
An Informative Test Code Approach in Code
Writing Problem for Three Object-Oriented

Programming Concepts in Java Programming
Learning Assistant System

Khin Khin Zaw, Win Zaw, Nobuo Funabiki, and Wen-Chung Kao

Abstract—To enhance Java programming educations, we
have developed a Java Programming Learning Assistant System
(JPLAS) that offers various types of exercise problems to cover
studies at different levels. Among them, the code writing problem
asks a student to write a source code that passes the given test
code in the assignment. In Java programming, encapsulation,
inheritance, polymorphism are the fundamental object-oriented
programming (OOP) concepts that every student should master
and freely use, which is very hard for novice students. In this
paper, we propose the informative test code approach in the
code writing problem for studying the three OOP concepts.
This test code describes the necessary information to implement
the source code using the concepts, such as the names, access
modifiers, data types of the member variables and methods.
Then, a student is expected to learn how to use them by
writing a source code to pass the test code. To evaluate the
effectiveness of the proposal, we generated informative test
codes for 10 assignments using three concepts, and asked eight
students who are currently studying Java programming in
Myanmar and Japan to solve them. Then, all of them could
complete source codes that pass the test codes, where the
quality metrics measured by Metrics plugin for Eclispe were
generally acceptable. Unfortunately, due to the insufficiency of
test codes, the coverage metric by code coverage tool for Eclipse
was not 100% at some source codes. The informative test code
generation by a teacher should be assisted to avoid this problem.

Index Terms—JPLAS, Java programming education, code
writing, informative test code, encapsulation, inheritance, poly-
morphism, metric

I. INTRODUCTION

NOWADAYS, Java has been extensively used in practi-
cal systems in industries as a reliable, scalable, and

portable object-oriented programming language. Java in-
volves a lot of mission critical systems for large enterprises
and small-sized embedded systems. Then, the cultivation
of Java programming engineers has been in high demands
amongst industries. As a result, a great number of universities
and professional schools are offering Java programming
courses to meet these needs.

To enhance Java programming educations, we have de-
veloped a Java Programming Learning Assistant System

Manuscript received Jan 26, 2019; revised March 24, 2019.
K. K. Zaw and W. Zaw are with the Department of Computer

Engineering and Information Technology, Yangon Technological University,
Yangon, Myanmar, e-mail: thihakhinkhin85@gmail.com.

N. Funabiki is with the Department of Electrical and Commu-
nication Engineering, Okayama University, Okayama, Japan, e-mail:
funabiki@okayama-u.ac.jp.

W.-C. Kao is with the Department of Electrical Engineering, National
Taiwan Normal University, Taipei, Taiwan, e-mail: jungkao@ntnu.edu.tw.

(JPLAS) [1]. JPLAS performs excellently not only in reduc-
ing the load of a teacher by the function of automatically
marking answers from students, but also in advancing the
motivation of a student by the immediate response to each an-
swer. It is expected that JPLAS improves Java programming
educations in all kinds of institutes around the world. JPLAS
has been implemented as a Web application using JSP/Java
[2]. For the server platform, it adopts the operating system
Linux, the Web server Apache, the application server Tomcat,
and the database system MySQL, as shown in Figure 1. For
the browser, it assumes the use of Firefox with HTML, CSS,
and JavaScript.

JPLAS
(JSP/Java)

Tomcat
(Web server)

MySQL
(Database)

Linux (OS)

Fig. 1: JPLAS Server Platform.

Currently, JPLAS provides the four types of exercise
problems, namely, element fill-in-blank problem [3], value
trace problem [4], statement fill-in-blank problem [5], and
code writing problem [6], to support the long-term self-study
of a student at various learning levels. Among them, the
code writing problem asks a student to write a Java source
code that passes the test code given in the assignment. The
test code will examine the correctness of the specifications
and behaviors of the source code through running on JUnit,
called the test-driven development (TDD) method [7]. The
test code describes the necessary information to implement
the source code, such as names of classes/methods/variables,
arguments of methods, and data types of variables. As well,
they can help a student completing a complex code that
requires multiple classes and methods [8]. It is expected
that by writing a code that passes the test code, a student
will be able to implement the source code using proper
classes/methods.

In Java programming, encapsulation, inheritance, poly-
morphism are the three fundamental object-oriented pro-
gramming (OOP) concepts that every student should master
and freely use. By implementing a source code using them,
the advantage of Java programming in reliability and scala-
bility can be realized. However, it is very hard for a novice

IAENG International Journal of Computer Science, 46:3, IJCS_46_3_08

(Advance online publication: 12 August 2019)

__

student to study them. Therefore, JPLAS should adopt the
function of supporting study of the three OOP concepts.

In this paper, we propose the informative test code ap-
proach in the code writing problem in JPLAS for studying
the three OOP concepts. The informative test code describes
the necessary information to implement the source code
using them, such as the names, the access modifiers, and
the data types of the member variables and methods. Then,
a student is expected to learn how to write a source code by
using the three OOP concepts.

To evaluate the effectiveness of our proposal, we generated
informative test codes for 10 programming assignments using
the three OOP concepts, and asked eight students who are
currently studying Java programming in Myanmar and Japan
to solve them. Then, all of the students completed the source
codes that pass the test codes. Their quality metrics were
measured by Metrics plugin for Eclipse [9], which were gen-
erally acceptable. Unfortunately, due to insufficiency of the
test codes, the coverage metric measured by code coverage
tool for Eclipse was not 100% for some codes whose quality
metrics were different from others. Thus, the generation of
complete informative test codes should be supported to avoid
this problem.

The rest of this paper is organized as follows: Section II
reviews the TDD method, quality metrics, coverage metrics,
and the three OOP concepts as preliminary of this paper.
Section III presents the informative test code approach to
the code writing problem. Section IV shows the evaluation
of the proposal. Section V concludes this paper with future
studies.

II. PRELIMINARY

In this section, we briefly review the TDD method, quality
metrics by metrics plugin for Eclipse, coverage metrics by
code coverage tool for Eclipse, and the three OOP concepts
as preliminary for the study in this paper.

A. TDD Method

In this subsection, we review the TDD method [7].
JPLAS adopts JUnit as the open-source Java framework

to support the TDD method. JUnit assists the automatic unit
test of a Java source code or a class by running a test code.
Each test can be performed by using a method in the library
whose name starts with "assert". It compares the execution
result of the source code with its expected one.

In source code 1 for MyMath class, plus method returns
the summation of two integer arguments. Then, in test code
1 for MyMath class, testPlus method tests plus method by
comparing the result for 1 and 4 with its expected result
5. The test code imports JUnit packages containing test
methods at lines 1 and 2, and declares MyMathTest at line
3. @Test at line 4 indicates that the succeeding method
represents the test method. Then, it describes the procedure
for testing the output of plus method.

Listing 1: source code 1
1 public class Math {
2 public int plus(int a, int b) {
3 return(a + b);
4 }
5 }

Listing 2: test code 1
1 import static org.junit.Assert.*;
2 import org.junit.Test;
3 public class MathTest {
4 @Test
5 public void testPlus() {
6 Math ma = new Math();
7 int result = ma.plus(1, 4);
8 assertThat(5, is(result));
9 }

10 }

B. Quality Metrics

In this subsection, we introduce metrics plugin for Eclipse
and adopted seven quality metrics in this paper.

A substantial amount of software metric measuring tools
have been developed. Among them, Metrics plugin for
Eclipse by Frank Sauer is the commonly used open source
software plugin for Eclipse IDE [9]. That is to say, 23
metrics can be measured by this tool, which can be used
for quality assurance testing, software performance optimiza-
tion, software debugging, process management of software
developments such as time or methodology, and estimating
the cost or size of a project.

This tool is adopted to measure the following seven
metrics to evaluate the quality of source codes from students:

1. Number of Classes (NOC):
This metric represents the number of classes in the
source code.

2. Number of Methods (NOM):
This metric represents the total number of methods in
all the classes.

3. Cyclomatic Complexity (VG):
This metric represents the number of decisions caused
by conditional statements in the source code. The larger
value for VG indicates that the source code is more
complex and becomes harder when modified.

4. Lack of Cohesion in Methods (LCOM):
This metric represents how much the class lacks co-
hesion. A low value for LCOM indicates that it is a
cohesive class. On the other hand, a value close to 1
indicates the lack of cohesion and suggests that the class
might better be split into several classes. LCOM can be
calculated as follows:
1) Each pair of two methods in the class are selected.
2) If they access to a disjoint set of instance variables,

P is increased by one. If they share at least one
variable, Q is increased by one.

3) LCOM is calculated by:

LCOM =

{
P−Q (if P > Q)
0 (otherwise)

(1)

5 Nested Block Depth (NBD):
This metric represents the maximum number of nests in
the method. It indicates the depth of the nested blocks
in the code.

6. Total Lines of Code (TLC):
This metric represents the total number of lines in the
source code, where the comment and empty lines are
not included.

7. Method Lines of Code (MLC):
This metric represents the total number of lines inside

IAENG International Journal of Computer Science, 46:3, IJCS_46_3_08

(Advance online publication: 12 August 2019)

__

the methods in the source code, where the comment and
empty lines are not included.

C. Coverage Metrics

In this subsection, we introduce code coverage tool for
Eclipse and the code coverage metrics.

The code coverage or test coverage is one of the most im-
portant aspects in the unit test to ensure the test quality with
respect to functional points. The code coverage measures
the completeness of the test suites that verify the correctness
of the source code. It shows which lines in the code were
or were not executed by the test suites, and provides the
percentage of the executed or covered lines by the test suites.

A variety of code coverage tools have been developed
for different programming languages to measure the code
coverage in the test. In this paper, EclEmma Java code
coverage plug-in is used as an open source tool to test the
code coverage of a Java source code. This tool measures
the following four coverage metrics. It counts the number of
items that have been executed by the test suites, and reports
the percentage of the covered items. It also identifies the
items that have not been tested.

1. Function coverage:
Each function in the code has been called?

2. Statement coverage:
Each statement in the code has been executed?

3. Branches coverage:
Each branch of a control structure in the code, such as
if and case statements, has been executed?

4. Condition coverage:
Each boolean sub-expression has been tested at both of
true and false?

D. Three Fundamental Concepts of Object Oriented Pro-
gramming

In this subsection, we introduce the three important con-
cepts for the object-oriented programming (OOP) in this
paper. OOP is a methodology or paradigm to design a
program using classes and objects, and simplifies the soft-
ware development and maintenance by providing specific
concepts.

1) Encapsulation: The encapsulation is the mechanism
of wrapping data (variables) and the code parts acting on
the data (methods) together as a single unit [10]. By the
encapsulation, the variables of a class are hidden from
the other classes, and can be accessed merely through the
methods implemented in the class. It is also known as the
data hiding. The encapsulation can be realized as follows in
Java:

1) to declare the variables in the class as private, and
2) to provide the public setter and getter methods to

modify and view the values of them.

The following code shows the example of the encapsula-
tion, where variable name in class Student is encapsulated
and can be accessed using getName and setName methods:

Listing 3: source code 2
1 public class Student {
2 private String name;
3 public String getName() {
4 return name;
5 }
6 public void setName(String name) {
7 this.name = name;
8 }
9 }

2) Inheritance: The inheritance is the mechanism such
that the object for the child class or subclass acquires all the
properties and behaviors of the object for its parent class or
superclass. It represents the IS-A relationship, also known as
the parent-child relationship. By adopting the inheritance,
the code can be made in the hierarchical order [11]. The
following code demonstrates the example of the inheritance,
where class B inherits class A that defines variable salary:

Listing 4: source code 3
1 class A {
2 float salary=40000;
3 }
4 class B extends A {
5 int bonous=100000;
6 public static void main (String args[]) {
7 B b=new B();
8 System.out.println(b.salary);
9 System.out.println(b.bonous);

10 }
11 }

3) Polymorphism: The polymophism is the ability of an
object to take on a plenty of forms. The most common use of
polymophism occurs when the parent class reference is used
to refer to the child class [12]. Two types, method over-
loading and method overwriting, exist for the polymophism.
In the method overloading, a class has multiple methods
that have the same name but different in parameters. In the
method overwriting, the subclass has the same method as
declared in the parent class and it is used for run time.
The following code shows the example of the polymorphism,
where makeNoise method is first defined in class Animal, and
is redefined in class Dog in the two ways depending on the
argument:

Listing 5: source code 4
1 public class Animal {
2 public void makeNoise() {
3 System.out.println("Some sound");
4 }
5 }
6 class Dog extends Animal {
7 public void makeNoise() {
8 System.out.println("Bark");
9 }

10 public void makeNoise(int x) {
11 for (int i=0; i<x; i++)
12 System.out.println("Bark");
13 }
14 }

III. INFORMATIVE TEST CODE APPROACH FOR THREE
OOP CONCEPTS

In this section, we present the informative test code
approach in the code writing problem for studying the three
OOP concepts.

IAENG International Journal of Computer Science, 46:3, IJCS_46_3_08

(Advance online publication: 12 August 2019)

__

A. Overview of Informative Test Code

The informative test code is designed to help a student
to study the three OOP concepts of the encapsulation, the
inheritance, and the polymosphism by giving the necessary
information to implement the source code using them. They
include the class names, the method names, the arguments,
the member variable names, the access modifiers, and the
data types.

B. Source Code for Queue

Queue is an abstract data structure following First-In-First-
Out (FIFO). Queue is open at both its ends, where one end
is used to insert a new data and the other is used to remove
an existing data [13].

source code 5 implements the Queue data structure using
encapsulation. It represents the circular queue where the
last position is connected back to the first position to make
a circle. A new element can be inserted until the queue
becomes full when the next element even cannot be inserted.

In source code 5, five important member variables,
MAX_QSIZE, content, head, tail, and queSize, are declared
as private, so that they are hidden from other classes.
MAX_QSIZE stores the size of content array. content stores
string or integer values. head and tail store the index of
first and last stored value in content respectively. queSize
stores the number of currently stored values in content. It is
increased by 1 when a new value is inserted into content,
and is decreased when a value is removed from it. When
queSize is 0, the queue is empty, and when it is equal to
MAX_QSIZE, the queue is full.

Four methods, full, empty, push, and pop, are declared
as public, so that they can be accessed from other classes.
full method returns true if queSize is equal to MAX_QSIZE.
empty method returns true if queSize is equal to 0. push
method inserts an integer or string value at tail of content
after increased by 1 as the setter method. pop method returns
the value at head of content as the getter method.

Listing 6: source code 5
1 public class QueExample{
2 private final int MAX_QSIZE = 5;
3 private Object content[] = new Object[MAX_QSIZE];
4 private int head = 0;
5 private int tail = −1;
6 private int queSize = 0;
7 public boolean full() {
8 return (queSize==MAX_QSIZE);
9 }

10 public boolean empty() {
11 return (queSize==0);
12 }
13 public Object push(Object data) {
14 if (!full()) {
15 queSize ++;
16 tail = (tail+1) % MAX_QSIZE;
17 content[tail] = data;
18 return data+" is inserted";
19 } else
20 return "Que is full and overflow

occurs";
21 }
22 public Object pop() {
23 if (!empty()) {
24 queSize −−;
25 Object result = content[head];
26 head = (head+1) % MAX_QSIZE;
27 System.out.println(head);
28 return result+ " is deleted";
29 } else

30 return "Que is empty and underflow
occurs";

31 }
32 }
33 }

C. Informative Test Code for Queue

Then, test code 2 is generated as the informative test code
for Queue.

In test code 2, variableTest method tests the names, access
modifiers, data types of the five important member variables,
and its number. All the access modifiers must be private. The
data type must be Object for content and int for the others.
The number of the member variables must be five, which is
tested to avoid defining unnecessary variables.

methodTest method tests the names, access modifiers, re-
turning data types of the four methods. The access modifiers
must be public. The returning data type of full and empty
must be Boolean, and that of push and pop must be Object.
The number of the methods must be four.

behaviorTest method tests the behaviors of the four meth-
ods. full, empty, push, and pop. Initially, five integers,“10”,
“ 20”,“ 30”,“ 40”, and“ 50”, are inserted to the queue.
Then, the values of the five variables, MAX_QSIZE, content,
tail, head, and queSize are evaluated.

Listing 7: test code 2
1 import static org.junit.Assert.*;
2 import java.lang.reflect.Field;
3 import java.lang.reflect.Method;
4 import java.lang.reflect.Modifier;
5 import org.junit.Test;
6 public class QueTest {
7 @Test
8 public void variableTest() throws Exception {
9 QueExample q = new QueExample();

10 //Field
11 Field f1 = q.getClass().getDeclaredField("MAX_QSIZE

");
12 Field f2 = q.getClass().getDeclaredField("content");
13 Field f3 = q.getClass().getDeclaredField("tail");
14 Field f4 = q.getClass().getDeclaredField("head");
15 Field f5 = q.getClass().getDeclaredField("queSize");
16 //test the access modifier
17 assertEquals(f1.getModifiers(), Modifier.PRIVATE,

Modifier.FINAL);
18 assertEquals(f2.getModifiers(), Modifier.PRIVATE);
19 assertEquals(f3.getModifiers(), Modifier.PRIVATE);
20 assertEquals(f4.getModifiers(), Modifier.PRIVATE);
21 assertEquals(f5.getModifiers(), Modifier.PRIVATE);
22 //test the datatype of variables
23 assertEquals(f1.getType(), int.class);
24 assertEquals(f2.getType(), Object[].class);
25 assertEquals(f3.getType(), int.class);
26 assertEquals(f4.getType(), int.class);
27 assertEquals(f5.getType(), int.class);
28 //test the number of variables
29 Field[] f=q.getClass().getDeclaredFields();
30 assertEquals(5, f.length);
31 @Test
32 public void methodTest() throws Exception {
33 QueExample q = new QueExample();
34 Method m1 = q.getClass().getDeclaredMethod("full"

, null);
35 Method m2 = q.getClass().getDeclaredMethod("empty

", null);
36 Method m3 = q.getClass().getDeclaredMethod("push"

, Object.class);
37 Method m4 = q.getClass().getDeclaredMethod("pop",

null);
38 assertEquals(m1.getModifiers(), Modifier.PUBLIC);
39 assertEquals(m2.getModifiers(), Modifier.PUBLIC);
40 assertEquals(m3.getModifiers(), Modifier.PUBLIC);
41 assertEquals(m4.getModifiers(), Modifier.PUBLIC);
42 assertEquals(m1.getReturnType(), boolean.class);

IAENG International Journal of Computer Science, 46:3, IJCS_46_3_08

(Advance online publication: 12 August 2019)

__

43 assertEquals(m2.getReturnType(), boolean.class);
44 assertEquals(m3.getReturnType(), Object.class);
45 assertEquals(m4.getReturnType(), Object.class);
46 Method[] m = q.getClass().getDeclaredMethods();
47 assertEquals(4, m.length);
48 }
49 @Test
50 public void behaviorTest() throws throws Exception {
51 QueExample q = new QueExample();
52 Field f1 = q.getClass().getDeclaredField("MAX_QSIZE

");
53 Field f2 = q.getClass().getDeclaredField("content");
54 Field f3 = q.getClass().getDeclaredField("tail");
55 Field f4 = q.getClass().getDeclaredField("head");
56 Field f5 = q.getClass().getDeclaredField("queSize");
57 //make private variables accessible for tests
58 f1.setAccessible(true);
59 f2.setAccessible(true);
60 f3.setAccessible(true);
61 f4.setAccessible(true);
62 f5.setAccessible(true);
63 int MAX_QSIZE = (int)f1.get(q);
64 Object[] content = (Object[])f2.get(q);
65 int tail = (int)f3.get(q);
66 int head = (int)f4.get(q);
67 int queSize = (int)f5.get(q);
68 //test the initialize value of each variable
69 assertEquals(5, MAX_QSIZE);
70 assertEquals(−1, tail);
71 assertEquals(0, head);
72 assertEquals(0, queSize);
73 //test behaviors of "push" method
74 assertEquals("10 is inserted", q.push(10));
75 assertEquals("20 is inserted", q.push(20));
76 assertEquals("30 is inserted", q.push(30));
77 assertEquals("40 is inserted", q.push(40));
78 assertEquals("50 is inserted", q.push(50));
79 assertEquals("Que is full and overflow

occurs", q.push(60));
80 //test behaviors of "full " method
81 assertEquals(true, q.full());
82 //test full queue size
83 queSize = (int)f5.get(q);
84 assertEquals(queSize, MAX_QSIZE);
85 //test current values of "content"
86 assertEquals(10, content[0]);
87 assertEquals(20, content[1]);
88 assertEquals(30, content[2]);
89 assertEquals(40, content[3]);
90 assertEquals(50, content[4]);
91 //test current value of "tail"
92 tail = (int)f3.get(q);
93 assertEquals(4, tail);
94 //test behaviors of "pop" method
95 assertEquals("10 is deleted", q.pop());
96 assertEquals("20 is deleted", q.pop());
97 assertEquals("30 is deleted", q.pop());
98 assertEquals("40 is deleted", q.pop());
99 assertEquals("50 is deleted", q.pop());

100 //test current value of "head"
101 head = (int)f4.get(q);
102 assertEquals(0, head);
103 //test behaviors of "push" method again
104 assertEquals("70 is inserted", q.push(70));
105 assertEquals("80 is inserted", q.push(80));
106 //test current values of "content"
107 assertEquals(70, content[0]);
108 assertEquals(80, content[1]);
109 //test current value of "tail"
110 tail = (int)f3.get(q);
111 assertEquals(1, tail);
112 //test behaviors of "pop " method again
113 assertEquals("70 is deleted", q.pop());
114 assertEquals("80 is deleted", q.pop());
115 assertEquals("Que is empty and underflow

occurs", q.pop());
116 //test current value of "head"
117 head = (int)f4.get(q);
118 assertEquals(2, head);
119 //test current value of "queSize"
120 queSize = (int)f5.get(q);
121 assertEquals(queSize, 0);
122 //test behavior of " empty " method
123 assertEquals(true, q.empty());
124 }

125 }

D. Source Code for Stack

Stack is another basic data structure following Last-In-
First-Out (LIFO). In Stack, the insertion and deletion of
data take places at one end called the top of the stack
[14]. source code 6 implements Stack using the inheritance
and polymorphism. Stack class inherits the five important
variables, MAX_QSIZE, content, tail, head, and queSize, and
the three methods, full, empty, and push, from Que class. To
inherit these variables in Stack class, their access modifiers
must be changed to protected in Que class. pop method is
overwritten in Stack class, to retrieve the data at the top of
the content.

Listing 8: source code 6
1 public class StackExample extends QueExample {
2 public Object pop() {
3 if (!empty()) {
4 queSize −−;
5 Object result = content[tail−−];
6 return result+ " is deleted";
7 } else
8 return "Que is empty and underflow

occurs";
9 }

10 }

E. Informative Test Code for Stack

Then, test code 3 is generated as the informative test code
for Stack.

In test code 3, variableTest method (methodTest method)
tests the names, access modifiers, returning data types of
variables (methods) defined in the parent Que class. method-
Test method also tests the name, access modifier, returning
data type of the overwritten pop method, where the access
modifier must be public and the returning data type must
be Object, and tests that the number of methods defined in
Stack class must be one.

behaviorTest method tests the behaviors of full, empty,
push, and pop. full, empty, and push are tested by called
from Que, and pop is tested by called from Stack.

Listing 9: test code 3
1 import static org.junit.Assert.*;
2 import java.lang.reflect.Field;
3 import java.lang.reflect.Method;
4 import java.lang.reflect.Modifier;
5 import org.junit.Test;
6 public class StackTest {
7 @Test
8 public void variableTest() throws Exception {
9 Stack s = new Stack();

10 Class<?> parentClass = s.getClass().getSuperclass();
11 //test variables defined in parent class.
12 Field f1 = parentClass.getDeclaredField("MAX_QSIZE

");
13 Field f2 = parentClass.getDeclaredField("content");
14 Field f3 = parentClass.getDeclaredField("tail");
15 Field f4 = parentClass.getDeclaredField("head");
16 Field f5 = parentClass.getDeclaredField("queSize");
17 //test access modifiers of variables in parent class.
18 assertEquals(f1.getModifiers(), Modifier.PROTECTED,

Modifier.FINAL);
19 assertEquals(f2.getModifiers(), Modifier.PROTECTED);
20 assertEquals(f3.getModifiers(), Modifier.PROTECTED);
21 assertEquals(f4.getModifiers(), Modifier.PROTECTED);
22 assertEquals(f5.getModifiers(), Modifier.PROTECTED);
23 //test data types of variables in parent class

IAENG International Journal of Computer Science, 46:3, IJCS_46_3_08

(Advance online publication: 12 August 2019)

__

24 assertEquals(f1.getType(), int.class);
25 assertEquals(f2.getType(), Object[].class);
26 assertEquals(f3.getType(), int.class);
27 assertEquals(f4.getType(), int.class);
28 assertEquals(f5.getType(), int.class);
29 //test number of variables defined in Stack class
30 Field[] f = s.getClass().getDeclaredFields();
31 assertEquals(0, f.length);
32 @Test
33 public void methodTest() throws Exception {
34 Stack s = new Stack();
35 Class<?> parentClass = s.getClass().getSuperclass();
36 //test methods defined in parent class
37 Method m1 = parentClass.getDeclaredMethod("full",

null);
38 Method m2 = parentClass.getDeclaredMethod("empty

", null);
39 Method m3 = parentClass.getDeclaredMethod("push",

Object.class);
40 Method m4 = parentClass.getDeclaredMethod("pop",

null);
41 //test access modifiers of methods in parent class.
42 assertEquals(m1.getModifiers(), Modifier.PUBLIC);
43 assertEquals(m2.getModifiers(), Modifier.PUBLIC);
44 assertEquals(m3.getModifiers(), Modifier.PUBLIC);
45 assertEquals(m4.getModifiers(), Modifier.PUBLIC);
46 //test data types of methods in parent class.
47 assertEquals(m1.getReturnType(), boolean.class);
48 assertEquals(m2.getReturnType(), boolean.class);
49 assertEquals(m3.getReturnType(), Object.class);
50 assertEquals(m4.getReturnType(), Object.class);
51 //test method defined in Stack class as overwrite method
52 Method m = s.getClass().getDeclaredMethod("pop",

null);
53 assertEquals(m.getModifiers(), Modifier.PUBLIC);
54 assertEquals(m.getReturnType(), Object.class);
55 //test number of methods defined in Stack class
56 Method[] methods=s.getClass().getDeclaredMethods();
57 assertEquals(1, methods.length);
58 }
59 @Test
60 public void behaviorTest() {
61 StackExample s = new StackExample();
62 //test initialize value of each variable
63 assertEquals(5, s.MAX_QSIZE);
64 assertEquals(−1, s.tail);
65 assertEquals(0, s.head);
66 assertEquals(0, s.queSize);
67 //test behaviors of "push" method
68 assertEquals("10 is inserted", s.push(10));
69 assertEquals("20 is inserted", s.push(20));
70 assertEquals("30 is inserted", s.push(30));
71 assertEquals("40 is inserted", s.push(40));
72 assertEquals("50 is inserted", s.push(50));
73 assertEquals("Que is full and overflow

occurs", s.push(60));
74 //test behaviors of "full " method
75 assertEquals (true, s.full()) ;
76 //test full queue size
77 assertEquals(s.queSize, s.MAX_QSIZE);
78 //test current values of "content"
79 assertEquals(10, s.content[0]);
80 assertEquals(20, s.content[1]);
81 assertEquals(30, s.content[2]);
82 assertEquals(40, s.content[3]);
83 assertEquals(50, s.content[4]);
84 //test current value of "tail"
85 assertEquals(4, s.tail);
86 //test behaviors of "pop" method
87 assertEquals("50 is deleted", s.pop());
88 assertEquals("40 is deleted", s.pop());
89 assertEquals("30 is deleted", s.pop());
90 assertEquals("20 is deleted", s.pop());
91 assertEquals("10 is deleted", s.pop());
92 //test current value of "tail"
93 assertEquals(−1, s.tail);
94 //test "push" method again
95 assertEquals("70 is inserted", s.push(70));
96 assertEquals("80 is inserted", s.push(80));
97 assertEquals("90 is inserted", s.push(90));
98 //test current values of "content"
99 assertEquals(70, s.content[0]);

100 assertEquals(80, s.content[1]);
101 assertEquals(90, s.content[2]);
102 //test current value of "tail"

103 assertEquals(2, s.tail);
104 //test "pop" method again
105 assertEquals("90 is deleted", s.pop());
106 assertEquals("80 is deleted", s.pop());
107 assertEquals("70 is deleted", s.pop());
108 assertEquals("Que is empty and underflow

occurs", s.pop());
109 //test current value of "tail"
110 assertEquals(−1, s.tail);
111 //test current value of "queSize" when queue is empty
112 assertEquals(true, q.empty());
113 assertEquals(s.queSize, 0);
114 }
115 }

IV. EVALUATIONS

In this section, we evaluate the informative test code
approach in the code writing problem for studying the three
OOP concepts.

A. Evaluation Setup

We generated the informative test codes for 10 program-
ming assignments that require the use of the three OOP
concepts, and asked totally 13 students in Myanmar and
Japan who are currently studying Java programming to solve
them. These assignments include Queue, Stack, and eight
sample codes in Web sites [15]-[19]. First, we asked the
eight students to solve those assignments. All of the students
completed the source code for any assignment that passes the
test code.

Then, we measured the quality metrics and the coverage
metric using the metric plugin for Eclipse and the coverage
tool for Eclipse respectively. Their results were analyzed
to examine the quality of the source code using the OOP
concepts.

B. Quality Metrics Results

Table I shows the distribution of the measured quality and
coverage metric of the sources codes written by the students.
Here,“ coverage (%)” indicates the coverage rate of the
methods. Any quality metric exhibits a good value except
for assignment #2.

For NOC, most students use the same number of classes
as the specified one in the test code for all the assignments.
Some students use the larger number of classes for assign-
ments #1, #2, and #4 by producing unnecessary classes.
Unfortunately, the current informative test code does not test
the existence of them, which will be in future studies.

For NOM, some students use the larger number of meth-
ods than the specified one in the test code for the assignments
#1, #2, #3, #4, #6, #7, #10 by making the constructor. The
current informative test code does not test the existence of
constructor. Besides, the student makes unnecessary classes
where the informative test code does not test the existence of
methods in the unnecessary cl asses. Then, they are counted
as the number of methods by NOM.

For VG, the values for the assignments #1, #2, and #7
are distributed, because they ask more complex codes using
the OOP concepts that require conditional statements. The
larger number of conditional statements makes the larger
value of VG. It is noted that VG should be less than 20. The
informative test code does not test the existence of them.

IAENG International Journal of Computer Science, 46:3, IJCS_46_3_08

(Advance online publication: 12 August 2019)

__

TABLE I: Quality and Coverage Metrics Results of Answer Source Codes.

metrics assignment
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

encapsulation
√

− − −
√ √ √

−
√ √

inheritance −
√ √ √

− −
√

− −
√

polymorphism −
√ √

− − − −
√

− −
NOC 1~3 2~3 2 3~4 1 1 2 1 1 2

NOM 4~14 5~14 2~4 3~6 6 8~9 3~7 6 3 5~12

VG 2~4 2~3 1 1 1 1 1~3 1 1 1

NBD 2~3 2~3 1 1 1 1 1 1 1 1

LCOM 0.2~0.6 0.1~1 0 0 0.5~0.7 0.6~0.7 0.2~0.5 0.5~0.6 0 0.4~0.6

TLC 40~118 44~94 16~25 18~33 26~33 34~40 17~33 23~27 12~21 24~35

MLC 21~56 21~46 2~5 3~9 8~9 11~14 3~12 6~12 3~9 5~15

coverage (%) 58.8~100 72.8~100 63.6~90.9 62.5~100 100 56.5~94.6 63.35~100 100 100 70.0~100

For NBD, the values are varied for the assignments #1 and
#2, because they require conditional statements. However,
NBD should not be greater than 5, which is satisfied for any
assignment. Again, the informative test code does not give
the specification for it.

For LCOM, the value is smaller than 1 for any assignment
except one answer code in assignments #2. The larger value
makes the class less cohesiveness of the class in the code.

For MLC, the students use a different number of state-
ments in the methods, including conditional statements,
expression statements, and declaration statements.

For TLC, the students use a different number of statements
in the class including import statements, conditional state-
ments, expression statements, and declaration statements.

C. Coverage Metric Results

Table I shows that the coverage metric is not always
100% for assignments #1, #2, #3, #4, #6, #7,and #10,
due to the insufficiency of the test codes. The test code
misses testing specified methods and/or possible paths for
conditional statements in the source code. For example, test
code 4 for assignment #1 tests only the“ true” condition
of the two conditional statements in source code 7 at lines
10 and 18. From the coverage testing, it can be found that
the test code must be improved to cover all the statements in
the model source code. Thus, it is important for a teacher to
measure the coverage metric of the generated test code for
the model source code before assigning it to students.

Listing 10: test code 4
1 .
2 //test behaviors of "push" method
3 assertEquals("10 is inserted", q.push(10));
4 assertEquals("20 is inserted", q.push(20));
5 assertEquals("30 is inserted", q.push(30));
6 assertEquals("40 is inserted", q.push(40));
7 assertEquals("50 is inserted", q.push(50));
8 assertEquals("Que is full and overflow

occurs", q.push(60));
9 //test behaviors of "full" method after push values

10 assertEquals(true, q.full());
11 ...
12 //test behaviors of "pop" method
13 assertEquals("70 is deleted", q.pop());
14 assertEquals("80 is deleted", q.pop());
15 assertEquals("Que is empty and underflow

occurs", q.pop());
16 ...
17 //test behaviours of "empty" method after pop the values
18 assertEquals(true, q.empty());

Listing 11: source code 7
1 ...
2 public boolean full(){
3 if (queSize==MAX_QSIZE) {
4 return true;
5 }
6 else {
7 return false;
8 }
9 }

10 public boolean empty(){
11 if (queSize==0) {
12 return true;
13 }
14 else {
15 return false;
16 }
17 }
18 ...

Under current situations, it is difficult or impossible for
a teacher to prepare the perfect test code that can avoid the
insufficiency. Therefore, an assistant tool to help a teacher
generate a complete test code should be developed in JPLAS,
which will be in future works.

D. Relationship between Quality and Coverage Metrics

Then, we analyze the relationship between the quality
metrics results and the coverage metric. Table II shows the
quality metrics values for the source codes by the students
whose coverage metric is highest and lowest for each of
the seven assignments. This table shows that in general, the
source code with the high coverage has better quality metrics
values than the code with the low coverage. For example, for
assignment #1, NOC and NOM are three times larger for the
source code with the lowest coverage than the one with the
highest coverage.

The results in Table II suggest that the improvement of
the coverage metric in the source code can lead to the
improvement of the quality metrics. Using the coverage tool,
the uncovered statements in the source code can be easily
detected. By requesting the student to reduce the uncovered
statements in his/her source code, the quality metrics can
be improved at the same time. In future works, we will
implement the function of showing the uncovered statement
in the answer source code of the student and requesting
him/her to remove them, and evaluate it.

IAENG International Journal of Computer Science, 46:3, IJCS_46_3_08

(Advance online publication: 12 August 2019)

__

TABLE II: Quality Metrics for Student Codes with Highest and Lowest Coverage.

metrics assignment
#1 #2 #3 #4 #6 #7 #10

max min max min max min max min max min max min max min

NOC 1 3 2 3 2 2 3 4 1 1 2 2 2 2

NOM 4 14 5 14 5 4 3 6 9 8 3 7 5 9

VG 2 3 2 3 1 1 1 1 1 1 1 1 1 1

NBD 2 2 2 3 1 1 1 1 1 1 1 1 1 1

LCOM 0.6 0.5 0.5 0.8 0 0 0 0 0.7 0.6 0.5 0.3 0.5 0.6

TLC 41 118 58 94 22 18 18 33 34 35 18 30 24 40

MLC 25 56 21 48 2 4 3 6 11 11 3 10 5 11

coverage (%) 100 58.8 100 72.8 90.0 63.6 100 62.5 94.6 56.5 100 63.35 100 70.0

V. CONCLUSION

This paper proposed the informative test code approach
in the code writing problem for studying the three object-
oriented programming concepts in JPLAS. The informative
test code describes the necessary information for implement-
ing the source code using the concepts. The effectiveness of
the proposal was evaluated through applying 10 informative
test codes to 13 students in Myanmar and Japan, where all of
them could complete source codes using the concepts with
sufficient quality and coverage metrics in general. Our future
works will include the development of the assistant tool to
write a complete test code for a teacher, the implementation
of the function in JPLAS to show the uncovered statements
in the answer code for a student, the generation of infor-
mative tests codes to other complex assignments, and their
applications to Java programming courses.

REFERENCES

[1] N. Funabiki, K. K. Zaw, N. Ishihara, and W.-C. Kao,“ Java pro-
gramming learning assistant system: JPLAS,”IAENG transactions on
Engineering Sciences Special Issue for the International Association
of Engineers Conferences 2016, vol. 2, pp. 517-530, 2016.

[2] N. Ishihara, N. Funabiki, M. Kuribayashi, and W.-C. Kao, "A software
architecture for Java programming learning assistant system," Interna-
tional Journal of Computer Software and Engineering, vol. 2, no.1,
2017.

[3] N. Funabiki, Tana, K. K. Zaw, N. Ishihara, and W.-C. Kao, "A graph-
based blank element selection algorithm for fill-in-blank problems in
Java programming learning assistant system," IAENG International
Journal of Computer Science, vol. 44, no. 2, pp. 247-260, 2017.

[4] K. K. Zaw, N. Funabiki, and W.-C. Kao, "A proposal of value trace
problem for algorithm code reading in Java programming learning
assistant system," Journal of Information Engineering Express, vol. 1,
no. 3, pp. 9-18, 2015.

[5] N. Ishihara, N. Funabiki, and W.-C. Kao, "A proposal of statement fill-
in-blank problem using program dependence graph in Java program-
ming learning assistant system," Journal of Information Engineering
Express, vol. 1, no. 3, pp. 19-28, 2015.

[6] N. Funabiki, Y. Matsushima, T. Nakanishi, K. Watanabe, and N.
Amano, "A Java programming learning assistant system using test-
driven development method," IAENG International Journal of Com-
puter Science, vol. 40, no.1, pp. 38-46, 2013.

[7] K. Beck, Test-driven development: by example, Addison- Wesley,
2002.

[8] K. K. Zaw and N. Funabiki, "A design-aware test code approach for
code writing problem in Java programming learning assistant system,"
International Journal of Space-Based and Situated Computing, vol. 7,
no. 3, pp. 145-154, 2017.

[9] MetricPlugin,http://metrics.sourceforge.net.
[10] Encapsulation, https://www.tutorialspoint.com/java/encapsulation.html
[11] Inheritance, https://www.javatpoint.com/inheritance-in-java
[12] Polymorphismm, https://www.javatpoint.com/

runtime-polymorphism-in-java
[13] Queue, https://www.tutorialspoint.com/data_structures_algorithms/

dsa_queue.htm

[14] Stack, https://en.wikibooks.org/wiki/Data_Structures/Stacks_and_
Queues

[15] OOPs in Java: Encapsulation, Inheritance, Polymor-
phism, Abstraction, https://beginnersbook.com/2013/03/
oops-in-java-encapsulation-inheritance-polymorphism-abstraction/

[16] Basic Grammar, https://www.zealseeds.com/Lang/LangJava/
BasicGrammar/InheritanceOfJava/index.html

[17] First Java, http://www1.bbiq.jp/takeharu/java100.html
[18] ITSakura, https://itsakura.com/java-inheritance
[19] GitHubGist, https://gist.github.com/rtoal/1685886e6605fe73b792

Khin Khin Zaw received the B.E. degree in infor-
mation technology from Technological University
(HmawBi), Myanmar, in 2006, the M.E. degree
in information technology from Mandalay Tech-
nological University, Myanmar, in 2011, and the
Ph.D. in communication network engineering from
Okayama University, respectively. She is currently
a lecturer in the Department of Computer Engi-
neering and Information Technology at Yangon
Technological University, Myanmar. Her research
interests include educational technology and Web

application systems. She is a member of IEICE.

Win Zaw received the B.E. degree in electronics
engineering from Mandalay Technological Univer-
sity, Myanmar, in 1998, M.E and the Ph.D. in
information technology from National Research
Nuclear University, Russia, in 2007, respectively.
He is currently a professor and the head of the
Department of Computer Engineering and Infor-
mation Technology, Yangon Technological Uni-
versity, Myanmar. His research interests include
computer networks, E-learning, and modeling. He
is a member of IEEE.

IAENG International Journal of Computer Science, 46:3, IJCS_46_3_08

(Advance online publication: 12 August 2019)

__

Nobuo Funabiki received the B.S. and Ph.D. de-
grees in mathematical engineering and information
physics from the University of Tokyo, Japan, in
1984 and 1993, respectively. He received the M.S.
degree in electrical engineering from Case Western
Reserve University, USA, in 1991. From 1984 to
1994, he was with Sumitomo Metal Industries,
Ltd., Japan. In 1994, he joined the Department
of Information and Computer Sciences at Osaka
University, Japan, as an assistant professor, and
became an associate professor in 1995. He stayed

at University of Illinois, Urbana-Champaign, in 1998, and at University
of California, Santa Barbara, in 2000-2001, as a visiting researcher. In
2001, he moved to the Department of Communication Network Engineering
(currently, Department of Electrical and Communication Engineering) at
Okayama University as a professor. His research interests include computer
networks, optimization algorithms, educational technology, and Web tech-
nology. He is a member of IEEE, IEICE, and IPSJ.

Wen-Chung Kao received the M.S. and Ph.D.
degrees in electrical engineering from National
Taiwan University, Taiwan, in 1992 and 1996,
respectively. From 1996 to 2000, he was a Depart-
ment Manager at SoC Technology Center, ERSO,
ITRI, Taiwan. From 2000 to 2004, he was an
Assistant Vice President at NuCam Corporation
in Foxlink Group, Taiwan. Since 2004, he has
been with National Taiwan Normal University,
Taipei, Taiwan, where he is currently a Professor
at Department of Electrical Engineering and the

Dean of School of Continuing Education. His current research interests
include system-on-a-chip (SoC), flexible electrophoretic display, machine
vision system, digital camera system, and color imaging science. He is a
senior member of IEEE.

IAENG International Journal of Computer Science, 46:3, IJCS_46_3_08

(Advance online publication: 12 August 2019)

__

