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Abstract—Since linear canonical wavelet transform (LCWT)
breaks through the limitation of wavelet transform in time-
Fourier domain analysis, LCWT has become a useful math-
ematical tool in the applied mathematics, engineering and
signal processing fields. The multi-resolution analysis (MRA)
associated with LCWT can not only provides a method for
constructing orthogonal wavelet associated LCWT, but also
develops a theoretical basis for fast LCWT algorithm, and thus
plays a key role for its prospective applications. In this paper,
inspired by sampling theorem of band-limited signal in LCT
domain, the MRA associated with LCWT is studied firstly.
Moreover, the construction method of orthogonal wavelets
for LCWT is developed. Finally, two examples of generalized
orthogonal Haar and Shannon wavelets for LCWT are deduced.

Index Terms—linear canonical wavelet transform, multireso-
lution analysis, wavelet transform, linear canonical transform,
linear canonical convolution.

I. INTRODUCTION

FOURIER transform (FT) and fractional Fourier trans-
form (FRFT) are important tools in the applied mathe-

matics, engineering and signal processing fields [1], [2]. As
a generalization of FT and FRFT, linear canonical transform
(LCT) is a three parameters family of linear integral trans-
form [3], [4]. Since LCT has more degrees of freedom than
FT and FRFT, it has been applied to many areas, such as
signal separation, digital watermarking and filter design [5]–
[10].

Owing to its global kernel, LCT is not capable of indi-
cating the time localization of the LCT spectral components,
and thus LCT is not suitable to process non-stationary signal
whose LCT spectral characteristics change over time. The
short time LCT is thus proposed to overcome this drawback
[11]. Specifically, the original signal is firstly segmented by
a time-localized window, and then performed LCT spectral
analysis for each segment. STLCT is capable of offering a
joint signal representation in both time and LCT domains,
but its fixed window width limits the practical applications ,
it is impossible to provide good time resolution and spectral
resolution simultaneously. Because of this, it is desirable to
propose a novel approaches whose window can be adjusted.

The linear canonical wavelet transform (LCWT) is an
efficient tool to analyze time-varying LCT spectra. As a
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generalization of wavelet transform in LCT domain, LCWT
can represent adaptively signal in both time and LCT do-
mains owing to its adjustable window. Therefore, LCWT not
only breaks through the limitation of WT in time-Fourier
domain analysis, but also overcomes the limitation of LCT
in indicating the signal’s local characteristics [12]. LCWT
successfully inherits the advantages of multiresolution anal-
ysis (MRA) for WT. The MRA and the construction of
orthogonal wavelets associated with LCWT serves a crucial
role for its perspective applications. Thus, it is necessary to
detect the MRA and the construction of orthogonal wavelets
associated with LCWT. In this paper, we first investigate the
MRA associated with LCWT. In further, the construction
of orthogonal wavelet for LCWT is developed and two
examples of orthogonal wavelet for LCWT are presented.

The remaining sections of this paper are organized as
follows: the preliminaries are summarized in section II. In
section III, the definition and physical explanation of LCWT
are presented. Furthermore, the MRA and the construction of
orthogonal wavelet associated with LCWT are investigated in
Section IV and In Section V respectively. In section VI, two
examples of orthogonal wavelet for LCWT are presented.
The conclusion is concluded in Section VII.

II. PRELIMINARIES

A. Linear canonical transform

The linear canonical transform (LCT) with real matrix A1
of f (t) is defined as [4]

LA1
f (u) = L A1 [ f (t)](u) =

∫
R

f (t)KA1(t,u)dt (1)

with the kernel

KA1(t,u) =


1√

i2πb1
e

i(a1t2+d1u2−2tu)
2b1 , b1 6= 0

√
d1e

ic1d1u2
2 δ (t−d1u), b1 = 0

(2)

where A1 = (a1,b1,c1,d1) satisfying a1d1−b1c1 = 1. LA1
f (u)

and L A1 denote the LCT of f (t) and the LCT operator
respectively. When b1 6= 0, the inverse LCT is given by

f (t) = L A−1
1 [LA1

f (u)](t) =
∫

R
LA1

f (u)K∗A1
(t,u)du (3)

where the kernel K∗A1
(t,u) = KA−1

1
(t,u) and A−1

1 denotes the
inverse matrix of A1.

When A1 = (0,1,−1,0), LCT reduces to Fourier transform
(FT). The relationship between LCT and FT is shown as
follows [18]:

LA1
f (u) = L A1 [ f (t)](u) =

1√
ib1

e
id1
2b1

u2
F [ f (t)e

ia1
2b1

t2
](u/b1)

(4)

IAENG International Journal of Computer Science, 46:2, IJCS_46_2_23

(Advance online publication: 27 May 2019)

 
______________________________________________________________________________________ 



Lemma 1 The discrete time LCT (DTLCT) of a sequence
fn ∈ `2(Z) has the chirp periodicity [19], i.e.,

L̃A1
fn (u+2kπb1)e

− i
2

d1
b1

(u+2kπb1)
2
= L̃A1

fn (u)e
− i

2
d1
b1

u2
(5)

where L̃A1
fn (u) denotes the DTLCT of fn, defined as

L̃A1
fn (u) = L̃ A1 [ fn](u) = ∑

n∈Z
fnKA1(n,u) (6)

Lemma 2 The Parseval identity associated with LCT is
given by [4]∫

R
f (t)g∗(t)dt =

∫
R

LA1
f (u)[LA1

g (u)]∗du (7)

In particularly, if f (t) = g(t), then∫
R
| f (t)|2dt =

∫
R
|LA1

f (u)|2du (8)

B. Linear canonical convolution

The linear canonical convolution of f (t) and g(t) is given
by [18]

f (t)ΘA1g(t) =
∫ +∞

−∞

f (τ)g(t− τ)e−
ia1
b1

τ(t−τ/2)dτ (9)

where ΘA1 denotes the linear canonical convolution operator.
Lemma 3 The convolution theorem associated with LCT

is given by [18]

L A1 [ f (t)ΘA1g(t)](u) =
√

2πLA1
f (u)Fg(u/b1) (10)

where LA1
f (u) denotes the LCT of f (t), Fg(u/b1) denotes the

FT of g(t) with its argument scaled by 1/b1.

III. LINEAR CANONICAL WAVELET TRANSFORM

The LCWT with real matrix parameter A1 of f (t) is
defined as [12]

W A1
f (a,b) = W A1 [ f (t)](a,b) =

∫
R

f (t)ψ∗a,b,A1
(t)dt

=
1√
a

∫
R

f (t)ψ∗(
t−b

a
)e

i
2 (t

2−b2)· a1
b1 dt

(11)

where
ψa,b,A1(t) =

1√
a

ψ(
t−b

a
)e−

i
2 (t

2−b2)· a1
b1 , (12)

ψ( t−b
a )(a ∈ R+,b ∈ R) is the continuous wavelet function.

When A1 = (0,1,−1,0), LCWT reduces to the classical WT.
When A1 = (cosα,sinα,−sinα,cosα), LCWT reduces to
the fractional wavelet transform (FRWT) [13]–[17].

Based on the convolution theorem associated with LCT
(see Lemma 3), LCWT can be rewritten as [12]

W A1
f (a,b) = f (t)ΘA1

[
1√
a

ψ
∗(− t

a
)

]
(13)

Hence, LCWT can be viewed as a linear canonical convolu-
tion of signal with the conjugate of mother wavelet function
after scale expansion and time reversal in the time domain.

Then, from Eq. (10) and Eq. (13), LCWT can be expressed
in term of the LCT, i.e.,

W A1
f (a,b) =

∫
R

√
2πaLA1

f (u)F∗ψ(au/b1)K∗A1
(b,u)du (14)

The Eq.(14) states that each linear canonical wavelet com-
ponent can be viewed as a scaled bandpass filter in the

LCT domain, and thus the multiplication of LA1
f (u) and

F∗ψ(au/b1) can provide the local properties of f (t) in the
LCT domain. This implies that LCWT can breaks through
the limitation of WT in the time-Fourier domain analysis,
represents adaptively signal in the time-LCT domain by its
adjustable analysis window.

IV. MULTIRESOLUTION ANALYSIS ASSOCIATED WITH
LCWT

As a generalization of wavelet transform in the LCT
domain, LCWT successfully inherits the advantages of MRA
for wavelet transform. In this section, inspired by the sam-
pling theorem of band-limited signal in LCT domain, the
MRA associated with LCWT is established.

The sampling theorem of band-limited signal associated
with LCT is shown as [20]

f (t) = ∑
n∈Z

f (nTs)sinc
[

ΩA1(t−nTs)

b1π

]
e−

i
2 (t

2−(nTs)
2)

a1
b1 (15)

where Ts is the sampling period and f (t) is band-limited
signal in the LCT domain (i.e., LA1

f (u) = 0 when |u|> ΩA1 ).
The Eq. (15) shows that band-limited signal f (t) can be
complete recovered from the sampled values f (nTs) when
0 < Ts ≤ πb1

ΩA1
.

When ΩA1 = b1π , the set of band-limited signal in LCT
domain is denoted as V A1

0 , i.e.,

V A1
0 = { f (t)|LA1

f (u) = 0, |u| ≥ΩA1 = b1π} (16)

where sampling period Ts = 1. Therefore, according to Eq.
(15), ∀ f (t) ∈V A1

0 can be expressed as

f (t) = ∑
n∈Z

f (n)φA1,0,n. (17)

where
φA1,0,n = sinc(t−n)e−

i
2 (t

2−n2)
a1
b1 (18)

Combined with the orthogonality of {φA1,0,n}n∈Z , we can fur-

ther obtain that {φA1,0,n = sinc(t−n)e−
i
2 (t

2−n2)
a1
b1 }n∈Z forms

a standard orthonormal basis of V A1
0 .

When ΩA1 = 2b1π,Ts = 1/2, the set of band-limited signal
in LCT domain is denoted as V A1

1 , i.e.,

V A1
1 = { f (t)|LA1

f (u) = 0, |u| ≥ΩA1 = 2b1π} (19)

Therefore, according to Eq. (15), V A1
1 ⊆V A1

0 and ∀ f (t)∈V A1
1

can be expressed as

f (t) = ∑
n∈Z

f (n)φA1,1,n (20)

where
φA1,1,n = 2

1
2 sinc(2t−n)e−

i
2 [t

2−( n
2 )

2]
a1
b1 (21)

It can also be further obtained that {φA1,1,n = 2
1
2 sinc(2t −

n)e−
i
2 [t

2−( n
2 )

2]
a1
b1 }n∈Z forms a standard orthonormal basis of

V A1
1 . Since

L A1 [ f (2t)e
i
2 [(2t)2−t2]

a1
b1 ](u) =

1
2

e
3i
8 u2 a1

b1 L A1 [ f (t)](
u
2
) (22)

we have that if f (t) ∈V A1
0 , then

f (2t)e
i
2 [(2t)2−t2]

a1
b1 ∈V A1

1 (23)
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Generally, let ΩA1 = 2kπb1,Ts = 1/2k,

V A1
k = { f (t)|LA1

f (u) = 0, |u| ≥ 2kb1π}. (24)

For ∀ f (t) ∈V A1
k , we have

f (t) = ∑
n∈Z

f (
n
2k )2

k
2 sinc[(2kt−n)]e−

i
2 [t

2−( n
2k )

2]
a1
b1 (25)

= ∑
n∈Z

f (
n
2k )φA1,k,n (26)

where

φA1,k,n = 2
k
2 sinc[(2kt−n)]e−

i
2 [t

2−( n
2k )

2]
a1
b1 (27)

{φA1,k,n}n∈Z forms a standard orthonormal basis of V A1
k . For

∀k ∈ Z, we have
(1) V A1

k ⊆V A1
k+1;

(2) f (t) ∈V A1
k ⇔ f (2t)e

i
2 [(2t)2−t2]

a1
b1 ∈V A1

k+1;

(3)
⋂
k∈Z

V A1
k = {0},

⋃
k∈Z

V A1
k = L2(R);

In summary, the sampling theorem of band-limited signal
in LCT domain inspires us to define an orthogonal MRA
associated with LCWT.

Definition 1 An orthogonal MRA associated with LCWT
is defined as a sequence of closed subspace V A1

k ⊆ L2(R)(k ∈
Z) such that

(1) V A1
k ⊆V A1

k+1,∀k ∈ Z;

(2) f (t) ∈V A1
k ⇔ f (2t)e

i
2 [(2t)2−t2]

a1
b1 ∈V A1

k+1,∀k ∈ Z;

(3)
⋂
k∈Z

V A1
k = {0},

⋃
k∈Z

V A1
k = L2(R);

(4) There exists a function φ(t) ∈ L2(R) such that

{φA1,0,n = φ(t− n)e−
i
2 (t

2−n2)
a1
b1 }n∈Z is an orthonormal basis

of the subspace V A1
0 , where φ(t) is called scaling function

of the given MRA for LCWT.
Theorem 1 Assume {V A1

k }k∈Z is a orthogonal MRA
associated with LCWT, φ(t) is the corresponding scaling
function. For any k ∈ Z, these functions

{φA1,k,n(t) = 2
k
2 φ(2kt−n)e−

i
2 (t

2−( n
2k )

2)
a1
b1 }n∈Z (28)

form an orthonormal basis of the subspace V A1
k .

Proof see Appendix A.
Theorem 2 Assume ϕ(t) ∈ L2(R) and V A1

0 =

span{ϕA1,0,n(t) = φ(t − n)e
i
2 (t

2−n2)
a1
b1 }n∈Z , then the set of

functions {ϕA1,0,n = ϕ(t−n)e
i
2 (t

2−n2)
a1
b1 }n∈Z is a Riesz basis

of V A1
k if and only if there exist constants 0 < A≤ B <+∞

such that

A≤ ∑
k∈Z
|Fϕ(u/b1 +2kπ)|2 ≤ B,∀u ∈ [0,2πb1]. (29)

Proof see Appendix B.
Theorem 3 Assume {V A1

k }k∈Z is a generalized MRA of
L2(R) associated with LCWT, which is generated by ϕ(t).
Let

Fφ (u/b1) =
Fϕ(u/b1)√

∑k∈Z |Fϕ(u/b1 +2kπ)|2
, (30)

then, the set of functions {φA1,0,n(t) = φ(t −
n)e

i
2 (t

2−n2)
a1
b1 }n∈Z forms an orthonormal basis of V A1

0 .
Proof see Appendix C.

V. CONSTRUCTION OF ORTHOGONAL WAVELETS FOR
LCWT

The orthogonal wavelets for LCWT can be constructed
based on the developed MRA associated with LCWT. The
subspace W A1

k is defined as the orthogonal complement of
V A1

k in V A1
k+1, i.e.,

W A1
k ⊥V A1

k , V A1
k+1 =W A1

k ⊕V A1
k , ∀k ∈ Z (31)

Then, according to Definition 1, it can be obtained that
{W A1

k }k∈Z possess the following properties:
(1) W A1

k ⊥V A1
l ,∀k 6= l;

(2) ⊕k∈ZW A1
k = L2(R);

(3) g(t) ∈W A1
k ⇔ g(2t)e

i
2 [(2t)2−t2]

a1
b1 ∈W A1

k+1,∀k ∈ Z.
The property (2) means that an orthonormal basis of L2(R)

can be constructed by finding out an orthonormal basis of
the subspace W A1

k . The property (3) implies that a MRA
construction of L2(R) related to LCWT can be changed
to construct the orthonormal basis of W A1

0 . Therefore, the
crucial point is to construct a function ψ(t) ∈ L2(R) such

that the set of functions {ψA1,0,n = ψ(t− n)e
i
2 (t

2−n2)
a1
b1 }n∈Z

forms an orthonormal basis of W A1
0 .

Since {φA1,1,n = 2
1
2 φ(2t − n)e−

i
2 (t

2−( n
2 )

2)
a1
b1 }n∈Z form an

orthonormal basis of the subspace V A1
1 and φA1,0,0 =

φ(t)e−
i
2 t2 a1

b1 ∈ V A1
0 ⊆ V A1

1 , there exist {hn}n∈Z ∈ `2(Z) such
that

φA1,0,0 = φ(t)e−
i
2 t2 a1

b1 = ∑
n∈Z

hnφA1,1,n(t) (32)

where
hn =

√
2e

i
2

n2
4

a1
b1

∫
R

φ(t)φ(2t−n)dt. (33)

Taking LCT on both sides of above equation, then

L A1 [φ(t)e−
i
2 t2 a1

b1 ](u)

= L A1 [∑
n∈Z

hn2
1
2 φ(2t−n)e−

i
2 (t

2−( n
2 )

2)
a1
b1 ](u)

=⇒
∫

R
Ab1φ(t)e−

i
2 t2 a1

b1 e
i
2

a1t2+d1u2−2tu
b1 dt

=
∫

R
Ab1 ∑

n∈Z
hn2

1
2 φ(2t−n)e−

i
2 (t

2−( n
2 )

2)
a1
b1 e

i
2

a1t2+d1u2−2tu
b1 dt

=⇒
∫

R
φ(t)e−itu/b1dt =

∫
R

∑
n∈Z

hn2
1
2 φ(2t−n)e

i
2

a1
b1

n2
4 −itu/b1dt

ξ=2t−n
=⇒ Fφ (

u
b1

) =
1√
2

∫
R

∑
n∈Z

hnφ(ξ )e
i
2

a1
b1

n2
4 −i( ξ+n

2 )u/b1dξ

=⇒ Fφ (
u
b1

) =
1√
2 ∑

n∈Z
hne

i
2

a1
b1

n2
4 −i nu

2b1

∫
R

φ(ξ )e−i ξ u
2b1 dξ

=⇒ Fφ (
u
b1

) = Λ(
u

2b1
)Fφ (

u
2b1

)

where
Λ(

u
b1

) =
1√
2 ∑

n∈Z
hne

i
2

a1
b1

n2
4 −i nu

b1 . (34)

It can be verified that Λ(u/b1) is a 2πb1 period function.

Since {φA1,0,n = φ(t−n)e−
i
2 (t

2−n2)
a1
b1 }n∈Z is an orthonormal

basis of the subspace V A1
0 , according to Theorem 2, we have

∑
k∈Z
|Fφ (u/b1 +2kπ)|2 = 1. (35)
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Moreover, we have

∑
k∈Z
|Fφ (u/b1 +2kπ)|2

= ∑
k∈Z
|Λ( u

2b1
+ kπ)Fφ (

u
2b1

+ kπ)|2

=∑
l∈Z
|Λ( u

2b1
+2lπ)Fφ (

u
2b1

+2lπ)|2+

∑
l∈Z
|Λ( u

2b1
+2lπ +π)Fφ (

u
2b1

+2lπ +π)|2 (36)

=∑
l∈Z
|Λ( u

2b1
)|2|Fφ (

u
2b1

+2lπ)|2+

∑
l∈Z
|Λ( u

2b1
+π)|2|Fφ (

u
2b1

+2lπ +π)|2

=|Λ( u
2b1

)|2 + |Λ( u
2b1

+π)|2

It can be deduced that

|Λ( u
b1

)|2 + |Λ( u
b1

+π)|2 = 1 (37)

Since ψA1,0,0(t) = ψ(t)e−
i
2 t2 a1

b1 ∈W A1
0 ⊆ V A1

1 , there exist
{gn}n∈Z ∈ `2(Z) such that

ψA1,0,0 = ψ(t)e−
i
2 t2 a1

b1 = ∑
n∈Z

gnφA1,1,n(t) (38)

Taking LCT on both sides of above equation, then

Fψ(
u
b1

) = Γ(
u

2b1
)Fφ (

u
2b1

), (39)

where
Γ(

u
b1

) =
1√
2 ∑

n∈Z
gne

i
2

a1
b1

n2
4 −i nu

b1 . (40)

To make the set of functions {ψA1,0,n = ψ(t −
n)e

i
2 (t

2−n2)
a1
b1 }n∈Z form an orthonormal basis of W A1

0 ,
then

∑
k∈Z
|Fψ(

u
b1

+2kπ)|2 = 1. (41)

Similar to the derivation of Eq. (36), we have

|Γ( u
b1

)|2 + |Γ( u
b1

+π)|2 = 1 (42)

Moreover, since W A1
0 and V A1

0 are orthogonal in V A1
1 , then

〈φA1,0,m(t),ψA1,0,n(t)〉L2 = 0, ∀ m,n ∈ Z (43)

It can be easily deduced the following two results based on
the similar derivation of Theorem 2, i.e.,

L A1 [φA1,0,m(t)](u) =
√

2πKA1(m,u)Fφ (u/b1) (44)

L A1 [ψA1,0,n(t)](u) =
√

2πKA1(n,u)Fψ(u/b1) (45)

By using Eq. (44), Eq. (45) and Eq. (8), we have the Eq. (46).
Because { 1√

2π
e−inu/b1} is a orthonormal basis of L2[0,2πb1],

then

Λ(
u

2b1
)Γ∗(

u
2b1

)+Λ(
u

2b1
+π)Γ∗(

u
2b1

+π) = 0 a.e. ∀u ∈ R

(47)
Overall, the following theorem has been proved.

Theorem 4 Let

ψ(t) =
√

2 ∑
n∈Z

gnφ(2t−n)e
i
2

n
4

2 a1
b1 (48)

then, the set of functions {ψA1,0,n(t)}n∈Z is an orthogonal
basis of W A1

0 if and only if M(u/b1) is a unitary matrix, i.e.,

M(u/b1)M∗(u/b1) = I, a.e. ∀u ∈ R (49)

where M∗(u/b1) denotes the conjugate transpose of
M(u/b1), I denotes the identity matrix and

M(u/b1) =

(
Λ(u/b1) Λ(u/b1 +π)
Γ(u/b1) Γ(u/b1 +π)

)
(50)

If Eq. (49) holds, then there exists a function λ (u) such
that

(Γ∗(
u
b1

),Γ∗(
u
b1

+π)) = (λ (
u
b1

)Λ(
u
b1

+π),−λ (
u
b1

)Λ(
u
b1

))

(51)
Since Γ∗(u/b1) and Λ(u/b1+π) are 2πb1 periodic function,
λ (u/b1) is a 2πb1 periodic function. Therefore, λ (u/b1) can
be expanded as a Fourier series, i.e.,

λ (u/b1) = ∑
k∈Z

ckeiku/b1 , (52)

where

ck =
1

2πb1

∫ 2πb1

0
λ (u)e−iku/b1du

=
1

2πb1
[
∫

πb1

0
λ (u)e−iku/b1du+

∫ 2πb1

πb1

λ (u)e−iku/b1du]

=
1− (−1)k

2πb1

∫
πb1

0
λ (u)e−iku/b1du

Hence, λ (u/b1) can be rewritten as

λ (
u
b1

) = ∑
l∈Z

c2l+1ei(2l+1)u/b1

= eiu/b1 ∑
l∈Z

c2l+1ei2lu/b1

= eiu/b1γ(
2u
b1

)

where γ(u/b1) = ∑
l∈Z

c2l+1eilu/b1 .

Moreover, followed by the Eq. (40), we have

Λ
∗(

u
b1

+π) =
1√
2 ∑

n∈Z
h∗ne−

i
2

a1
b1

n2
4 +i n(u+b1π)

b1

=
1√
2 ∑

n∈Z
(−1)nh∗ne−

i
2

a1
b1

n2
4 +i nu

b1

Thus, let γ∗( 2u
b1
) = 1, then

Γ(
u
b1

) = λ
∗(

u
b1

)Λ∗(
u
b1

+π)

= e−iu/b1γ
∗(

2u
b1

)
1√
2 ∑

n∈Z
(−1)nh∗ne−

i
2

a1
b1

n2
4 +i nu

b1

=⇒ 1√
2 ∑

n∈Z
gne

i
2

a1
b1

n2
4 −i nu

b1 =
e−iu/b1
√

2 ∑
n∈Z

(−1)nh∗ne−
i
2

a1
b1

n2
4 +i nu

b1

=⇒gne
i
2

a1
b1

n2
4 =

∫
R

e−iu/b1 ∑
m∈Z

(−1)mh∗me−
i
2

a1
b1

m2
4 +i mu

b1 ei nu
b1 du

=⇒gne
i
2

a1
b1

n2
4 = ∑

m∈Z
(−1)mh∗me−

i
2

a1
b1

m2
4

∫
R

ei(n+m−1) u
b1 du

=⇒gne
i
2

a1
b1

n2
4 = (−1)1−nh∗1−ne−

i
2

a1
b1

(1−n)2
4

=⇒gn = (−1)1−nh∗1−ne−
i
2

a1
b1

(1−n)2
4 e−

i
2

a1
b1

n2
4
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〈φA1,0,m(t),ψA1,0,n(t)〉L2 = 〈L A1 [φA1,0,m(t)](u),L
A1 [ψA1,0,n(t)](u)〉L2

=
1
b1

e
i
2 (m

2−n2)
a1
b1

∫
R

Fφ (u/b1)F∗ψ(u/b1)e−i(m−n)u/b1du

=
1
b1

e
i
2 (m

2−n2)
a1
b1

∫
R

Λ(
u

2b1
)Γ∗(

u
2b1

)|Fφ (
u

2b1
)|2e−i(m−n)u/b1du

=
1
b1

e
i
2 (m

2−n2)
a1
b1 ∑

k∈Z

∫ 4(k+1)πb1

4kπb1

Λ(
u

2b1
)Γ∗(

u
2b1

) · |Fφ (
u

2b1
+2kπ)|2e−i(m−n)u/b1du

=
1
b1

e
i
2 (m

2−n2)
a1
b1

∫ 4(k+1)πb1

4kπb1

Λ(
u

2b1
)Γ∗(

u
2b1

) ·∑
k∈Z
|Fφ (

u
2b1

+2kπ)|2e−i(m−n)u/b1du

=
1
b1

e
i
2 (m

2−n2)
a1
b1

∫ 4πb1

0
Λ(

u
2b1

)Γ∗(
u

2b1
)e−i(m−n)u/b1du

=
1
b1

e
i
2 (m

2−n2)
a1
b1

∫ 2πb1

0
Λ(

u
2b1

)Γ∗(
u

2b1
)e−i(m−n)u/b1du+

1
b1

e
i
2 (m

2−n2)
a1
b1

∫ 4πb1

2πb1

Λ(
u

2b1
)Γ∗(

u
2b1

)e−i(m−n)u/b1du

=
1
b1

e
i
2 (m

2−n2)
a1
b1

∫ 2πb1

0
[Λ(

u
2b1

)Γ∗(
u

2b1
)+Λ(

u
2b1

+π)Γ∗(
u

2b1
+π)]e−i(m−n)u/b1du

(46)

VI. TWO EXAMPLES OF ORTHOGONAL WAVELET
ASSOCIATED WITH LCWT

In this section, two examples of orthogonal wavelet for
LCWT are given.

Example 1 Let φ(t) = χ[0,1), where χ[m,n) denotes the
characteristic function of [m,n). Followed by Eq. (59), it can

be verified that {φA1,0,n = φ(t−n)e−
i
2 (t

2−n2)
a1
b1 }n∈Z forms an

orthonormal basis of the subspace V A1
0 . In further, we have

that {V A1
k }k∈Z is an orthogonal MRA for LCWT. Hence,

hn =
√

2e−
i
2

n2
4

a1
b1

∫
R

φ(t)φ ∗(2t−n)dt =


√

2
2 n = 0
√

2
2 e−

i
2

a1
4b1 n = 1

0 other

so that

gn = (−1)1−nh∗1−ne−
i
2

a1
b1

(1−n)2
4 e−

i
2

a1
b1

n2
4 =


−
√

2
2 n = 0

√
2

2 e−
i
2

a1
4b1 n = 1

0 other

Overall, from the Eq. (38), the orthogonal wavelet associ-
ated with LCWT is shown as follows:

ψ(t) = ∑
n∈Z

gn
√

2φ(2t−n)e
i
2

a1
b1

n2
4 =−χ[0, 1

2 )
+χ[ 1

2 ,1)
(53)

According to the Eq. (34), Eq. (40) and Eq. (50), we have

M(u/b1) =
1
2

(
1+ e−iu/b1 1− e−iu/b1

−1+ e−iu/b1 −1− e−iu/b1

)
(54)

It can be easily verified that M(u/b1) is a unitary matrix.
Example 2 Let φ(t) = sinc(t) = sinπt

πt , then

Fφ (u) = F [φ(t)](u) =

{
1 |u| ≤ π

0 otherwise
(55)

Therefore, we have

∑
k∈Z
|Fφ (u/b1 +2kπ)|2 = 1. (56)

It means that {φA1,0,n = sinc(t−n)e−
i
2 (t

2−n2)
a1
b1 }n∈Z forms an

orthonormal basis of the subspace V A1
0 . In further, it can be

verified that {V A1
k }k∈Z forms an orthogonal MRA of L2(R).

Hence,

hn =
√

2e−
i
2

n2
4

a1
b1

∫
R

φ(t)φ ∗(2t−n)dt

=


√

2
2 n = 0

0 n = 2k,k 6= 0

(−1)k
√

2
(2k+1)π e−

i
2
(2k+1)2

4
a1
b1 n = 2k+1

so that

Λ(
u
b1

) =
1√
2 ∑

n∈Z
hne

i
2

a1
b1

n2
4 −i nu

b1 =

{
1 0≤ |u|< |b1|

2 π

0 |b1|
2 π ≤ |u|< |b1|π

Γ(
u
b1

)= e−iu/b1Λ
∗(

u
b1

+π)=

{
0 0≤ |u|< |b1|

2 π

e−iu/b1 |b1|
2 π ≤ |u|< |b1|π

Followed by the Eq. (39), then

Fψ(
u
b1

) = Γ(
u

2b1
)Fφ (

u
2b1

) = e−
iu

2b1 Fφ (
u

2b1
)− e−i u

2b1 Fφ (
u
b1

)

Apply the inverse Fourier on the two sides of above equation,
then

ψ(t) = 2φ(2t−1)−φ(t− 1
2
) =

sin[π(2t−1)]− sinπ(t− 1
2 )

π(t− 1
2 )

According to Eq. (50), it can be obtained that M(u/b1) is a
unitary matrix.

VII. CONCLUSION

The MRA and the construction of orthogonal wavelets for
LCWT serve a useful tool for its perspective applications. In
this paper, we first develop a MRA associated with LCWT.
Then, the corresponding orthogonal wavelets for LCWT is
constructed based on the newly developed MRA. Finally,
the generalized Haar and Shannon wavelets associated with
LCWT are investigated.

APPENDIX A

Proof First, {φA1,k,n(t) = 2
k
2 φ(2kt−n)e−

i
2 (t

2−( n
2k )

2)
a1
b1 }n∈Z

is an orthonormal system owing to〈
φA1,k,m,φA1,k,n

〉
= 2−2ke

i
2 (n

2−m2)
a1
b1

∫
R

φ(2kt−m)φ(2kt−n)dt
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= 2−ke
i
2 2−2k(n2−m2)

a1
b1

∫
R

φ(η−m)φ(η−n)dη

= δm,n

Next, for ∀ f (t) ∈V A1
k , according to condition (2) of Defini-

tion 1, we have

f (2−kt)e
i
2 [(2

−kt)2−t2]
a1
b1 ∈V A1

0 . (57)

Hence, f (2−kt)e
i
2 [(2

−kt)2−t2]
a1
b1 can be expressed as a combi-

nation of the basis {φA1,0,n = φ(t−n)e
i
2 (t

2−n2)
a1
b1 }n∈Z of V A1

0 ,
i.e.,

f (2−kt)e
i
2 [(2

−kt)2−t2]
a1
b1 = ∑

n∈Z
cnφ(t−n)e

i
2 (t

2−n2)
a1
b1

=⇒ f (2−kt) = ∑
n∈Z

cnφ(t−n)e
i
2 ((2

−kt)2−n2)
a1
b1

=⇒ f (t) = ∑
n∈Z

c′n2
k
2 φ(t−n)e

i
2 (t

2−( n
2k )

2)
a1
b1

(58)

where c′n = cn2−
k
2 e

i
2 n2(1−2−2k)

a1
b1 . It means that f (t) can be

expressed as a combination of the {φA1,k,n}n∈Z . Therefore,
the subspace V A1

k is generated by φ(t) with dilation, transla-
tion and chirp modulation, i.e.,

V A1
k = span{φA1,k,n(t) = 2

k
2 φ(2kt−n)e−

i
2 (t

2−( n
2k )

2)
a1
b1 }n∈Z

(59)
If the condition (4) of Definition 1 is relaxed by assuming

that the set of functions {φA1,0,n}n∈Z is a Riesz basis of
V A1

0 , the φ(t) generates a generalized MRA of the L2(R)
associated with LCWT. Then, the following Theorem 2 and
Theorem 3 can be obtained.

APPENDIX B
Proof Necessity: for any f (t) ∈V A1

0 , we have

f (t) = ∑
n∈Z

cnϕ(t−n)e−
i
2 (t

2−n2)
a1
b1 (60)

By taking LCT on both sides of above equation, then

LA1
f (u) =L A1 [∑

n∈Z
cnϕ(t−n)e−

i
2 (t

2−n2)
a1
b1 ](u)

=
∫

R
Ab1 ∑

n∈Z
cnϕ(t−n)e−

i
2 (t

2−n2)
a1
b1 e

i
2

a1t2+d1u2−2tu
b1 dt

=
∫

R
Ab1 ∑

n∈Z
cnϕ(t−n)e

i
2

a1n2+d1u2−2tu
b1 dt

ξ=t−n
= ∑

n∈Z
Ab1cn

∫
R

ϕ(ξ )e
i
2

a1n2+d1u2−2(ξ+n)u
b1 dξ

= ∑
n∈Z

Ab1cne
i
2

a1n2+d1u2−2nu
b1

∫
R

ϕ(ξ )e−iξ u
b1 dξ

=
√

2πL̃A1
cn (u)Fϕ(u/b1)

Owing to the Parseval’s identity of LCT (see Eq. (8)), we
have

‖ f (t)‖2
L2 = ‖LA1

f (u)‖2
L2 = 2π

∫
R
|L̃A1

cn (u)Fϕ(u/b1)|2du

= 2π ∑
k∈Z

∫ 2πb1

0
|L̃A1

cn (u+2kπb1)Fϕ(u/b1 +2kπ)|2du

= 2π

∫ 2πb1

0
|L̃A1

cn (u)|
2
∑
k∈Z
|Fϕ(u/b1 +2kπ)|2du

Owing to

‖cn‖2
`2 =

1
2π

∫ 2πb1

0
|L̃A1

cn (u)|
2du

A≤ ∑
k∈Z
|Fϕ(u/b1 +2kπ)|2 ≤ B

then

A‖cn‖2
`2 ≤ ‖ f (t) = ∑

n∈Z
cnϕA1,0,n‖

2
L2 ≤ B‖cn‖2

`2 (61)

Followed by the definition of the Riesz basis, the set of
functions {ϕA1,0,n = ϕ(t−n)e

i
2 (t

2−n2)
a1
b1 }n∈Z is a Riesz basis

of V A1
0 .

Sufficiency: if the set of functions {ϕA1,0,n(t) = ϕ(t −
n)e

i
2 (t

2−n2)
a1
b1 }n∈Z is a Riesz basis of V A1

k , similar to the
deduction of necessity, we have

A
∫

Ω1

|L̃A1
cn (u)|

2du≤
∫

Ω1

|L̃A1
cn (u)|

2
∑
k∈Z
|Fϕ(u/b1 +2kπ)|2du

≤ B
∫

Ω1

|L̃A1
cn (u)|

2du

where Ω1 = (0,2πb1). Owing to the arbitrariness of L̃A1
cn (u),

then

A≤ ∑
k∈Z
|Fϕ(u/b1 +2kπ)|2 ≤ B a.e. ∀u ∈ [0,2πb1]. (62)

In particular, {ϕA1,0,n}n∈Z is an orthonormal basis of V A1
0 if

and only if A = B = 1.

APPENDIX C

Proof Since the set of functions {ϕA1,0,n = ϕ(t −
n)e

i
2 (t

2−n2)
a1
b1 }n∈Z is a Riesz basis of V A1

k , there exist con-
stants 0 < A≤ B <+∞ such that

A≤ ∑
k∈Z
|Fϕ(u/b1 +2kπ)|2 ≤ B,∀u ∈ [0,2πb1]. (63)

It can be deduced that ∑k∈Z |Fϕ(u/b1 +2kπ)|2 is a function
with a period of 2πb1. Thus, there exists a sequence of
{dn}n∈Z ∈ `2(Z) such that

e−iun0/b1√
∑k∈Z |Fϕ(u/b1 +2kπ)|2

= ∑
n∈Z

dne−iun/b1 (64)

Substitute Eq. (30) into above equation, we have

Fφ (u/b1)e−iun0/b1 = ∑
n∈Z

dnFϕ(u/b1)e−iun/b1 (65)

By taking inverse FT on both sides of above equation, we
obtain

φ(t−n0) = ∑
n∈Z

dnϕ(t−n)

⇐⇒φ(t−n0)e
i
2 (t

2−n2
0)

a1
b1 = ∑

n∈Z
dnϕ(t−n))e

i
2 (t

2−n2
0)

a1
b1

⇐⇒φ(t−n0)e
i
2 (t

2−n2
0)

a1
b1 = ∑

n∈Z
d′nϕ(t−n))e

i
2 (t

2−n2)
a1
b1

where d′n = cne
i
2 (n

2−n2
0)

a1
b1 . Therefore, it can be obtained that

φ(t−n)e
i
2 (t

2−n2)
a1
b1 ∈V A1

0 . (66)

In addition to, on the one hand, because V A1
0 is a closed
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space, then

span{φA1,0,n(t) = φ(t−n)e
i
2 (t

2−n2)
a1
b1 }n∈Z ⊆V A1

0 . (67)

On the other hand, based on the Eq. (30), we have

Fϕ(u/b1) = Fφ (u/b1)
√

∑
k∈Z
|Fϕ(u/b1 +2kπ)|2, (68)

then,

V A1
0 ⊆ span{φA1,0,n(t) = φ(t−n)e

i
2 (t

2−n2)
a1
b1 }n∈Z . (69)

It means that

V A1
0 = span{φA1,0,n = φ(t−n)e

i
2 (t

2−n2)
a1
b1 }n∈Z . (70)

Moreover, we have

∑
k∈Z
|Fφ (u/b1 +2kπ)|2 = ∑k∈Z |Fϕ(u/b1 +2kπ)|2

∑k∈Z |Fϕ(u/b1 +2kπ)|2
= 1. (71)

Then, the set of functions {φA1,0,n(t) = φ(t −
n)e

i
2 (t

2−n2)
a1
b1 }n∈Z form an orthonormal basis of V A1

0 .
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