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Abstract—The conventional bus network and subway 

network are constructed respectively by using space R method 

in this paper, then regards these two networks as the 

sub-networks, and a new bilayer public traffic coupled network 

is presented based on the transfer relationship between subway 

and conventional bus. By using the synchronization theory of 

two different complex networks with stochastic disturbance, the 

paper investigated the synchronization of bilayer public 

traffic coupled network. Finally, the impact of stochastic 

disturbance on the balance of bilayer public traffic coupled 

network is analyzed through numerical simulation. 
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I. INTRODUCTION 

ith the continuous development of economy and the 

improvement of people's living standard, the quantity 

of automobile is increasing rapidly. At present, there exist a 

series of problems in the development of urban transportation 

in China, such as the difficulty of travel, the increasing traffic 

time costs and so on. The problem of urban traffic 

development should be solved urgently. And the traffic jams 

and congestion in big cities such as Beijing and Shanghai is 

becoming more and more serious, which also causes 

inconvenience to people's travel and causes urban 

environmental pollution and frequent traffic accidents. 

Therefore, reducing and alleviating traffic congestion is a 

problem we urgently need to solve. However, there is no 

obvious effect to solve these problems only by regulating and 

optimizing the conventional bus, and the emergence of rail 

traffic has greatly compensated for many shortcomings of 

conventional bus. Both conventional bus and rail transit are 

belongs to urban public transport system, each has its own 

unique advantages. The conventional bus is low in cost, wide 

in coverage and flexible in mobility, and the rail transit has 
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fast speed, big transport volume and good punctuality. But 

they all have their own shortcomings. Therefore, 

strengthening the effective coordination and transfer 

connection between conventional bus and rail transit is 

helpful to improve the operation efficiency of the whole urban 

public transport system, so as to maximize the demand of the 

passengers and achieve the coordinated and continuous 

development of them. However, most of the current studies 

only focus on a single conventional bus network or a single 

rail transit network. And it can't well reflect the characteristics 

of complex urban public transport system. 

The synchronization of complex network is an important 

topic in study of complex network dynamics. In recent years, 

many scholars have studied the synchronization problem of 

complex network [1-10]. However, these studies are just 

focused on the internal synchronization problem between 

single networks, and there is not much research on 

synchronization between two networks. Li et al. [11] derived 

a criterion for the synchronization of two unidirectionally 

coupled networks. Tang et al. [12] designed an effective 

adaptive controller and investigated the synchronization 

problem between two complex networks with nonidentical 

topological structures. Chen et al. [13] presented a general 

network model for two complex networks with time-varying 

delay coupling and derived a synchronization criterion by 

using adaptive controllers. Wang et al. [14] designed an 

adaptive controller to achieve synchronization between two 

different complex networks with time-varying delay coupling. 

Sun et al. [15] investigated the linear generalized 

synchronization between two complex networks. Besides, the 

research of synchronization between two networks is 

basically aimed at two networks with the same number of 

nodes. However, the synchronization problem of bilayer 

coupled networks with different number of nodes has more 

practical significance. 

There are many uncertainties in nature, and these 

uncertainties are the randomness of external incentives or the 

randomness of internal parameters of structure. Many 

practical systems are affected by stochastic perturbations, 

which are often the main causes of instability. Because of the 

extensive research background of random disturbance and its 

research in the complex network has attracted the attention of 

many scholars. Due to the inevitable existence of random 

interference in real life, many synchronization phenomena are 

affected by the random interference. Therefore, it is very 

important to study the synchronization between the bilayer 

coupled networks under random disturbance. Guo et al. [16] 
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focused on a time-varying complex dynamical network, and 

the stochastic synchronization problem of the network is 

investigated. Wang et al. [17] investigated the stochastic 

synchronization of complex network by using the properties 

of Weiner process. Hao et al. [18] studied the stochastic 

synchronization of complex dynamical networks with 

unknown periodic time-varying couplings and stochastic 

noise perturbations. He et al. [19] investigated the global 

synchronization problem of switched complex dynamical 

networks with stochastic disturbances. Zhang et al. [20] 

focused on a class of chaotic neural networks, and the 

synchronization problem of the networks is investigated 

under stochastic perturbations. Zhou et al. [21] investigated 

the exponential synchronization of a new class of stochastic 

neural networks driven by fractional Brownian motion. 

Sakthivel et al. [22] investigated the synchronization and state 

estimation problems of a coupled discrete-time stochastic 

complex network. Li et al. [23] studied the synchronization 

problem of stochastic discrete-time complex networks with 

partial mixed impulsive effects. 

As one of the important research tool, the complex network 

has been widely applied in urban traffic system
 
[24-28]. The 

urban public traffic network is a real and typical complex 

network, which has been studied by many scholars. However, 

most of the research is only aimed at the static statistical 

features of the network, such as, the research on topological 

property of traffic network, reliability or robustness and 

structure optimization. However, there are few researches on 

the dynamic characteristics of urban public traffic network. 

As a typical complex network, it is necessary to analyze the 

dynamic characteristics of the urban public traffic network 

because of its own characteristics. In this paper, we mainly 

focused on two coupled complex networks with different 

sizes under stochastic disturbance, and the proper controller is 

designed to make these two networks achieve globally 

asymptotically synchronized in mean square. In addition, a 

new type of bus-subway bilayer coupled public 

traffic network model is established based on space R 

modeling method. And the synchronization problem of 

bilayer coupled public traffic network under random 

disturbance is studied by using the synchronization theory of 

coupled network. Finally, the balance problem of bilayer 

coupled public traffic network is studied under stochastic 

disturbance. 

The paper is organized as follows. In Section 2, the 

synchronization theory of two different complex networks 

with stochastic disturbance is given. A new bilayer public 

traffic coupled network model is established in Section 3. In 

Section 4, the balance of bilayer public traffic coupled 

network is investigated under the stochastic disturbance. 

Simulation results are given to show the validity of the 

controllers in Section 5. In Section 6, we conclude the paper. 

 

II.  SYNCHRONIZATION BETWEEN TWO DIFFERENT COMPLEX 

NETWORKS WITH STOCHASTIC DISTURBANCE 

Considering two coupled complex dynamic networks, each 

complex network is composed of the same linear coupling 

nodes, and the network models are described as follows: 
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where    1 2 1 2, , , , , , ,n n

i i i in i i i inx x x x R y y y y R
 
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are the node’s state variables of the networks (1) and (2), 

respectively,  ix t and  iy t are the dynamic equations of a 

single node,    , : n nf g R R   are the nonlinear 

continuous differentiable functions, 
1 2,N N are the number of 

nodes of networks (1) and (2), respectively, 
1 2, n nR Γ Γ are 

the internal coupling function between the state variables of 

each node in two networks,
1 2,  are the internal coupling 

strength of networks (1) and (2), respectively,  is the 

external coupling strength between two networks, the 

matrixes 1 1 2 2( ) , ( )
N N N N

ij ijA a R B b R
 

   
 
are the 

topology of networks (1) and (2), respectively, 

where
1 2
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,
N N

ii ij ii ij

j i j j i j

a a b b
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and ( )ij ija b are defined as 

follows: if there is a connection from node j to node i , 

then ( ) 0( )ij ija b i j  ; otherwise ( ) 0( )ij ija b i j  . The 

matrices 1 2 2 1( ) , ( )
N N N N

ij ijC c R D d R
 

   
 
are the coupling 

matrix between two networks, where ,ij ijc d are defined as 

follows: if there is a connection from node i (belongs to 

network (1)) to node j (belongs to network (2)), then 0ijc  ; 

otherwise 0ijc  ; if there is a connection from node i (belongs 

to network (2)) to node j (belongs to network (1)), 

then 0ijd  ; otherwise 0ijd  . And the coefficients 

: n n n n

i R R R     represents the noise intensity function 

matrix, it is used to describe the strength of external stochastic 

disturbance,         
T

1 2, , , n

i i i int t t t R     is an 

n -dimensional Brownian motion which defined on a 

complete probability space  , ,F  , which satisfies 

      2

0,E d t E d t dt   , where  is a sample space 

which generated by  i t , F is a  -algebra,  is a 

probability measure. In this paper, we assume that  i t is 

independent of  j t when i j . And  iu t is the controller 

for node i to be designed. Without loss of generality, we 

assuming that 1 2N N , that is network (1) and network (2) 

has the different number of nodes. 

Definition 1. Let   0 1, 1,2, ,ix t X i N and  0, ,i iy t Y u  

 21,2, ,i N be the solutions of the network (1) and (2), 

where    1 2

1 2

T T
0 0 0 0 0 0

0 1 2 0 1 2, , , , , , ,
nN nN

N NX x x x R Y y y y R    , 

and , : nf g R are the continuously differentiable 
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mappings with nR . If there exist a nonempty open 

subset   , with 0 0,i ix y  , so when 0t  ， such 

that   0 1, 1 ,ix t X i N    0 2, , 1i iy t Y u i N   , and 

      
2

0 0 2lim , , , 0, 1,2, ,i i i
t

E y t Y u x t X i N


      (3) 

then the complex networks (1) and (2) realized globally 

asymptotically synchronization in mean square, where 

. represents the Euclidean vector norm, and .E represents 

the mathematical expectation. 

Assumption 1. For the function  f x , there exist a 

positive constant 0l  , such that  
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          (4) 

Assumption 2. Assume that the noise matrix   i ie t  

satisfy the Lipschitz condition, and there exist a 

constant 0  , satisfying 

          
T T

22 , 1,2, ,i i i i i itr e t e t e t e t i N    
 
(5) 

Definition 2. ( ˆIto formula) Consider the following 

n -dimensional stochastic differential equation 

       ,dx t f t dt t d t  
                    

 (6) 
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is the family of all nonnegative functions which are twice 

continuously differentiable in x and once differentiable in t , 

then the operator   ,LV x t t can be defined as follows:  
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Lemma 1. [29] Consider the stochastic differential 

equations (6), if there exist the positive constants
1 2 3, ,   , 

for any  0 ,t t  , we have 
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then the equilibrium 0x  is globally asymptotic stable in the 

mean square sense. Besides, for any
00 t t    , one has 
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Theorem 1. Suppose that Assumption 1, 2 holds. We 

select the controllers as follows: 
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then the complex networks (1) and (2) realized globally 

asymptotically synchronization in mean square under the 

controllers (9), where  
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Choose the Lyapunov candidate as follows: 
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where k is a sufficiently larger positive constant which is to be 

determined. By derivation of Eq. (11), we get 
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l Q Q Q

k e t e t

 
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

    





 
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where          2

2

T

1 2, , ,
nN

Ne t e t e t e t R  ,
1 1Q A Γ ,

2 2Q B Γ ,
3Q C D   ,

T

1 1

1
2

s Q Q
Q


 ,

T

2 2

2
2

s Q Q
Q


 ,

T

3 3

3
2

s Q Q
Q


 , and , ,A C D   are

2N  order principal minor 

determinant of matrixes , ,A C D , respectively. 

    Obviously, there exist a sufficiently large positive 

constant k , such that  

     1 max 1 2 max 2 max 3 0.s s sl Q Q Q k            

Let      max 3 1 max 1 2 max 2

s s sk k Q l Q Q           , 

then we obtain 

      T, ,LV e t t ke t e t 

                     

(12) 

According to formula (12) and lemma 1, we can get  

           
        

0

0

0 0

T

0 0

, , ,

, , .

t

t

t

t

E V e t t E V e t t E LV e d

E V e t t kE e e d

  

  

 

 




(13) 

By the definition of   ,V e t t in formula (11), there exist 

positive constants
1 , such that 

      
2

T

1

1

, ,
N

i i

i

V e t t e t e t


 

                   

(14) 

    And based on formula (13) we known that   ,V e t t  and 

   
2

T

1

N

i i

i

e t e t


 is bounded, namely there exist positive 

constants
2 such that 

      
2

T

2

1

, ,
N

i i

i

V e t t e t e t


 

                  

(15) 

Therefore,   ,V e t t satisfy 

          
2 2

T T

1 2

1 1

, ,
N N

i i i i

i i

e t e t V e t t e t e t 
 

  

  

(16) 

and 

      
2

T

1

, .
N

i i

i

LV e t t k e t e t


  

                

(17) 

So, from Lemma 1 we know that the error systems (10) 

are stable at   0e t  in the mean square sense. Thus, the 

networks (1) and (2) realized globally asymptotically 

synchronization in mean square. 

 

III. A NEW BILAYER PUBLIC TRAFFIC COUPLED NETWORK 

MODEL 

The urban public traffic network is the complex network 

composed of different bus stops and lines. There are mainly 

three modeling methods to establish the urban traffic network: 

Space L method, space P method and space R method 
[30, 31]

. 

In this paper, a new bus-subway bilayer coupled public 

traffic network model is proposed, and the detailed modeling 

method of the new bilayer coupled public traffic network is 

described as follows: 

(1) Firstly, take the conventional bus line and the subway 

line as the network’s node, and then construct the 

sub-networks A and B based on the space R method. 

(2) If there is an opportunity to transfer between 

conventional bus and subway, we link these two different 

types of nodes and constitute the coupling edges of bilayer 

coupled public traffic network. The coupling edges reflect the 

transfer relationship between subway and conventional bus. 

The conventional bus network, subway network and its 

coupling edges form the bilayer coupled public 

traffic network. 

Without loss of generality, taking three subway lines 

(subway line 1, subway line 2 and subway line 3) and eight 

conventional bus lines (bus no. 4, 12, 19, 36, 102, 117, 181, 

511) at Xi’an as the network nodes, we established a new 

bilayer coupled public traffic network model as show in Fig. 

1. 

36 bus

117 bus

181 bus

511 bus19 bus

102 bus

12 bus

4 bus

subway line 1

A

subway line 3

B

subway line 2

Fig. 1. The topology map of bilayer public traffic network model 

 

IV. BALANCE ANALYZE OF BILAYER PUBLIC TRAFFIC 

NETWORK WITH STOCHASTIC DISTURBANCE 

Next, the balance problem of bilayer coupled public 

traffic network is analyzed by using the synchronization 

theory of the coupled network with stochastic disturbance. 
Wu et al. [32] draws the conclusion that the passenger flow of 

urban public traffic fulfills the nonlinear properties. 

Assuming that the passenger flow of three subway lines and 

eight conventional bus lines all meet the nonlinear Lorenz 

system, and the nodes dynamical equations of the two 

sub-networks are 

1 1

2 2 1 3

3 3 1 2

10 10 0 0

28 1 0 ,

0 0 8 3

i i

i i i i

i i i i

x x

x x x x

x x x x

       
       

   
       
              

        (18) 

1 1

2 2 1 3

3 3 1 2

10 10 0 0

28 1 0 ,

0 0 8 3

i i

i i i i

i i i i

y y

y y y y

y y y y

       
       

   
       
              

        (19) 

For the bilayer coupled public traffic network described in 

Fig. 1, we have 
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11 12 13 21 22 23 31

32 33 41 42 43 51 52

53 61 62 63 71 72 73

81 82 83

1, 1, 1, 1, 1, 1, 0,

1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 0, 1, 0, 1,

1, 1, 1, ( 1,2, ,8, 1,2,3)ji ij

c c c c c c c

c c c c c c c

c c c c c c c

c c c d c i j
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      
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   Assuming that  1 2 diag 1,1,1 Γ Γ and the controllers 

designed as follows: 

         

     
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1
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,
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j
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u t f y t g y t a y t

b x t c x t d y t
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  

 



  

 

  

  

  



  

     

(20) 

where  
2

i i ik t d e , ( 1,2,3)id i  are the positive constants. 

According to Eq. (1), the dynamical equation of each 

node (1 8)i i  in conventional bus network A is 

        
8 3

1

1 1

,i i ij j ij j

j j

dx t f x t a x t c y t dt 
 

 
   
 

    (21) 

And from Eq. (2) we get the dynamical equation of each 

node (1 3)i i   in subway network B as follows 

        
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,
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 

 


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  

 
    (22) 

where 
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For any vectors ix and iy of Lorenz system, there exist a 

positive constant R such that  , 1,2,3 ,im imx R y R m  
 

since the Lorenz system is bounded in a certain region. So, we 

have 

 

   

2 2

1 3 1 3 1 2 1 2

2 2

3 1 1 1 3 3 2 1 1 1 2 2

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

2 ,

i i

i i i i i i i i

i i i i i i i i i i i i

i i

f y f x

y y x x y y x x

y y x x y x y y x x y x

R y x



     

        

 

(23) 

For the convenience of calculation, we let 

    0 22 , 1,2, ,i i ie t e t i N   . And we also assume 

that  t is one dimensional white noise, so   i ie t satisfy 

the Assumption 2. And form (27), Assumption 1 is 

established. According to Theorem 1, the conventional bus 

network A and subway network B achieved synchronization, 

that is, the whole bilayer coupled public traffic network is 

reached stable. 

V. NUMERICAL SIMULATIONS 

The synchronization effect of urban public traffic network 

is the dynamic balance between the running vehicle and the 

traveling passenger, that is, the operation time of the bus is 

most close to the preset time (the shortest time of traffic jam), 

and passengers stay at the bus station for the shortest time. In 

this paper, we mainly investigate the impact of stochastic 

disturbance (such as traffic accident, traffic signal and vehicle 

failures etc.) on the balance of bilayer coupled public 

traffic network. In numerical simulation processes, we select 

the initial value conditions as follows: 

 
T

(0) 0.1 0.3 ,0.2 0.3 ,0.3 0.3 ,(1 8)ix i i i i      ，

 
T

(0) 2.5 0.3 ,2.6 0.3 ,2.7 0.3 ,(1 3)iy i i i i      ，

(0) 3.6 0.1 ,(1 3)ig i i    . 

Fixed
1 2 0.3, 0.6, 1,(1 3)ik i        , and we get 

the synchronization errors of the bilayer coupled public 

traffic network is shown in Fig. 2. As shown in Fig. 2, the 

bilayer coupled public traffic network achieves balance in 20 

time units, namely, the operating vehicles and the travel 

passengers reach a dynamic balance. 

 
Fig. 2. Synchronization errors for bilayer coupled public 

traffic network 

Next, let’s consider the balance problem of the bilayer 

coupled public traffic network under random disturbances. 

Suppose that the bus no. 4 and 12 are inevitably running with 

the stochastic disturbance at 30 40t  and the 

synchronization errors are given in Fig. 3, the bus no. 4 and 

subway line 1 are inevitably running with the stochastic 

disturbance at 30 40t  and the synchronization errors are 

given in Fig. 4, and the Fig. 5 are the synchronization errors 

when the subway lines 1 and 3 are inevitably running with the 

stochastic disturbance at 30 40t  . According to Fig. 3, 4, 5 

we can see that all the buses and subways are affected by 

stochastic disturbance, but the influence of stochastic 

disturbance on the whole networks is effectively suppressed 

when adding the controller. As seen in Fig. 3, the bilayer 

coupled public traffic network tends to stable at 44 time units 

when the stochastic disturbance is imposed on the 

conventional bus lines. When the stochastic disturbance is 

applied to both the conventional bus line and the subway line, 

the bilayer coupled public traffic network reach stable at 47 

time units, as shown in Fig.4. According to Fig. 5, the bilayer 

coupled public traffic network tends to stable at 52 time units 

when the stochastic disturbance is imposed on the subway 

lines. That is to say, the stochastic disturbance of subway line 

caused by random events has a great influence on the stability 

of the bilayer coupled public traffic network, while the 
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influence of the stochastic disturbance of the conventional bus 

line on the stability of the bilayer coupled public 

traffic network is relatively small. 

 
Fig. 3. Synchronization errors for bilayer coupled public 

traffic network after add stochastic disturbance to the 

conventional bus lines 

  

 
Fig. 4. Synchronization errors for bilayer coupled public 

traffic network after add stochastic disturbance to the 

conventional bus lines and subway lines 

 
Fig. 5. Synchronization errors for bilayer coupled public 

traffic network after add stochastic disturbance to the subway 

lines 
 

VI. CONCLUSION 

In this paper, a new bilayer coupled public traffic network 

is proposed based on the space R modeling method. And in 

this network, the conventional bus network has a larger scale 

but the transmission performance of the network is poor, and 

the subway network has a small network size but the 

transmission performance is better. The two networks are 

coupled by the transfer relationship between some stations, 

and cooperate to complete the transmission task of the whole 

urban public traffic network, so that the passengers can 

complete the trip quickly and conveniently through the 

mixed traffic mode. Based on the synchronization theory of 

stochastic coupled network, the synchronization problem of 

bilayer coupled public traffic network under stochastic 

disturbance is studied. Through numerical simulation, the 

impact of stochastic disturbance, such as traffic accidents, 

traffic signals, vehicle failures and other random events on 

the balance of the bilayer coupled public traffic network are 

obtained. 
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