconstructed visual hulls from each frame of
multi-view video RGB data and then use a shape matching
approach to reconstruct a time coherent 3D animation.

In recent years, a number of new camera technologies
allow to capture the depth video in addition to the RGB
video data. Time of Flight (ToF) sensors provide dynamic
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depth data [7] [8] that can be deployed with the RGB
cameras to capture RGB-D video data. A number of methods
have been proposed that employ ToF sensors to reconstruct
a static or dynamic representation of a 3D scene. Kim et
al. [7] presented a multi-sensor fusion system comprising of
RGB and ToF sensors for RGB-D static scene acquisition.
Castaneda et al. [9] used two depth sensors for stereo ToF
acquisition of a static scene. For the dynamic scenes, Kim et
al. [10] presented a complete acquisition system comprising
of high resolution RGB video cameras and low resolution
ToF sensors to capture true RGB-D video data. Their work
did not focus on reconstructing a time coherent 3D scene
representation.

With the advent of Microsoft Kinect [11], the fusion of low
cost RGB and depth sensor has been widely available. Kinect
has been employed in a number of application domains,
and has been widely used for dynamic scene capture and
3D scene reconstruction. Berger et al. [12] employed four
Kinects for marker-less motion capture. Weiss et al. [13]
used Kinect for human shape reconstruction. Baak et al. [14]
employed a single depth sensor to track full body motion.
The seminal work for the pose estimation using Kinect was
presented by Girshick et al. [15]. Ye et al. [16] used three
hand-held Kinects for marker-less motion capture. Ahmed
et al. [17] employed six Kinects for 360 degree acquisition
and 3D animation reconstruction of human actors. All of the
above methods also did not try to reconstruct time coherent
3D animation.

Recently, Ahmed et al. [18] [19] [20] [21] presented
a number of methods have been proposed to reconstruct
time coherent 3D animation from RGB-D video data. All
of the methods rely on a sparse matching between various
frames of RGB data that is used to create a dense matching
algorithm using both RGB and depth features to reconstruct
a time coherent 3D animation. They employed a non-linear
matching algorithm that used both RGB and depth data for
3D animation reconstruction [18]. In this method, first the
sparse matching in RGB space is established, and then a
non-linear matching algorithm was created using the surface
orientation, RGB difference, RGB feature distance, and the
distance in 3D space. Thus it relied on both RGB and depth
data for the time coherent 3D animation reconstruction.

Afterward, they modified the non-linear dense matching
algorithm to incorporate surface curvature instead of the
RGB color difference and the 3D distance measure [21].
This method still relied on both RGB and depth features,
though the use of depth features was limited. Instead of
relying on the non-linear matching, they later presented a
geometric matching approach [19] that enhanced the sparse
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Fig. 1. Multi-view Kinect Acquisition Pipeline. (a) Six Kinects are used to acquire the RGB and depth images (only one frame from one camera is
shown). (b) shows the 3D point cloud from one camera with the mapped RGB image. (c) Shows the top down view of six merged 3D point clouds. The
alignment of the cameras after the global registration is shown in (d) using the color-coded points. The final segmented 3D point cloud is shown in (e).

matching from RGB data and then a dense matching algo-
rithm using the 3D motion data to reconstruct time coherent
3D animation. This work only used RGB data for the very
initial sparse matching and the later algorithm did not rely
on the RGB features at all. Finally, they completely removed
RGB matching for the initial correspondence [20] and only
used 3D features to reconstruct a time coherent 3D animation
from RGB-D video data.

In all of the above presented works, each method is
presented individually, and except for [18] and [19], is
not analyzed for its quality in terms of its time coherence
quality and runtime performance. Recently, Ahmed [22]
analyzed a number of algorithms for time coherent 3D
animation reconstruction. They performed the accuracy and
performance analysis only for 3D and 2D features but did
not consider the hybrid features. In addition, there is no
method that only relies on the RGB features, instead of
the depth features. Also, they have used multiple types of
3D features to reconstruct a 3D animation but there is no
analysis about which type of 3D features are best suitable
for a time coherent 3D animation reconstruction in terms
both the quality and the runtime performance.

In this paper, we analyze the existing time coherent 3D
animation reconstruction methods, and also present two
modifications to the existing methods to verify how the
choice of various types of RGB and depth feature affects
the accuracy and runtime performance of the algorithms. We
first introduce a method by only using RGB features for both
coarse and dense matching for 3D animation reconstruction.
Afterward, we introduce a second modification to combine
both RGB and depth features for the coarse matching and
reconstruct a 3D animation using this new set of coarse
matches. Finally, we analyze all the methods in terms of
their accuracy using three error terms and their runtime
performance.

The main contributions of this paper are:
• Two proposed modifications to existing time coherent

3D animation reconstruction methods from RGB-D

video data for detailed analysis and increased accuracy.
• Accuracy analysis of existing and proposed time coher-

ent 3D animation reconstruction methods using three
error measures.

• Runtime performance analysis of existing and proposed
time coherent 3D animation reconstruction methods.

In the following sections we will present the work as
follows: The data acquisition system employed in all the
methods is detailed in Sect. II. An overview of different
time coherent 3D animation reconstruction techniques is
presented in Sect. III. This section discusses all the existing
methods, and also presents the discussion of the two modified
algorithms in Sect. III-A3 and Sect. III-B3. Results, evalua-
tion, and a detailed analysis of each method in terms of its
accuracy and runtime performance is presented in Sect. IV.
Finally, the paper concludes in Sect. V.

II. DATA ACQUISITION

All the methods discussed in this paper rely on RGB-
D data acquisition using one or more Kinect cameras. At
maximum, up to six Kinects are used to capture a 3D
animation [17]. In general, it does not matter how many
Kinects are used, because all the algorithms work on RGB-D
video data registered in a global coordinate system [17] [19].
In case of multiple Kinects, if more than two cameras
are used, the interference between Kinects causes the loss
of depth data for one camera that is filled by the other
camera [17].

Kinect captures both 640x480 pixels of RGB and depth
data at 30 frames per second. Multi-view acquisition is
handled through a software-based synchronization setup. In
general the system is not limited to a static camera setup,
though all the methods discussed are only applied to the
RGB-D data acquired using a static camera setup. For a static
setup there is only one-time extrinsic camera calibration in
a global coordinate system, whereas a dynamic setup would
require a calibration step at each frame [17]. Additionally, a
dynamic camera setup would need a different solution for the
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Fig. 2. Flowchart of all the methods starting from RGB-D data acquisition
to temporally coherent 3D animation reconstruction. Three methods rely on
sparse RGB features, whereas one method uses 3D features. Hybrid sparse
matching is our introduction in this paper to improve the accuracy of the
methods.

background subtraction, which is trivial for a static camera
setup, where the background is recorded in advance.

Kinect’s software development kit (SDK) is employed to
capture all the data and find the mapping between the RGB
and depth sensors. The SDK also allows the resampling of
the depth data into a 3D point cloud. This allows a 360
visualization of the RGB-D data. The RGB to depth mapping
then allows the 3D point cloud to be rendered with the
correct color value resulting in a true 3D appearance of the
human actor. There is no filtering applied on the 3D point
clouds to remove the noise or outliers [23]. The extrinsic
camera calibration allows all 3D point clouds to be registered
in a unified global coordinate system that allows true 360
degrees 3D animation visualization [17]. Finally, a simple
depth based background subtraction is performed to segment
the actor from the background. Fig. 1 shows a complete
acquisition pipeline for all the methods, starting from RGB-
D data acquisition to the visualization of RGB mapped 3D
point clouds in a unified global coordinate system.

III. TIME COHERENT 3D ANIMATION RECONSTRUCTION

The acquired RGB-D video data provides us a 3D point
cloud with RGB mapping at each time step. The data is
not time coherent as there is no connectivity or tracking
information available from one frame to the next. This type
of data can be used for 360 degrees visualization, but cannot

be used for any low level analysis of the video data, e.g.
motion capture, action recognition, compression etc. Even in
terms of the visualization, if the data is not time coherent then
it doesn’t look smooth in appearance. Therefore, for better
video visualization and analysis, it is important to extract
time coherence from the acquired RGB-D video data.

In this section, we will present a number of algorithms
for time coherent 3D animation reconstruction, as presented
by Ahmed et al. [18] [19] [21] [20]. We also introduce two
modified algorithmic steps, one for the sparse matching, and
one of the dense matching. Input to all of these methods is
a sequence of 3D point clouds with RGB mapping acquired
using one or more Kinect cameras (Sect. II). A 3D point
cloud at each frame is independent of the other, and the
number of 3D points is different in each frame. Let us denote
a 3D point cloud as C = (V, T ), where (V, T ) denotes the set
of all 3D points and their corresponding RGB mapping in the
point cloud. Therefore, for (V, T ) ∈ C we will associate for
each 3D position p ∈ V a 3D point (x, y, z) and its texture
coordinate (u, v) to each texel (2D position in an image)
q ∈ T . Using T all 3D positions V obtained from the depth
data are mapped to the corresponding RGB value. Since
we consider a video sequence consisting of N time-frames,
therefore we write the sequence of point clouds as a function
of time t. Thus C(t) = (V(t), T (t)), where t=0, ..., N −1. It
is to be noted that one of the algorithm does not use RGB
mapping at all and only relies on 3D features as explained
in Sect. III-A2.

The aim of all algorithms is to track the C(0) over the
complete animation sequence by mapping it iteratively to
each C(t) in the sequence. That is, first mapping is from
C(0) to C(1) which yields C0(1) , i.e. V(0) ∈ C(0) aligned
to C(1) with respect to its mapping. Thus C0(t) will refer
to C(0) aligned with C(t) after t iterations of the algorithm
where t=0, ..., N − 1.

All of these algorithms rely on sparse matching using
either the RGB data, or the depth data. Then the algorithms
either use both RGB and depth data to create a non-linear
optimization function, or a geometric matching algorithm
for the dense matching of the RGB-D data over consecutive
frames resulting in the time coherent 3D animation. The final
result of all of these methods is a single 3D point cloud
tracked over the entire animation sequence.

We will first discuss the sparse matching step employed
by all the methods, and present our modified algorithm in the
following sections. Afterward, the dense matching algorithms
are discussed in detail. A flowchart depicting the pipeline of
all the algorithms can be seen in Fig. 2.

Fig. 3. A visualization of 2D sparse matching using SIFT features.
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A. Sparse Matching

For all the algorithms, the first step is to establish a
sparse correspondence between two consecutive frames of
the RGB-D video data by means of feature matching in
either the RGB or depth space. These sparse matchings are
then used to establish the dense matching for time coherent
3D animation reconstruction. Three methods [18] [19] [21]
use the RGB features, while the fourth method [20] only
uses the depth features. The quality of sparse matching
plays a very important role in reconstructing a high quality
3D animation, as discussed in the Results and Analysis
section (Sect. IV). Therefore, we also introduce a hybrid
approach for sparse matching using both RGB and depth
data as explained in Sect. III-A3.

1) RGB Features: The first three methods [18] [19] [21],
use RGB feature matching to initialize the dense matching.
For every input RGB frame Ic(t) for all time steps t and cam-
eras c, these algorithms start by extracting the 2D SIFT [24]
or SURF [25] feature locations. For all the RGB-D video
sequences, around 200 to 300 features are obtained for each
input image. Using RGB features has a number of benefits,
mainly accuracy, stability and rotational and scale invariance.
Each RGB feature has a location q(t) = (u, v, t) in the
texture space, and using the formulation (V(t), T (t)) ∈ C(t)
each RGB feature is mapped to the corresponding p(t) ∈
V(t) . All 3D points at time t that are associated with the
RGB feature points are donated as the RGB feature points
L(t).

In the next step, a mapping between L(t) and L(t + 1)
is established by finding the matching between the corre-
sponding RGB features by using a simple Euclidean distance
measure D. This is a trivial step employed in many RGB
based matching algorithms, where a match is established if
the ratio of D between the nearest and second nearest feature
is less than a certain threshold. This measure also helps in
eliminating most of the false positives. At the end of this
step, a sparse matching is established between two 3D point
clouds. An example of sparse matching can be seen in Fig. 3.

2) 3D Features: The final method [20], does not rely on
RGB features, rather it only uses the depth data to extract
3D features that are used for a sparse matching between
consecutive depth frames. In the first step, for every input
depth frame Dc(t) for all time steps t and camera c, 3D
SIFT [26] features are extracted. Each 3D SIFT feature
has a location q(t) = (x, y, z, t) in the 3D space, and for
each q(t), its underlying local surface curvature and normal
(orientation) is calculated using 20 nearest points. All 3D
points at time t that are associated with q(t) are donated as
the 3D feature points L(t).

Similar to the RGB feature matching, a mapping between
L(t) and L(t + 1) is established by finding the matching
between the corresponding RGB features by using a simple
Euclidean distance measure D. In addition, to increase the
reliability of the sparse matching the underlying curvature
is also matched to eliminate the outliers. At the end of this
step, a sparse matching is established between two 3D point
clouds.

3) Hybrid Features: As explained in the previous sections,
the proposed methods either use the RGB sparse matching,
or 3D sparse matching. As sparse matching is the first step

for all the algorithms, its reliability is crucial, because the
dense matching algorithms depend on the quality of the
sparse matching. Therefore, in order to improve the quality
of the sparse matching, in this paper we propose a new hybrid
algorithm that uses both RGB and 3D features for the sparse
matching and then test all the algorithms using the newly
established sparse matching results.

Similar to the previous sparse matching algorithms, for
every input RGB frame Ic(t) and depth frame Dc(t) for all
time steps t and cameras c, both the RGB and 3D features are
extracted as explained in the previous sections. The matching
algorithm for both features results in two set of matches,
one for RGB, and one for 3D features. Thus, in general we
get almost double the sparse features that otherwise would
have been obtained by only using the RGB or 3D features.
This greatly improves the initial reliability of the algorithms,
and the improvements in the results using the hybrid sparse
matching can be seen in the Results and Analysis section
(Sect. IV).

B. Dense Matching

The sparse matching provides an initial map between
around 300 points of two consecutive point clouds C(t) and
C(t+ 1). In case of the hybrid sparse matching, the number
of sparse features are around 600. A typical 3D point cloud
is comprised of at least 60,000 3D points. Thus, few hundred
matches are not sufficient to track the motion of the point
cloud due to a number of local deformations. Therefore,
a number of dense matching algorithms are proposed that
either use a non-linear optimization, or geometric matching,
to find the mapping for all the 3D points from C(t) to
C(t+1). In the following sections we will briefly review the
proposed methods, and also suggest one modified method.

1) Non-Linear Optimization using Color and Orientation:
In order to determine the dense matching, Ahmed et al. [18]
proposed a non-linear optimization method, where the ob-
jective function is comprised of a number of RGB and depth
features at each 3D point combined with the sparse features.
In the first step, for each 3D point p(t)i in C(t), the normal
of that point N(p(t)i) is estimated by fitting a plane to
its 10 nearest points and finding its orientation. The RGB
color associated with every p(t)i is defined as C(p(t)i).
Additionally, the Euclidean distance of p(t)i with some other
point at t+ 1 is defined as D(p(t)i). Finally, the Euclidean
distance of p(t)i to its nearest sparse feature is referred as
F(p(t)i). Thus given these terms the non-linear matching
function is defined as:

M(p(t)i) = α(1.0−N(p(t)i).N(p(t+ 1)i))+

β(‖C(p(t)i)−C(p(t+ 1)i)‖)+
γ(‖F(p(t)i)− F(p(t+ 1)i)‖) + δD(p(t)i) (1)

M(p(t)i) is the matching distance, 1.0−N(p(t)i).N(p(t+
1)i) is the angular difference in orientation, with
the similar orientation resulting in a smaller value.
‖C(p(t)i) − C(p(t + 1)i)‖ is the absolute difference of
color components between (R,G,B) components of two
3D points. ‖F(p(t)i) − F(p(t + 1)i)‖ is the absolute
difference in the distance to the nearest sparse feature and

IAENG International Journal of Computer Science, 45:4, IJCS_45_4_11

(Advance online publication: 7 November 2018)

 
______________________________________________________________________________________ 



D(p(t)i) is the 3D Euclidean distance between p(t)i and
p(t+ 1)i. The four parameters α, β, γ, and δ are weighting
parameters resulting in a convex combination of four terms,
i.e. their sum is equal to 1 and their value is between 0
and 1. In this method, their values are α = 0.25,β = 0.2,
γ = 0.5,δ = 0.05. These values are found through
experiments. Most weight is given to the difference to
the nearest sparse feature because it has a higher degree
of accuracy. Least weight is chosen for D(p(t)i) because
in principal the difference in 3D Euclidean position is a
fundamental property of an animation. This term is only
used to preserve the drift and avoid the local minima in case
multiple points at frame t + 1 match the feature distance,
orientation and the color. The matching point p(t + 1)i is
the one with the minimum value of the convex combination.
If two points result in the same value of M(p(t)i), then
the point with smaller ‖F(p(t)i) − F(p(t + 1)i)‖ is
chosen as the matching point. In the unlikely case of
same values for M(p(t)i) and ‖F(p(t)i) − F(p(t + 1)i)‖,
1.0 − N(p(t)i).N(p(t + 1)i) is used to find the matching
point, followed by ‖C(p(t)i)−C(p(t+1)i)‖ and D(p(t)i).
The results of this method are discussed in Sect. IV.

2) Non-Linear Optimization using Curvature and Orien-
tation: Ahmed et al. later modified [18] and removed the
color and distance term and introduced a new curvature term.
For each 3D point p(t)i in C(t), the curvature of that point
U(p(t)i) is estimated by fitting a second order surface to 30
nearest points. In addition, the sum of absolute difference to
two nearest feature points is defined as F2(p(t)i). Finally,
using the normal of each point N(p(t)i) the non-linear
matching function is defined as:

M(p(t)i) = α(1.0−N(p(t)i).N(p(t+ 1)i))+

β(‖U(p(t)i)−U(p(t+ 1)i)‖)+
γ(‖F2(p(t)i)− F2(p(t+ 1)i)‖) (2)

Similar to the previous method, M(p(t)i) is the matching
distance. The values for the three weighting parameters are
α = 0.25,β = 0.2, and γ = 0.5. The distance to the feature
points is given the most weight because of its accuracy.
Orientation and curvature have the similar weight. All the
weighting parameters are found through experiments. The
results of this method are discussed in Sect. IV.

3) Non-Linear Optimization using RGB data: The two
optimization functions in the previous sections, Eq. 1 and
Eq. 2, mostly rely on both RGB and depth features. The
optimization function in Eq. 1 uses the color term that is
discarded in Eq. 2. The distance to the nearest sparse feature
point is computed in the 3D space using the depth to RGB
mapping. In order to truly quantify the impact of RGB
features, we thus propose a modified non-linear objective
function that only uses RGB features. This function only
uses the RGB color, C(p(t)i), and the distance to the two
nearest sparse features in the RGB space F2(p(t)i):

M(p(t)i) = α(‖C(p(t)i)−C(p(t+ 1)i)‖)+
β(‖F2(p(t)i)− F2(p(t+ 1)i)‖) (3)

Fig. 4. Motion-based dense matching. Five nearest sparse features (middle
sized, dark gray) are used to find the motion of an arbitrary point (bigger
circle, black).

Similar to the previous method, M(p(t)i) is the matching
distance. The values for the two weighting parameters are
α = 0.2, and β = 0.8. The weights are found through
experiment. The higher weight is given to the sparse feature
points distance as it is more accurate. It is obvious that
the quality of this dense matching will be less accurate
compared to the previous methods. We have only introduced
this method to do a comparative analysis and show that
using both RGB and depth features result in a more accurate
time coherent 3D animation reconstruction. The results of
this method are discussed in Sect. IV.

4) Geometric Matching using RGB and Depth Features:
The two methods [19] [20], do not use a non-linear optimiza-
tion for the dense matching, rather they use a geometrical
matching approach to enhance the accuracy of the sparse
feature matching and then use a motion-based tracking
algorithms to estimate the dense matches. The main different
between the two method is that [19] relies on the sparse
RGB feature matching as its starting point, whereas [20]
relies on the sparse 3D feature matching as its starting
point. The method [19] directly uses the matching clusters
L(t) and L(t + 1) using the sparse RGB matching. On the
other hand, the other method [20] uses Clustered Viewpoint
Feature Histogram (CVFH) [27] on the sparse 3D features
to find the matching clusters L(t) and L(t + 1). After the
matching clusters are established both methods follow the
similar algorithm of refining the sparse matches as follows:

1) Randomly choose one sparse feature l0(t) from L(t)
and the corresponding matching feature l0(t) from
L(t+ 1).

2) Define a plane P(t) using two nearest sparse features
(l1(t) and l2(t)) with respect to l0(t).

3) Define a plane P(t + 1) using two nearest sparse
features (l1(t+1) and l2(t+1)) with respect to l0(t+1).

4) Project all sparse feature points L(t) on P(t) and L(t+
1) on P(t+ 1).

5) Find the new matches of the sparse features L(t) and
L(t + 1) in the parametric space of the planes P(t)
and P(t+ 1). Update the sparse matches.

6) Repeat from step 1 unless the matching stabilizes.

Once the newly refined sparse matching is defined, for
each 3D point pi(t), its nearest five closest sparse features
matches are used to identify its motion from C(t) to C(t+1).
Thus, all the points pi(t) in C(t) are mapped to C(t+1) and
consequently tracked over the whole sequence. A visualiza-
tion of motion vectors-based matching can be seen in Fig. 4.
The results of this method are discussed in Sect. IV.
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Fig. 5. (a) shows three frames from time coherent 3D animation recon-
structed from a single Kinect using the geometric matching algorithm. It
clearly shows a consistent point cloud. (b) shows the non-coherent 3D point
clouds, where dramatic differences between the 3D point clouds are visible,
especially in the head.

IV. RESULTS AND ANALYSIS

All of the discussed methods were able to reconstruct
a time coherent 3D animation from a sequence of non-
coherent 3D point clouds. The non-coherent 3D point cloud
data was acquired from the acquisition setup explained in
Sect. II and from Ahmed et al. [6]. The data from the Kinect-
based acquisition setup provides 3D point clouds with RGB
mapping registered in a global coordinate system. The data
from Ahmed et al. [6] is acquired using eight synchronized
RGB cameras. The 3D point cloud data is obtained from
visual hulls that are reconstructed at each time step. All the
sequences are 100 to 200 frames long and range from slow
walking motion to fast boxing or fast capoeira motion.

Fig. 5a shows different frames of the time coherent 3D
animation reconstructed from the Kinect-based acquisition
setup. Non-coherent frames of the 3D animation can be
seen in Fig. 5b. It can be seen that the time coherent
3D animation remains consistent throughout the different
frames, whereas the non-coherent data changes dramatically.
Similarly, the results from the time coherent 3D animation
reconstructed from the data from Ahmed et al. [6] can be
seen in Fig. 6a. The non-coherent animation frames can
be seen in Fig. 6b. Again the different between the two in
terms of the connectivity from one frame to the next is well
pronounced.

In order to quantitatively compare the methods, we have
measured three different types of errors for all five methods:

1) Silhouette and Convex Hull Consistency
2) Bounding Box Containment
3) Deformation Measure
Each of these methods are tested with two sets of sparse

features, i.e, RGB or 3D features and Hybrid (RGB and 3D)
sparse features. Below is a general description of each of the
error measure, followed by the analysis.

A. Silhouette and Convex Hull Consistency

Silhouette and Convex Hull Consistency error measure
computes the average of differences in silhouette overlap and

Fig. 6. (a) shows two frames of time coherent 3D point cloud, whereas (b)
shows the non-coherent frames. It can be seen how the point cloud changes
in (b) whereas it remains consistent in (a).

convex hull areas of the time coherent 3D animation with
the input 3D point cloud rendered from one camera view.
The temporally consistent point cloud is rendered from the
viewpoint of one of the input cameras. Once a 3D point
cloud is projected onto a 2D image plane, calculating the
silhouette of projected 2D points is trivially limited to finding
their convex hull. Both, the original non-coherent 3D point
cloud and the spatio-temporally coherent 3D point cloud are
rendered from the same camera view and their silhouettes are
extracted. The two silhouettes are overlapped and the number
of pixels that do not overlap for each frame are counted.
Similarly, the area of the two convex hulls is calculated and
ideally the area of both convex hulls should be equal. The
final error is the average of the silhouette overlap error and
the difference in the convex hull areas.

B. Bounding Box Containment

The bounding box based containment error is measured by
first finding the bounding box of the non-coherent 3D point
cloud at each time step. In the second step, it counts the 3D
points in the temporally coherent point cloud that are not
inside the corresponding bounding box. This measure also
provides a good quantitative analysis in analyzing the good-
ness of the tracking algorithm and its temporal consistency.

C. Deformation Measure

Deformation error measure is calculated by comparing the
distances between a small set of points at each frames under
the assumption that dynamic object goes through a small
deformation. This is achieved by sampling 200 points evenly
distributed over C(0) and store the distance vectors between
each one of them for the starting frame in a list Ei(0), where
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TABLE I
AVERAGE ERROR MEASURES TO QUANTIFY THE ACCURACY OF EACH METHOD

Average Average Average
Method Silhouette and Bounding Box Deformation

Convex Hull Error Error Error

Non-Linear (Sparse: RGB) (Dense: RGB+Depth) 2.84% 1.8% 2.45%

Non-Linear (Sparse: Hybrid) (Dense: RGB+Depth) 2.69% 1.7% 2.33%

Non-Linear (Sparse: RGB) (Dense: Depth) 2.95% 1.83% 2.5%

Non-Linear (Sparse: Hybrid) (Dense: Depth) 2.78% 1.75% 2.39%

Non-Linear (Sparse: RGB) (Dense: RGB) 3.46% 2.21% 3.21%

Non-Linear (Sparse: Hybrid) (Dense: RGB) 3.31% 2.13% 2.9%

Geometric Matching (Sparse: RGB) (Dense: Motion) 3.29% 2.1% 2.8%

Geometric Matching (Sparse: 3D) (Dense: Motion) 3.62% 2.35% 3.1%

Geometric Matching (Sparse: Hybrid) (Dense: Motion) 3.11% 1.93% 2.61%

TABLE II
RUNTIME PERFORMANCE OF ALL THE METHODS

Method Frames per Minute

Non-Linear (Sparse: RGB) (Dense: RGB+Depth) 12

Non-Linear (Sparse: Hybrid) (Dense: RGB+Depth) 11

Non-Linear (Sparse: RGB) (Dense: Depth) 11

Non-Linear (Sparse: Hybrid) (Dense: Depth) 11

Non-Linear (Sparse: RGB) (Dense: RGB) 14

Non-Linear (Sparse: Hybrid) (Dense: RGB) 13

Geometric Matching (Sparse: RGB) (Dense: Motion) 20

Geometric Matching (Sparse: 3D) (Dense: Motion) 18

Geometric Matching (Sparse: Hybrid) (Dense: Motion) 17
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i=0, ..., ‖E‖ − 1 and ‖E‖ is the total number of vectors in
Ei(0). After tracking, the same distance vectors Ei(t) are
calculated for each tracked frame C0(t), where t=1, ..., N −
1. The error measure Ei(t) for one frame at time-step t is
defined as:

Ei(t) =

∑‖E‖−1
i=0 ‖Ei(t)− Ei(0)‖

‖E‖
(4)

whereas the average error measure E for the complete
sequence is defined as:

E =

∑N−1
t=1 Ei(t)

N − 1
(5)

D. Analysis

We analyze all the methods in terms of previously defined
three error measures and their runtime performance. The
error measures for each of the method with different sets
of sparse features can be seen in Table. I. The runtime
performance of each method can be seen in Table. II.

As can be seen in Table. I, the non-linear methods in
general are more accurate and result in a lower overall error.
With the exception of non-linear matching that relies only the
RGB data, which is comparatively much worse. Similarly,
our proposed hybrid sparse matching scheme results in a
better accuracy. The reason being that it results in a higher
number of sparse feature points that result in a better quality
of the dense matching. The downside of the non-linear
methods as can be seen in Table. II is their significantly lower
runtime performance compared to the geometric matching
algorithms. This is due to the fact that the non-linear function
is to be evaluated against all possible points in the 3D point
clouds, whereas the motion-based dense matching requires
only average motion of the nearest 5 motion vectors.

The geometric matching algorithms as can be seen in
Table. I are lower in terms of the accuracy, but as discussed
earlier they are much faster in their runtime performance
as can be seen in Table. II. Same as the non-linear match-
ing, the hybrid sparse matching results in the best overall
performance at the expense of the frame rate. In general, 3D
sparse matching is slower then RGB sparse matching because
it needs both 3D sift, and surface curvature to eliminate the
outliers. Therefore all the algorithms that are using hybrid
sparse matching have a lower runtime performance.

Based on these extensive evaluations of each of the
method, one can draw the following conclusions:
• If the runtime performance is not important and the best

quality is required then the non-linear matching using
the hybrid sparse matching and the dense matching
using both RGB and depth data should be used.

• In case of the runtime performance constraints the
geometric matching algorithm with the hybrid sparse
matching should be employed.

• Depth data alone cannot provide very high quality of
time coherent 3D animation, and same is true for only
using the RGB data. This does not limit the algorithms,
as shown by our analysis that even if only one type
of data is available, time coherent 3D animation recon-
struction is possible at the cost of accuracy.

• A hybrid approach is recommended for the sparse
matching, but for the dense matching the depth infor-
mation is more important than the RGB information.

• One of the major limitations of all four methods was
using either the depth or the RGB data for the sparse
features. This limitation can only be circumvented by
means of a hybrid approach and our analysis proves it
conclusively.

It is to be noted that some other limitations of all the
methods are still there, e.g. no surface representation and
relying on heuristics for finding the non-linear objective
function coefficients. In addition, the methods are only tested
on the data from Microsoft Kinect v1 or 3D point clouds ob-
tained from visual hulls reconstructed from multi-view RGB
video data. If higher quality 3D point clouds are available
then dynamic surface could be generated resulting in better
objective functions. Similarly, acquiring or manually creating
some ground truth data would result in a better estimation of
non-linear objective function coefficients. Also, some other
techniques like machine learning can be employed to replace
the heuristics, as none of the non-linear methods use a
learning method to improve the initial estimation of the
weighting factors [28] [29] [30]. These additions can improve
the accuracy of the methods. In future work, as new methods
are proposed we plan to further extend this analysis taking
into account the limitations of these methods.

V. CONCLUSIONS

In this paper, we presented a comprehensive analysis
of a number of time coherent 3D animation reconstruc-
tion methods using RGB-D video data. We compared four
existing methods and also proposed two modifications of
these methods to improve the accuracy of the methods and
better analyze the various algorithmic components of each
method. We evaluated all the methods with and without the
modifications in terms of their accuracy and runtime per-
formance. We used three different error measures, silhouette
and convex hull consistency, bounding-box containment, and
deformation measure, to find the goodness of each method.
Based on the error measures and runtime performance we
made a number of recommendations about the viability of
each method. Our analysis show that it is not only possible
to reliably reconstruct a time coherent 3D animation from
RGB-D video data, but it is also possible to select the best
method depending on the accuracy and runtime requirements
and constraints.
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