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Abstract—This paper introduces a software application
VecText that is used to convert raw text data into a struc-
tured format suitable for various data mining tools. VecText
supports most of the common operations needed for text data
preprocessing as well as not very usual functions. Its graph-
ical user interface enables user-friendly software employment
without requiring specialized technical skills and knowledge
of a particular programming language together with its library
names and functions. The command line interface mode, where
the options are specified using the command line parameters,
enables incorporating the application into a more complicated
data mining process integrating several software packages or
performing multiple conversions in a batch. Besides introducing
the tool, the paper also summarizes various techniques that are
being applied when deriving a structured representation of texts
in the form of a document-term matrix and compares several
popular text mining frameworks and tools.

Index Terms—VecText, text mining, natural language
processing, vector space model, document preprocessing,
document-term matrix.

I. INTRODUCTION

THE discipline concerned with mining useful knowledge
from large amounts of text data, known as text mining,

has gained great attention as the volume of available text data
from many sources has been significantly increasing. Text
mining involves general tasks such as text categorization,
information extraction, single- or multi-document document
summarization, clustering, association rules mining, or sen-
timent analysis [1], [2].

As the manual processing of the data is usually not fea-
sible, automated artificial intelligence, machine learning, or
statistical methods are used to solve numerous tasks. Exam-
ples of specific applications include categorization of news-
paper articles or web pages, e-mail filtering, organization of
a library, customer feedback handling, extracting information
from lawsuit documents, competitive intelligence, extraction
of topic trends in text streams, discovering semantic relations
between events, or customer satisfaction analysis [3], [4], [5],
[6], [7], [8], [9].

Many of the algorithms used to accomplish the tasks
require the data to be converted to a structured format.
Effective and efficient text mining thus heavily relies on
the application of various preprocessing techniques. Their
goal is to infer or extract structured representations from
unstructured plain textual data [10].

A widely used structured format is the vector space model
proposed by Salton [11]. Every document is represented
by a vector where individual dimensions correspond to the
features (usually the terms) and the values are the weights
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(importance) of the features. All vectors then form so-
called document-term matrix where the rows represent the
documents and the columns correspond to the terms in
the documents. Very often, the features correspond to the
words contained in the documents. Such a simple approach,
known as the bag-of-words approach, is popular because of
its simplicity and straightforward process of creation while
providing satisfactory results [12].

Preprocessing of texts, i.e., a conversion to a structured
representation, is a procedure having a significant impact
on the process and results of text mining. The procedure
can consist of just a few simple steps or can contain a
series of advanced processing phases ordered in a particular
sequence. Preprocessing methods include, e.g., online text
cleaning, white space removal, case folding, spelling errors
corrections, abbreviations expanding, stemming, stop words
removal, negation handling, or feature selection [13], [14],
[15]. Some of the natural language processing techniques,
such as tokenization, stemming, part-of-speech tagging, syn-
tactical or shallow parsing, are a subset of these methods
requiring knowledge of the language to be processed [10].

What will work best for a given knowledge discovery
task is not known in advance and strongly depends not
only on the data but also on the preprocessing operations.
Thus, a possibility to create different structured text data
representations and make them ready for experimenting and
finding an optimal solution is often essential.

The application of a specific preprocessing technique
requires, of course, familiarity with the technique. Besides
understanding the purpose and principle, one needs to know
what subroutine/class/method/tool in a programming lan-
guage or data mining framework where the data is ana-
lyzed to use. In the case some functions or methods in
a programming language are used, their parameters and
return values need to be known together with the syntax
of the given language. The individual preprocessing steps
also need to be arranged in a proper sequence which makes
this task quite difficult. For some experiments, especially
when finding an acceptable set of preprocessing techniques
and their parameters, a possibility of automating the entire
process with varying parameters is useful as well.

Text analytics is becoming more and more attractive not
only for many commercial companies in order to, for exam-
ple, get insights on customers and markets [16]. Text mining
and natural language processing have become an integral
part of many computer science study programs in the entire
world. A tool that facilitates some basic text data processing
tasks, that can be efficiently adopted by researchers and
enthusiasts and that can be easily incorporated into an
educational process is attractive.

This paper introduces VecText, a software package built on
open-source technologies, that provides extensive function-
ality related to converting raw texts to a structured repre-
sentation. Compared to existing tools, VecText provides sub-
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stantially more preprocessing possibilities and is not bound
to any particular data mining framework or programming
language. VecText has been used in research activities of
the author as well as in the course focused on text min-
ing at Mendel University in Brno. Besides introducing the
software tool, the paper also summarizes various approaches
to derive a structured representation of texts in the form of
a document-term matrix to be used by various data mining
tools in a knowledge discovery process.

II. THE GENERAL PROCESS OF THE CONVERSION

The documents to be converted need to be located, read,
and possibly filtered so only desired documents (e.g., docu-
ments from specified classes or documents containing rele-
vant information) further processed. Long or semi-structured
documents might be segmented into smaller pieces, such
as sentences or elements delimited by tags of a markup
language. Then, unwanted characters and their sequences
(e.g., digits, punctuation, and other special symbols) are
removed and each document or its pieces is broken down into
individual tokens (useful units for processing). The tokens
might be somehow transformed (e.g., stemmed, replaced by
an alternative, converted to lower/upper case), assembled
(into n-grams that are sequences of n successive tokens),
or removed according to given rules (minimal or maximal
length, local/global/document frequency, presence in a list of
unwanted tokens or absence in a list of allowed tokens). The
filtered or derived features, referred to as terms, later form
the features of a structured representation of the documents.

Subsequently, the weights of individual terms in the doc-
uments are quantified. The weight wij of every term i in
document j is determined by three components – a local
weight lwij representing the frequency of term i in document
j, a global weight gwi reflecting the discriminative ability
of term i, based on the distribution of the term in the entire
document collection, and a normalization factor nj , given
by the properties of document j and correcting the impact
of different document lengths [11]:

wij =
lwij ∗ gwi

nj

The calculation formulae of some commonly used local
and global weights and normalization factors can be found
in tables I–III. The calculated values of wij then comprise
the components of the document-term matrix that is being
generated.

After performing some of the above-mentioned steps and
calculating the values of the document-term matrix compo-
nents, the data is ready for further analysis. The data is in
an internal form (operational memory) of the given software
package performing the preprocessing stage and some data
mining algorithms might be applied to it (for example, a
clustering or classification algorithm). When another data
mining software will be used, the data usually needs to be
stored in a file with a certain structure (format) required by
the software. Besides the document-term matrix, additional
files with supplementary information are sometimes required
(e.g., attribute names in the c5 package [17] or class labels
for cluster quality evaluation in CLUTO [18]).

III. EXISTING TOOLS

There are several tools enabling conversions of raw data
into a structured form in current popular data mining frame-
works available. The R programming language provides a
framework for text mining applications – the tm package.
This package enables loading and filtering the documents,
some basic transformations (whitespace stripping, lowercase
conversion, stemming, stop words removal, phrases replace-
ment, or punctuation and numbers removal), and creating
document-term matrices [19].

In Matlab, the Text to Matrix Generator (TMG) toolbox
can be used for text mining tasks. The toolbox provides,
besides a relatively simple basic document-term matrix cre-
ation, also other modules implementing data mining algo-
rithms, like clustering, classification, dimensionality reduc-
tion, and others. Most of TMG is written in MATLAB, but
a large segment of the indexing phase is written in Perl [20].

The StringToWordVector filter in Weka converts text
strings into a set of attributes representing word occurrences
in the strings. The tokens are determined according to the
supplied tokenizing algorithm. The filter supports a few
weighting schemes (boolean word presence, word counts,
logarithm, inverse document frequency), filtering based on
total word frequency (in every class/entire data set), stop-
words removal, and stemming [21].

A simple script doc2mat written in Perl is used to infer a
document-term matrix from a text file containing a document
on every row. Porter’s stemming, stop words removal (using
an internal or user-supplied list of English stop words),
removing words containing numeric digits, and filtering
out non-alphanumeric characters and short terms might be
applied. The output is a document-term matrix in a matrix
format compatible with CLUTO application [18] together
with the dictionary (column labels), class labels (when ap-
plicable), and a token representation of each document after
performing the tokenization and preprocessing when desired.

The NLTK library for Python provides functions for tok-
enization, stemming, lemmatization, sentence segmentation,
parsing, or part-of-speech tagging [22]. Methods from the
scikit-learn library [23] can be used for stripping accents,
lowercasing, stop words filtering, composing n-grams, using
an existing dictionary, filtering words according to their
relative document frequency, and calculating a few weights
to form a document-term matrix.

The available tools are often bound to a certain pro-
gramming language or software package. This means that
a data engineer needs to understand the syntax of the given
language and must be able to write a code implementing
the desired steps. Familiarity with the names of various
modules/libraries/packages, their functions, input parameters,
return values etc. is also required. Some of the tools provide
only a limited number of preprocessing steps and parameters
setting. It is often necessary to specify the preprocessing
steps using a proper sequence of commands, too, while the
user-friendliness is modest.

IV. SOFTWARE DESCRIPTION

As an alternative to existing tools, VecText provides the
functionality that is not bound to specific software or pro-
gramming language. It focuses only on the preprocessing
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VecText core

graphical user interface command line interface

raw text
document-

term
matrix

preprocessing
parametersTk

Lingua::Stem::Snowball

URI::Find

Win32::LongPath

Fig. 1. The architecture of VecText.

phase and can be used to prepare data for a wide variety
of machine learning tools and programming languages. It
enables choosing from many techniques to be applied to
data without the necessity of specifying their order. Numbers
of options for these parameters enable finding a suitable
structured representation for a given task. A graphical user
interface can be used to even simplify the task for not much-
experienced researchers.

A. Software Architecture

The application is written in the interpreted programming
language Perl [24] which runs on more than 100 platforms.
To run VecText a user needs a perl interpreter installed.

A part of VecText’s functionality is implemented by
proven external modules (e.g., Lingua::Stem::Snowball for
stemming or Win32::LongPath for working with long file
names on Windows) freely available at the Comprehensive
Perl Archive Network (CPAN)(www.cpan.org). The graphical
user interface is implemented in Perl/Tk, a widely used
graphical interface for Perl. This extension and related li-
braries can be also obtained from the CPAN archive.

There are two interfaces to the VecText core which ensures
the conversion itself. Both serve for obtaining the parameters
to be used in the text preprocessing phase from a user.
The graphical user interface enables user-friendly software
employment without requiring specialized technical skills
and knowledge of a particular programming language, names
of libraries and their functions, etc. All preprocessing actions
are specified using common graphical elements organized
into logically related blocks. In the command line interface
mode, all preprocessing options must be specified using
command line parameters. This way of non-interactive com-
munication enables incorporating the application into a more
complicated data mining process integrating several software
packages or performing multiple conversions in a batch.

The entire project is hosted at
https://sourceforge.net/projects/vectext/ where the necessary
resources, including documentation and a user manual, are
available.

B. Software Functionalities

The application requires that the input text data to be
converted to vectors is stored in a text file where every row
contains one original document in the specified encoding.
The data might be alternatively stored in directories in a

reviews.txt

positive Very good product.

negative Bad product.

negative Low quality.

positive Great!!!

...

/positive/
review1.txt
review2.txt
...

/negative/
review1.txt
review2.txt
...

Fig. 2. Raw texts as the source data: left – in one file, right – in multiple
files and directories.

reviews.txt
2018-10-14 positive Very good product.

2018-10-20 negative Bad product.

2018-11-01 negative Low quality.

2018-11-01 positive Great!!!

...
↑ ↑
remove use as class label

Fig. 3. Skipping initial two tokens, the second will be used as a class
label.

specified location. Then, all files in these folders will be
processed (one file is one document). The directories’ names
will be used as the first tokens in each document and could
be later used as, e.g., class labels, see Fig. 2.

A few leading tokens (pieces of text separated by spaces,
commas, or semicolons) containing, e.g., document labels,
might be skipped and not included in the further processing.
One of such tokens might represent a class label for the doc-
ument which is needed, e.g., for classification or supervised
feature selection problems, see Fig. 3. A user might also
specify what classes of documents should be later processed.
When a user wants to work with just a subset of the data,
the desired number of documents from the entire collection
might be randomly selected.

If the text of the documents is marked by an SGML
based markup language [25] only the content of selected
elements (e.g., the <text> element used in the Reuters
dataset [26]) might be processed. A user might also request
splitting the documents into sentences. At this moment,
sentences boundaries are simply determined by occurrences
of given characters (typically .!?;); these characters might be
enumerated by the user.

The application performs case folding as desired (no case
folding, converting to upper or lower case) and filters out
non-alphanumeric characters, while optionally keeping user-
provided symbols (e.g., abbreviations), numbers, or emoti-
cons. If the user provides a list of stop words [1] these words
are excluded from further processing. When a dictionary (a
list of allowed words) is supplied the words that are not in
it are eliminated. This is useful, e.g., when creating a test
data set that must have the same attributes as the training
set, or when it makes sense to use a dictionary from a given
domain.

When supplied, rules for replacing some text with another
(e.g., “European Union” → “EU” are applied. Another
technique used to modify the original words is stemming.
A stemming procedure is based on Snowball, a language de-
signed for creating stemming algorithms [27], and stemming
rules implemented for any natural language might be used.
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The price is toooo <b>high</b>!!! It exceeds $ 100 :-(y SGML tags and entities removed

The price is toooo high!!! It exceeds $ 100 :-(y replacement rules applied (e.g., $→ USD)

The price is toooo high!!! It exceeds USD :-(y preserving emoticons (e.g., :-(→ sad)

The price is toooo high!!! It exceeds USD sady special characters and numbers replaced

The price is toooo high It exceeds USD sady collapsing repeating characters

The price is too high It exceeds USD sady replacing short words (minimal length = 3)

The price too high exceeds USD sady removing stop words

price high exceeds USD sady stemming

price high exceed USD sady converting to lower case

price high exceed usd sad

Fig. 4. An example of a process of raw text transformation. Pieces
of the text that are subject to modification are emphasized before the
transformation.

Words with the length longer or shorter than desired
might be filtered out. Single words might be combined into
sequences of successive words, known as n-grams. A user
might specify the value of n and thus generate 2-grams, 3-
grams, etc., including their combinations (e.g., generating 2-
and 3-grams together).

An example of a text transformation with a few prepro-
cessing techniques applied can be found in Fig. 4.

The user can choose from a wide variety of local and
global weights and normalizations. Local weighting include
Binary (Term Presence), Term Frequency, Logarithmic, Aug-
mented Normalized Term Frequency (with parameter K spec-
ification), Okapi’s TF factor [28], Normalized Logarithm,
Square root, Augmented logarithm, Augmented average TF,
Changed-coefficient average TF [29], Alternate Logarithm
[30], Squared TF, DFR-like normalization [31], and Thresh-
olded TF. For a detailed description of these weights see
table I.

Global weighting possibilities include Inverse Document
Frequency (IDF) [32], Probabilistic Inverse Document Fre-
quency, Global frequency IDF, Entropy, Log-global fre-
quency IDF, Incremented global frequency IDF, Square root
global frequency IDF [29], Inverse total term frequency [32],
and Squared IDF [31], see table II.

Normalization schemes, described in table III, include
Cosine [29], Max Weight, Sum of Weights, Fourth Normal-
ization [30], Max TF, Square root, and Logarithm [18].

When a logarithm is needed to calculate a weight, a
user decides whether to use the common or natural one.
Considering the number of term occurrences, a user might
specify a minimal and maximal local frequency (in a docu-
ment), global frequency (in the entire collection), document
frequency for the terms, the number of most frequent words

TABLE I
CALCULATING THE LOCAL WEIGHT FOR TERM i IN DOCUMENT j (fij IS
THE FREQUENCY OF TERM i IN DOCUMENT j , aj IS average(fj), xj IS
max(fj), k IS A USER SPECIFIED CONSTANT BETWEEN 0 AND 1, lavg IS

THE AVERAGE DOCUMENT LENGTH, lj IS THE LENGTH OF DOCUMENT
j).

Weight name Value

Binary (Term Presence) 0 if fij = 0
1 if fij > 0

Term Frequency (TF) fij
Squared TF f2

ij

Thresholded TF
0 if fij = 0
1 if fij = 1
2 if fij >= 2

Logaritm 0 if fij = 0
log (fij + 1) if fij > 0

Alternate Logarithm 0 if fij = 0
1 + log fij if fij > 0

Normalized Logarithm
0 if fij = 0
1+log fij
1+log aj

if fij > 0

Augmented Normalized
TF

0 if fij = 0

k + (1− k)

(
fij
xj

)
if fij > 0

Changed-coefficient Aver-
age TF

0 if fij = 0

k + (1− k)
fij
xj

if fij > 0

Square Root
0 if fij = 0√

fij − 0.5 + 1 if fij > 0

Augmented Logarithm
0 if fij = 0
k + (1− k) log(fij+1) if fij > 0

Augmented Average TF
0 if fij = 0

k + (1− k)
fij
aj

if fij > 0

DFR-like Normalization fij ∗
lavg

lj

Okapi’s TF Factor
fij

2+fij

TABLE II
CALCULATING GLOBAL WEIGHTS FOR TERM i (N IS THE NUMBER OF

DOCUMENTS IN THE COLLECTION, ni IS THE NUMBER OF DOCUMENTS
CONTAINING TERM i (DOCUMENT FREQUENCY), fij IS THE FREQUENCY
OF TERM i IN DOCUMENT j , Fi IS THE GLOBAL FREQUENCY OF TERM i,

AND lj IS THE LENGTH OF DOCUMENT j).

Weight name Value
None 1

Inverse Document Frequency (IDF) log N
ni

Squared IDF log2 N
ni

Probabilistic IDF logN−ni
ni

Global frequency IDF Fi
ni

Entropy 1 +

N∑
j=1

fij
Fi

log
fij
Fi

logN
,

Incremented global frequency IDF Fi
ni

+ 1

Log-global frequency IDF log
(
Fi
ni

+ 1
)

Square root global frequency IDF
√

Fi
ni
− 0.9

Inverse total term frequency log

∑N

j=1
lj

Fi

to keep, the percentage of the words with highest document
frequency to keep in the dictionary, or relative document
frequency.

The output is a document-term matrix in the desired
format created according to the user-specified rules. The sup-
ported output formats include Attribute-Relation File Format
(ARFF), eXtensible Attribute-Relation File Format (XRFF),
both also in sparse alternations [21], Comma-separated val-
ues (CSV) [33], sparse and dense matrix formats for software
packages Cluto [18], c4.5 or c5 [34], SVMlight [12], and
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TABLE III
NORMALIZATION OF WEIGHTS IN DOCUMENT j (gwi IS A VALUE OF THE
GLOBAL WEIGHT OF TERM i, lwij IS A VALUE OF THE GLOBAL WEIGHT

OF TERM i IN DOCUMENT j , m IS THE NUMBER OF TERMS IN
DOCUMENT j , AND fij IS THE FREQUENCY OF TERM i IN DOCUMENT j).

Weight name Value
None 1

Cosine

√
m∑
i=1

(gwi ∗ lwij)
2

Sum of weights
m∑
i=1

gwi ∗ lwij

Max weight max gwi ∗ lwij

Max TF 0.5 + 0.5 ∗ gwi∗lwij

max gwi∗lwij

Square root
√

gwi ∗ lwij

Logarithm log gwi ∗ lwij

Fourth normalization
m∑
i=1

(gwi ∗ lwij)
4

the Yale sparse matrix format [35]. If desired, the order of
vectors representing the processed documents on the output is
randomized. The attributes in the document-term matrix are
sorted alphabetically or according to the document frequency.

Besides the vectors representing the processed documents,
a user decides on generating a dictionary file (optionally
with global term frequencies or global term frequencies for
individual classes), simple statistics (containing the numbers
of documents in individual classes, the number of unique
terms, minimal, maximal, and average document lengths,
and the variance), original documents satisfying the specified
preprocessing rules (e.g., documents from given classes,
containing only allowed words), and a file with the generated
terms (tokens). It is also possible to execute just the prepro-
cessing phase and not to produce the document-term matrix
in order to only generate a dictionary, filter the documents
according to some rules, clean the texts and prepare them
for further processing.

To help the users define all necessary and desired pa-
rameters for the command line mode, the application with
the graphical interface enables generating the string with
command line parameters based on the current values of all
form elements in the application window. These parameter
settings are returned in the form of a text string and might
be simply copied to, e.g., a batch file or script.

V. ILLUSTRATIVE EXAMPLES

The application can be used to infer a structured rep-
resentation from an arbitrary number of texts having vari-
ous forms (long/short, formal/informal, with/without HTML
tags, etc.) related to any domain. One example, see the
screenshot in Fig. 6, shows the usage of VecText in a
research focused on automatic extraction of product features
from customer reviews published on amazon.com [36]. The
collection consisting of several tens of thousands of reviews
needed to be transformed into a structured representation to
be further analyzed by data mining algorithms (clustering,
feature selection and ranking). The reviews were placed in
a text file where every row contained the number of stars
assigned by a customer, a publication date, and the text of the
review in the UTF-8 encoding. For the task, only the review
text was relevant so the first two tokens were skipped.

The document-term matrix was written to a file with the
same filestem as the input file had. The file was placed in the
same directory where was the input file located. To cluster
the reviews, the CLUTO application was used so the output
format was set to “CLUTO (sparse)” (a space-saving variant
storing only non zero values as the vectors representing the
texts are generally very sparse). To obtain some information
about the nature of the documents, statistical information was
printed too. To be able to later process the content of the
reviews with knowledge of the clusters they belonged to,
the original content of the documents fulfilling the specified
criteria needed to be stored as well.

Because very rare terms usually play no or very little role
during the analysis, terms that appeared in less than four
documents were filtered out together with terms having just
one character. Stopwords contained in the supplied list were
removed as well. To assign a weight to document features,
the popular tf-idf weighting scheme with cosine normaliza-
tion was used. The calculated numbers were printed with
three decimal places.

Another example is an analysis of statistical properties of
texts of movie reviews from the IMDB database [37]. This
information can be found in the file with the dictionary and
statistics, see Fig. V, generated by VecText upon request.
No vectors representing the documents needed to be created
so only the preprocessing phase was carried out. In the set
of 10,000 randomly selected documents, the most frequent
words expectedly contain “the”, “a”, “and”, “of” and so like.
On the 19th position, with the global frequency equal to
about two-thirds of the frequency of the most frequent word,
appeared the word “movie”. Seven positions further with
slightly smaller frequency was another not typical stop word
– “film”.

VI. DISCUSSION

Converting raw texts to a format suitable for further
analysis is a procedure having a significant impact on the
process and results of knowledge discovery. The procedure
can be very simple or can consist of many carefully selected
preprocessing steps arranged in a specific order. It is not
possible to determine what techniques should be used in
advance. Everything strongly depends on the analyzed data.
For example, in two almost identical tasks but with data
from different domains (hotel accommodation and medical
service), different preprocessing techniques needed to be
applied in order to obtain meaningful results[38], [39]. A
possibility to create different structured representations of
documents and experimenting with them is therefore often
crucial.

Text mining has become a very topical discipline with
applications in many domains. Besides the classical data
mining software applications, specialized tools for processing
unstructured text are required by researches, practitioners,
or even students. Existing tools are generally bound to a
specific programming language (e.g., Python, R, Matlab)
and thus require knowledge of the language so a user can
write the necessary code transforming raw texts to a format
suitable for further analysis. Besides knowing, what library,
function, or parameters to use, one needs to understand the
principles (e.g., object-orientation design) and syntax (i.e.,
control flow statements, data types, variables) of the language
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Dictionary:

#WORD TOTAL neg pos
the 9913 4901 5012
a 9681 4779 4902
and 9660 4741 4919
of 9480 4683 4797
to 9360 4671 4689
this 9063 4567 4496
is 8938 4373 4565
it 8906 4423 4483
in 8794 4295 4499
that 8094 4088 4006
...
movie 6136 3296 2840
...
film 5539 2681 2858
...

Statistics:

Preprocessing parameters
========================
input directory: C:/VecText/imdb
minimal word length: 0
minimal global word frequency: 4
...

Data set characteristics
========================
10000 documents
20938 unique attributes

class: neg
----------
4934 documents
19529 unique attributes
terms number: min 10, max 1507,
avg 227.286988244832, var 26831.2042206415

class: pos
----------
5066 documents
20044 unique attributes
terms number: min 12, max 1809,
avg 232.741610738255, var 31105.5848338839

Fig. 5. The files with the dictionary and statistical information about the
texts for 10,000 randomly selected texts from the IMDB reviews database.

that might be discouraging for certain group of people.
Other tools, like Weka or doc2mat, provide a graphical or
command line interface to specify all necessary parameters
for the conversion of texts to vectors. Their possibilities
are, however, quite limited and the user-friendliness is often
moderate. A table comparing the properties of a few tools
can be found in Tab. IV.

VecText eliminates many disadvantages of the existing
tools for converting texts to a structured format. On the
other hand, it is fair to say that the solutions that are a
part of a programming language are more flexible because
a programmer can change whatever operation in the entire
process and has complete control over it. Because VecText
provides so many options, it also runs significantly slower
than tools implementing only some basic functionality like,
for example, doc2mat. VecText is, therefore, more applicable
in prototyping a text mining solution and in applications that
are not critical from the performance point of view.

The usability of VecText has been proven by applications
in the research of the text mining group at the Mendel

University during a few last years (see, e.g., [40], [6]), in
research projects of many cooperating students, in student’s
theses, and in the educational process (text mining course)
at the university where is the author active.

Besides the bag of words model, another popular format
for representing texts has gained attention in the last few
years. It is based on continuous word vectors, known as
word embeddings, learned using a neural network model. The
vectors, that have a significantly lower number of dimensions
than in a standard bag of words model, try to maximize the
corpus likelihood [41]. Popular models proposed by Mikolov
[42] include the CBOW (continuous bag of words) and
skipgram models. CBOW tries to predict current word based
on its context while the skipgram model predicts words in
the context. The inputs and outputs of both neural models
are one-hot encoded vectors (vector where only one out of
its units is 1 and all others are 0) [43]. To prepare the data
for embeddings training, some preprocessing can be applied
too [44], [45] so VecText is relevant to this domain as well.

VII. CONCLUSIONS

The paper introduces a software application VecText that
is used to convert raw text data into a structured vector
format according to the user supplied rules and requirements.
It supports most of the operations needed for common text
data preprocessing tasks as well as not very usual functions,
both adjustable by user-defined parameters. Working in two
modes, graphical and command line, it enables uncompli-
cated use in the interactive or batch modes.

The application is based on open source technologies
and might be easily extended or modified by researchers
with programming skills. It is available for many operating
systems thanks to the implementation in the interpreted
programming language Perl.

The usability has been proven by an application in the
research of the author during the last years, by many co-
operating students, and in the educational process at the
universities where is the author active.
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[6] J. Žižka and F. Dařena, “Automated mining of relevant n-grams in
relation to predominant topics of text documents,” in Text, Speech, and
Dialogue: 18th International Conference, TSD 2015, Pilsen, Czech
Republic, September 14-17, 2015, P. Král and V. Matoušek, Eds.
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and K. Pala, Eds. Springer, 2010, pp. 224–231.

[41] Y. Li, L. Xu, F. Tian, L. Jiang, X. Zhong, and E. Chen, “Word
embedding revisited: A new representation learning and explicit ma-
trix factorization perspective,” in Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence (IJCAI 2015).
AAAI Press, 2015, pp. 3650–3656.

[42] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” CoRR, vol. abs/1301.3781,
2013.

[43] X. Rong, “word2vec parameter learning explained,” CoRR, vol.
abs/1411.2738, 2014.

[44] Q. Li, S. Shah, X. Liu, and A. Nourbakhsh, “Data sets: Word
embeddings learned from tweets and general data,” in Proceedings
of the Eleventh International AAAI Conference on Web and Social
Media (ICWSM 2017), 2017, pp. 428–436.

[45] A. Leeuwenberg, M. Vela, J. Dehdari, and J. van Genabith, “A
minimally supervised approach for synonym extraction with word
embeddings,” The Prague Bulletin of Mathematical Linguistics, no.
105, pp. 111–142, 2016.
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