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Abstract—We introduce a novel approach to source
reconstruction from electroencephalographic (EEG)
recordings, introducing physiologically motivated
spatio-temporal constraints over the source representation.
Within a Dynamic Sparse Coding (DSC) formulation, we
promote the source reconstruction to encode the strong
temporal dynamics of EEG data, enabling the analysis of
smooth and localized characteristics in space. Consequently, by
adjusting the ratio between a couple of included regularization
terms, our method enables reaching a trade-off between
temporal and spatial resolution, which can be ruled depending
on each specific analysis and provided data. We validate the
method performance on simulated event-related potentials,
fixing a distinct number of active sources and under different
values of signal-to-noise ratio. Also, testing is performed
on real-world EEG data related to emotion brain activity,
for which the obtained results prove that the most active
sources originate in cortical areas related to visual and
attention processes, as well as in regions involved in emotional
processing. Additional comparison with the state-of-the-art
methods is also performed for simulated and real EEG signals.
As a result, the proposed DSC based solution enhances the
EEG characterization of source activity, particularly, when
dealing with strong temporal dynamics.

Index Terms—EEG, inverse problem, Dynamic Sparse
Coding, Fused Lasso, Spatio-Temporal Constraints, Emotion
classification.

I. INTRODUCTION

N the recent past, electroencephalography (EEG) has

been increasingly employed as a non-invasive technique
in understanding the brain functions and neural dynamics
in humans, mainly, because of the following reasons: i)
The ease of manipulation at a low implementation cost, if)
The ability to measure real-time responses directly from the
neural activity without delays [1], iii) The high temporal
resolution that allows investigating many different kinds of
dynamic brain activation during multiple cognitive tasks [2].
Particularly, EEG analysis is a valuable tool for studying the
brain functionality and interaction patterns of neural activity
across space, time, and frequency [3], [4], [5], [6].
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In the brain functional analysis, a challenging task (termed
Electromagnetic Source Imaging - ESI) is to determine
the foci of activated neural populations (or sources) and
evoked time courses in the brain cortex, giving rise to a
scalp potential recording [7]. However, ESI is an ill-posed
temporal inverse problem, i.e., a map with regional activation
does not readily permit inferences about when and in
which order these activation have occurred since a single
EEG recording can be explained by an infinite number
of different ESI solutions [8]. To overcome the ill-posed
property, the solution to the EEG inverse problem holds
a set of additional constraints that are based, mainly, on
prior information about the dipole distribution, being the
Distributed Source Solutions widely used in which several
dipole sources (with fixed locations and possibly fixed
orientations) are distributed across the whole brain volume
or cortical surface [9]. To this end, a regularized solution can
be applied that approximates an ill-posed task by a family
of neighboring well-posed problems, using the regularization
terms to incorporate some prior information.

A straightforward regularized approach is the Tikhonov
regularization that searches for the solution with minimum
power (like in Minimum norm estimates [ 10]), but producing
a very poor estimation of the actual source locations.
To improve localization accuracy, the depth-compensated
inverse solution is performed under the constraint of
smoothly distributed sources (like in Low-resolution
electrical tomography or Standardized low-resolution brain
electromagnetic tomography [11]). Nevertheless, these
methods tend to overestimate the location of active areas
and do not reflect the assumption stating that only a few
brain regions can be active when a brain neurological process
takes place [12]. With the aim to estimate the focal source
activation more accurately, several regularized regressions
have been proposed in the form of the Multiple Penalized
Least Squares Model that includes the use of non-convex
penalty functions, leading to sparse representations that have
been regarded as more likely to be separable in describing
smooth localized patches of potentially active regions [13].
Within the Bayesian framework, these patches can be
modeled by a set of covariance priors like in Multiple Sparse
Priors (MSP) [14] or by expanding the current density into
a sparse combination of spatial basis fields like in Sparse
Basis Field Expansions (S-FLEX) [15]. However, there is no
temporal assumption about the neural activity dynamics even
that either solution provides a coherent spatial structure [16],
[17]. To resolve this issue, the spatial and temporal patterns
of neural activity must be further incorporated, considering
that a small number of events (confined in space and/or time)
generates each measured scalp potential signal. Thus, the
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authors in [18] make use of both spatial and temporal bases
to span the local regions of cortex within specific frequency
bands and/or time windows, enabling to better determine
where and when a significant activity occurs. A detailed
analysis by using frequency bands is also performed in [19].

Besides fostering a physiologically motivated spatial
structure, prior information has also been included in the
form of temporal constraints. To this end, some solutions
previously decompose the EEG space/time data into a small
number of components (or atoms), encoding the spatial and
temporal patterns for the inverse problem solution as in [20],
[21]. However, these methods are statistically sub-optimal
due to the extraction of relevant atoms and ESI must
be carried out simultaneously [22]. In other approaches,
time-frequency representations are used to provide insightful
information about the dynamics of neural processes [23].
Still, they demand manual tuning of the regularization
parameters [24]. The combination of spatial and temporal
constraints are also contemplated by formulating the
ESI problem through state-space models [25]. But, these
methods do not lead to an adequate focal neural activity
estimate [26]. Consequently, the spatially in-homogeneous
temporal evolution must be developed for accurately
reconstructing the focal brain activity with strong temporal
dynamics.

In this work, we introduce a spatio-temporal ESI solution
that promotes the spatial sparsity to reconstruct the focal
neural activity and temporal homogeneity. With the goal
of following the strong temporal dynamics accurately,
the spatio-temporal decomposition of source activation
comprises the next three stages: i) A predefined dictionary
of spatial basis fields to encourage neurophysiologically
motivated structure in the space domain, namely, spatial in
homogeneity, i7) Estimation of the matrix of spatio-temporal
coefficients, and iii) a constraint set that promotes the
desired properties of the spatio-temporal coefficients. We
incorporate these constraints within a Dynamic Sparse
Coding (DSC) framework that enables dealing with high
volumes of data having sparse and time-varying patterns.
Hence, DSC allows reconstructing the time courses related to
potentially non-stationary source activation with focal spatial
patterns. Moreover, by seeking the sparse structure through
a weighted combination of spatial and temporal penalty
terms, we rule a trade-off between spatial locality and
temporal homogeneity quantified by a single hyperparameter.
Lastly, we show that DSC model can be readily extended as
an EEG Source Connectivity approach, aiming to enhance
the estimation of interactions between distant brain areas.
This manuscript is organized as follows: In Section II,
we give an introduction to the ESI methods and present
our proposal DSC solution. In Section III, we assess the
DSC reconstruction quality of a simulated ERP activity and
compare its performance against state-of-the-art methods,
namely MSP and S-FLEX methods, encouraging focal
solutions. Validation is also achieved for real emotional
EEG data, incorporating a source connectivity analysis.
In Sections IV and V, we address the interpretation
of the obtained results, highlighting their contributions
in Section VI.

II. METHODS
A. EEG inverse problem

With the aim of representing the electromagnetic field
magnitude measured at the scalp, we assume the following
linear model [27]:

Y =LJ+E, 1

where Y eRY*™ is the EEG data collected by C€N sensors
at TeN time samples, JERP*T is the amplitude of DEN
current dipoles (or sources), which are distributed throughout
the cortical surface with a fixed orientation perpendicular
to it, and LeRC*P is the gain matrix (termed lead
field matrix), relating the source strengths to the measured
EEG data. Also, the ecffect of noise on the brain activity
measured by EEG recordings is modeled by the error matrix
EcRY*T g0 that the uncorrelated noise is assumed to be
a Gaussian-distributed random process with zero mean and
covariance matrix Q=z€cRE*C.

Although there are several distributed inverse solutions to
estimate the source amplitude J, we rely on a generalized
problem formulation, termed Multiple Penalized Least
Squares Model, that includes the following minimization
cost function [13]:

J =argmin{|[Y — LJ|I% + > X0, ()} @)
J meM

where {\,€RT} is the regularization parameter set and
{Omn(J)eR} is the introduced penalty function set. Note
that the first quadratic term in Eq. (2) is the log-likelihood
(notation || - || stands for the Frobenius norm), while the
second term holds all prior information encoded in MeN
regularized penalty functions.

B. Sparsity and temporal homogeneity constraints using
dynamic sparse coding

As a rule, by promoting more focal solutions together
with smooth current distributions, the inverse problem
formulations tend to provide a better source reconstruction
than other solutions that are either purely smoothed or
grounded only on sparse representations [28]. Therefore, the
current density can be formulated by a linear combination
of SEN spatial basis functions ®€RP*“, which are both
locally smooth and spatially limited, as described below:

J=%H, 3

where HeR®*" are the weights introduced to reflect the
desired properties of spatial basis sets. Thus, each column
of H draws a single distributed pattern with compact spatial
support.

As discussed in [29], the spatial extent of a source
prior can be extracted from the smoothing operator that
employs the Green function, G=exp{o A}, representing the
inverse of a (sufficiently regular) linear differential operator.
So, the matrix A€R[0,1]P*P encodes all neighborhood
relationships between the cortical mesh nodes, which belong
to the solution space that is bounded by the area covering
the active regions c€R* [30].

Besides, we model the non-stationary source activations
by enforcing a temporary structure of the weight matrix
H through the use of short-time windows. Therefore, we
incorporate a couple of constraints (one spatial and another
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temporal) into the following regularized penalty function,
termed Dynamic Sparse Coding — DSC:

O(T; X, M) = N[ H[1 + M Y |hags —hulli - 4
teT—1

where \;€RT and )\;€RT are the spatial and temporal
regularization parameters, respectively, and h; €RC* 1 is ¢-th
column vector that holds the temporary structure of H.
Notation || - ||, stands for the L,-norm.

Based on Eq. (4), the above objective function in Eq. (2)
comes in the following generalized form:

H = argmin{||Y — L® H||%
H

+ As[[H 1+ A Z [[Pey1 — Puf]1} (%)

teT—1

Hence, the estimation of the neural activity in Eq. (3) is
rewritten as follows:

J=®H (©6)

Note that sparseness is encouraged by the first penalty
term in Eq. (5) that assigns a high cost to the matrices
with large absolute values, and thus effectively shrinking
all elements towards to zero. This situation means that
just a few spatial dictionary bases will explain the main
brain activity. In turn, the second term encourages the
temporal homogeneity by penalizing the difference between
consecutive time points, yielding a smooth solution over
time.

C. DSC Optimization under regularized penalty functions

Even that the DSC optimization task is convex, it
is a high-dimensional and large-scale problem, being
not trivial to optimize because the non-smooth penalty
function intended in Eq. (4). Hence, we reformulate the
non-smooth penalty term in the form of the smooth proximal
gradient algorithm that allows rewriting the fusion penalty
term through an introduced vertex-edge incident matrix
PcRTXT=1) " 5o that we encode the signal structure as
below [31]:

At Z [hey1 — B[t = M| [H Py
teT—1

In order to calculate the smooth proximal gradient, we
rewrite the overall penalty, relying on the fact that the dual
norm of the entry-wise matrix L., coincides with L norm,
yielding the following penalty function:

||H1N3|\1 = argmax(A,H1N31>7 7
[|Alloo <1

where AcRS*(T=1) is a some auxiliary matrix associated
with || HP||;. Notations (-) and || - ||~ stand for the matrix
inner product and matrix entry-wise L., norm (that is, the
maximum absolute value of all matrix entries), respectively.
It is worth noting that the temporal regularization parameter
A is now included into the term |[HP||; by making
Ae||HP||;=||H)P||1, where P=)\,P.

So far, the penalty formulation in Eq. (7) does not enable
a function that is just smooth enough over H. To cope
with this issue, we propose to encourage the approximation

of Eq. (4) to be sufficiently smooth by introducing the
following auxiliary function that is strongly convex [32]:

fu(H) = argmax{(A, H P) — pd(A)} (8
[[Alloo <1

where p€RT is a smoothing parameter and d(A)=1| Al%,
is an arbitrary smooth strong-convex function. From the
Nestrov’s theorem, it follows that f,(H) is convex and
continuously differentiable in H, ie., f,(H) is smooth
and Vf,(H) is Lipchitz continuous, so that the gradient
of f,(H) in H takes the following form [33]:

~a T
Vi.(H)=AP )

where A=S{H P/u} is the optimal solution for A
obtained in Eq. (8), and S{-} is the shrinkage operator that
is defined for cach entry £€R as:

g, gl <1
sgn(€), otherwise

Lastly, provided in terms of the smoothing approximation
fu(H), the minimization DSC problem results in the next
smooth optimization framework:

S{¢} = {

H = argmin{[¥ L&®H||% + \|[HI|1 + f.(H)}

= arguin{/(H) + A H]11} (10)
where f(H)=||Y — L&H||% + f,.(H) is the smooth term,
for which the gradient in Eq. (9) is defined as below:

Vi(H) = (L&) (LH -Y)+ AP (D)

Expressed by the smooth function in Eq. (4), therefore,
the initial DSC optimization task is now recast as the
smoothed optimization version in Egs. (10) and (11)
that we implement, employing the Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) [31].

III. EXPERIMENTAL SET-UP
A. Models of spatio-temporal sparseness

In order to validate the improvement in spatio-temporal
resolution that is contributed by the inverse problem
framework, the proposed solution using Dynamic Sparse
Coding is tested on synthetic and real-world datasets of
EEG signals. For this purpose, the performance validation
is verified by comparing with two baseline EEG inverse
solutions, namely, MSP and S-FLEX. Also, we study the
following DSC ratios for the regularization parameters: Ag:
A:=90:0 (termed LASSO), 90:30, 90:90, 30:90, 0:90 (termed
FUSION). The test range is selected to investigate to what
extent the DSC solution enables a compromise between the
LASSO solution (that is, solely space regularization) and
FUSION (the entirely time reconstruction).

Fig. 1 illustrates the sparseness patterns estimated for
the tested inverse methods, so that each time-space
representation is computed for a single EEG recording
measured by 32 electrodes, assuming 60 sources and
simulating a random lead field matrix. As seen in Fig. 1(c)
(patterns produced by MSP) and Fig. 1(b) (S-FLEX), either
solution promotes just sparseness of the spatial patterns and
cannot rightly group the sources along the time domain,
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Fig. 1. Time-space representation models of reconstructed activity
performed by the EEG inverse problem solutions tested in this work.

resulting in an inaccurate temporal source reconstruction as
compared to the simulated ground truth (see Fig. 1(a)). A
similar situation holds for the LASSO solution when having
only the spatial regularization as shown in Fig. 1(d).

On the other hand, the inclusion of sparseness constraints
in both domains makes each DSC solution be a more
accurate spatio-temporal resolution. Nevertheless, the quality
of EEG reconstruction depends on the fixed regularization
ratio. Thus, if the spatial regularization parameter is higher
than the temporal one (A;>\;), the performed reconstruction
is spatially enhanced even that some temporal patterns
may be missed as noted in Fig. 1(e). By contrast, if we
make Ag <), the temporal structure of reconstructed sources
tends to be closer to the original EEG simulation, but
some blurred sources can appear in the spatial domain
(see Figs. 1(f) and 1(g)). Moreover, the insertion of the
purely temporal constraint by DSC (that is, FUSION)
does not decode any spatio-temporal information of the
reconstructed activity (Fig. 1(h)). Apparently, the lack of
spatial resolution degrades the temporal activity decoding.
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Fig. 2. Examples of the simulated sources for one, three, and five active
dipoles showing the mean values fixed for each case of the simulated Morlet
wavelets.

B. Simulated EEG data

The most common approach to assessing the EEG inverse
solution is the validation performed on specially designed
EEG sets, for which the brain activity is already known
so that the estimation quality can be objectively verified.
So, we create 128-channel EEG data (noted as SD-1),
reproducing the pseudo-EEG at the positions defined by
the extended international BIOSEMI system. Here, we
generate the non-stationary EEG activity of active dipoles
using a signal set produced by a real Morlet wavelet that
lasts one-second long, sampled at 250 Hz, and having the
following parameters:

e Random central frequency with a mean of 9Hz and
standard deviation of 2 Hz, sampled from a Gaussian
distribution.

« Random time shift generated by the normal distribution
with a standard deviation of 0.05s and mean value
selected as shown in Fig. 2.

e The activity is simulated for the cases of one, three,

(Advance online publication: 20 November 2019)



TAENG International Journal of Computer Science, 46:4, IJCS 46 4 07

and five active dipoles, fixing their location randomly
from trial to trial.

Besides, the simulated time courses are assigned to the
adjacent nodes distributed on the computed cortical mesh
that is centered at the fixed random location, yielding the
known activity J. Then, the simulated source activity is
mapped to EEG sensor space through a realistic volume
conductor model of the human head that is obtained from
a tessellated surface in the gray-white matter interface
with D=8196 vertices (i.e., the number of available source
locations), having the source orientations fixed orthogonally
to the surface. Also, the lead fields are computed using
a standardized volume conductor model (specifically, we
employ the boundary element method) with a mean distance
between neighboring vertices adjusted to 5 mm.

With the aim to test the influence of the non-stationary
brain activity on the neural reconstruction performance, we
alter the noise conditions of EEG data. Namely, we add
the measurement noise to obtain the following experimental
values of Signal-to-Noise Ratio (SNR): —5,0, 10, and 15 dB.
As a result, a testing set holding 30 trials for every SNR
value and each simulation setting is produced.

Lastly, we reduce the high computational burden of the
optimization task in Eq. (1) by using the spatial projector U
defined as follows:

L=U"L,
Y=U"Y,

where U€RY %€ holds the C’ most significant singular
values (spatial modes larger than some tolerance prior given)
computed from the lead field matrix. It is important to
note that this preprocessing stage, commonly considered for
inversion schemes, does not affect the number of sources to
be estimated.

Tuning of DSC optimization parameters

In practice, tuning of the constrained optimization
framework poses a challenging task, becoming more
complicated as the number of parameter increases in
the inverse model given in Eq. (5). Thus, a critical
issuc for solving the Dynamical Sparse Coding solution
is the adjustment of the spatial (A\y) and temporal (\;)
regularization parameters since their influence affects the
quality of neural activity reconstruction the most. To
this end, we adjust their ratio, reaching a trade-off
between the spatial resolution (provided by LASSO scheme)
and the temporal resolution (by FUSION strategy). Like
in [28], we fix three different ratios evenly distributed:
As/A=90/30, 90/90, 30/90. For the sake of comparison,
we also study two more asymptotic values: A;#0 and
A¢=0 (only spatial regularization) and A\;7#0 and A\;=0 (only
temporal regularization).

With the purpose of further simplification, we reduce
the searching set of the optimal values using the heuristic
approach performed in [34] that fixes A; as a fraction of the
critical value of Amay, i.€., AP'=fAmax, wWhere B€[0,1].
Thus, if 5=1, the source activity J is filled with zeros,
meaning that there are no active sources (that is, the sparsest
possible solution). In the opposite case when =0, no sparse
restriction is imposed. Here, we set Amax=|Y ||r (data

Valence (negative-positive)

el el

Arousal (passive-active)

el
=
Liking (dislike-like)
[ I
1 2 3 4 5 6 7 8 9

Fig. 3. The Self-assessment manikins scales for valence, arousal, and
dominance. The thumbs down/thumbs up symbols are for the liking scale.

magnitude), and B=a/||L"Y || with a€[0,1]. Hence, we
use the fixed ratio A;/\; to get ;.

Accuracy measures Of source reconstruction

The evaluation of tested inverse solutions is achieved
regarding the ability to accurately localize and reconstruct
the time-courses extracted from the simulated EEG activity.
To this end, the localization task is accomplished using the
same head model for which the data have been generated.
For implementing all solutions, the employed spatial basis
® comprises S=512 clements (256 per hemisphere), which
are designed to cover the entire cortical surface.

The accuracy performed by each compared source
reconstruction algorithm is assessed for the time and space
domains by using the following measures:

Earth-Movers Distance, e ,€R™ that estimates the spatial
distribution of the dipole-wise power like the rate between
the neural activity and true power of the simulated sources.
As a consequence, the index £, measures the effort needed
to transform the estimated power distribution into the
actual distribution by transporting the probability mass [35].
Thus, the lower the e, value, the better the performed
reconstruction.

Temporal Accuracy Index, ,€R[0,1], that quantifies the
correlation between each simulated time series and its
respective reconstructed signal for all dipoles. For each
simulated source, the maximum correlation is computed
across all dipoles and spatial orientations. Also, the
maximum values are averaged across the simulated sources
to give an average maximum correlation. As a result, a higher
value of ; implies a better reconstruction performed in the
time domain.

C. Real-world EEG data of emotion analysis

In this study, the EEG data used were obtained
from the publicly available reservoir devoted to emotion
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analysis using physiological signals (DEAP) [36]. Thirty-two
healthy participants (50% females and 50% males on
average aging 26.9 years) were recruited and consented
to participate in the study. Collecting EEG recordings by
the BIOSEMI ActiveTwo system, data were acquired at
a sampling rate 512 Hz, placing electrodes on the surface
scalp and according to the International 10-20 system.
The applied pre-processing included the following steps:
common referencing, down-sampling to 128 Hz, high-pass
filtering from 4 Hz, and eye-blink artifact removal using
independent component analysis.

Although the DEAP participants rated the felt emotion
employing a discrete 9-point scale, the classification task
had been relaxed by binarizing all subject’s scores at the
scale midpoint (i.e., at 5-point level), resulting in the basic
setting of bi-class patterns (particularly, low versus high
as pictured in Fig. 3). For each emotion classification
task, therefore, we reflect the bi-class affective conditions:
Valence (negative versus positive), Arousal (passive-active),
Dominance (dominated-dominant), and Liking (dislike-like).

In this task of emotion analysis, we consider the influence
of the following two main procedures:

Source space reconstruction: This procedure is evaluated
using each one of the considered neural reconstruction
solutions, for which the parameters (i.e., spatial basis),
regularization parameter tuning, and implementation of the
volume conductor model (i.e., the lead field matrix) are
accomplished as in the above-simulated dataset set-up. So,
we verify the performed source reconstruction, according
to the certainty achieved to differentiate the related
bi-class emotions. Using a two-sided pairwise Student #-test,
we estimate the significant differences in brain activity
(dipole-wise source power) for each trial. Thus, the #-score
maps of brain areas, obtained for each emotion with absolute
values greater than 2.0244 (i.e., significance levels p<
0.05 uncorrected), are associated with the regions having
a differentiable neural activity between either affective
condition: low or high.

IV. RESULTS
A. Performed reconstruction for simulated data

As scen in Fig. 4 that displays the performed quality of
spatial reconstruction, the cases when the analyzed EEG
inverse solutions do not include any temporal information
(like LASSO, S-FLEX, and MSP) yield the lowest spatial
accuracy (that is, higher €, values) within the whole tested
SNR range, getting worse as the neural dynamic complexity
increases. Hence, the lack of information about temporal
EEG dynamics certainly degrades the spatial localization
accuracy of active brain areas. Besides, the FUSION solution
that does not account for any spatial structure produces a
very low spatial accuracy, indicating that the only inclusion
of the temporal dynamics is not enough for properly
describing the spatial patterns of neural activity. In contrast,
the spatial performance can be enhanced if a trade-off
between spatial and temporal patterns is incorporated like
in the solutions DSC(90:30), DSC(30:90), and the balanced
compromise DSC(90:90) that achieves the best spatial
performance.

In the same way, the quality of temporal reconstruction
behaves. So, the solutions that do not include any temporal

constraints perform the worst (like in LASSO, S-FLEX, and
MSP), reaching the lowest correlation values. Moreover, the
single inclusion of a strong temporal constraint does not
lead to a better quality than the solutions perform without
temporal constraints. Once again, the DSC proposal that
includes a space-time trade-off allows enhancing the quality
of temporal reconstruction as it is the case for the ratios
(90:30), (90:90), and (30:90). However, when the temporal
term weighs more than the spatial one, like in DSC(30:90),
a higher correlation value is obtained.

Further, for providing an objective comparison we employ
a paired t—test between each pair of the tested ESI solutions,
assuming as null hypothesis that there are no significant
differences between the compared methods concerning both,
the spatial accuracy index €4 (see Fig. 6), and the temporal
accuracy index €; (see Fig. 6). Otherwise, the alternative
hypothesis affirms, in the former case (spatial performance),
that the mean €, value of the method in the row is confidently
lower that the mean €, value of the method in the column.
Conversely, for the temporal accuracy index, the alternative
hypothesis affirms that the mean €; value of the method
in the row is significantly greater than the mean ¢, value
belonging to the method in the column. Moreover, gray and
black blocks represent that the null hypothesis is rejected at
significance levels p = 0.05 and p = 0.01, respectively.

Both the spatial accuracy index e, Fig. 6, and the
temporal accuracy index Fig. 7 confirm that as long as
the EEG temporal dynamics increases, i.e., the number of
active sources increases, methods that do not include such
dynamic information achieve lower results than methods that
merge both spatial and temporal constraints. As a result,
DSC(90:90) and DSC(30:90) obtain, in most of the studied
cases, €5 values significantly lower than the remaining
methods.

Grounded on the obtained-above results, we state that as
the analyzed data display a more nonstationary behavior the
accurate localization of the brain activity generators become
more difficult. In this regard, DSC can be adjusted through
the spatial-to-temporal regularization ratio (i.e., Ag:A;) to
emphasize either the spatial or temporal reconstruction,
depending on the requirements of accuracy available for the
specific data in hand.

B. Performed quality of emotion-related neural activity

The performed differences in dipole-wise power between
the high and low affective conditions are calculated for the
DSC(30:90) solution since it reaches the best accuracy of
neural reconstruction performed for the simulated EEG data.
Fig. 8 displays some examples of t-score maps, showing the
most significant differences (areas in the dark color) and
leading to the following findings:

o Valence emotion. In this case, the identified brain
regions with the most significant differences are close
to the default-mode network. For the positive valence,
some differences (colored in dark red) are noted
in the medial frontal and prefrontal cortex that is
associated with pleasant and unpleasant emotions. Also,
the posterior cingulate gyrus area that is involved
in emotional processing shows marked differentiation
in activity. These findings are agreeing with results
reported in [37].
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o Arousal emotion. Mainly, the regions with the important

differences relate to the high arousal rates like in
the ventral anterior cingulate gyrus that is commonly
associated with the sexual arousal produced by visual
stimuli in males [38]. Also, the temporal pole (linked
with the visual processing of emotional images [39])
holds a high activity. For the passive activity (i.e.,
lower arousal rates), the notable differences are in the
posterior cingulate gyrus associated with the process
of emotional semantic information and actions of
passively listening to different sentences as suggested
in [40]. Likewise, several areas regarding visual stimuli
processing are active, for instance, the middle occipital

Spatial reconstruction accuracy according to the Earth-Mover’s Distance €5 in the first experiment for the following mappings methods:
DSC(Lasso), DSC(90 : 30), DSC(90 : 90), DSC(30 : 90), DSC(Fusion), S-FLEX, MSP.

gyrus.
Dominance emotion. As noted in [41] for high values

(dominant), the superior parietal lobule, which regards
the processing emotions and self-reflections during
decision making, reveals a high activity, as well as in the
posterior cingulate gyrus linked with fear conditioning
and evaluative judgment [42], [43]. For low dominance
(dominated), a high activity is located in part of
the prefrontal cortex associated with the pleasant and
unpleasant emotions.

Liking emotion. In the case of the subject dislikes
videos, the active regions are the posterior cingulate
gyrus (related to evaluative judgment) and the inferior
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Fig. 5. Temporal reconstruction accuracy according to the maximum correlation € in the first experiment for the following mappings methods: DSC(Lasso),

DSC(90 : 30), DSC(90 : 90), DSC(30 : 90), DSC(Fusion), S-FLEX, MSP.

parietal lobule (associated with retrieval of unpleasant
experiences [44]). In the opposite situation of liking
videos, the active areas associate with music enjoyment
as the inferior frontal gyrus [45].

Regardless of the examined emotion, there is an active
brain area close to the secondary visual cortex. The finding
is explained because this area is highly associated with the
response to emotion/attention in visual processing [46].

V. DISCUSSION

Aiming to enhance the spatio-temporal resolution,
we propose a regularized method for neural activity
reconstruction that explicitly includes both (space and time)

constraints on the M/EEG inverse problem solution. The
main goal is to reach a suitable trade-off between the
corresponding space and time resolutions, allowing to more
accurately estimate the active sources that better encode
a high non-stationary behavior of brain activity. From the
above-obtained results, however, the following findings are
worth mentioning:

We foster the enhancement of the spatial resolution by
representing the brain activity as a sum of a small number
of space basis functions, describing a set of smooth localized
patches that adequately represents all potentially active brain
regions. To this, we incorporate a spatial constraint that is
expressed in terms of the Li-norm so that we promote the
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Fig. 7. Paired t—test comparing the tested ESI solutions with the temporal
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and 15dB. In the ¢— test alternative hypothesis, the method in the column
is assumed to have a significantly greater e; mean value.

solution to be sparse, making the estimated brain activity be
represented mainly by a set of localized sources. Thus, the
influence of the spatial constraint on the estimated solution
is ruled by increasing or decreasing the regularization
parameter ). Besides, we include a temporal regularization
term that encourages the inverse problem solution to improve
the temporal accuracy of the accomplished neural activity
reconstruction. As a result, this term penalizes the difference
between consecutive time samples, leading to a smooth
solution over time.

In order to obtain an enhanced resolution, the inclusion
of a single constraint, either spatial or temporal, within
the proposed DSC solution is clearly nor enough,
degrading the solution performance as accomplished by
the asymptotic cases (As=0, or A\;=0). Rather, we notably
improve the reconstruction quality when an adequate
compromise between both regularization parameters is
established. Moreover, the DSC solution enables adjusting
the spatio-temporal ratio, depending on dynamics of
available EEG data.

Therefore, one of the most crucial stages is the
regularization parameter tuning of DSC solution. In this
regard, we employ the Sparsest possible solution that
does not demand an exhaustive search nor an exhaustive
computational cost like other approaches, which commonly
carry out the calculation of several solutions with different
parameters tuned just by a single EEG recording.

VI. CONCLUSIONS

In this work, we introduce a method that imposes
physiologically motivated spatio-temporal constraints on
a Dynamic Sparse Coding for improving the quality of
brain activity reconstruction and localization. The proposed
method provides a trade-off between the imposed spatial and
temporal constraints through the regularization parameters,
enhancing the estimation of non-stationary neural activity.

For the sake of validation of the reconstructed ncural
activity in real scenarios, we carry out an analysis of the
generators of emotion-related brain activity, showing that
most active sources originate in cortical areas involved
in visual and attention processes, as well as in regions
involved in emotional processing. This finding stands in line
with the literature. As a result, the proposed DSC-based
solution improves previous characterizations of M/EEG
source activity, particularly, when dealing with strong
temporal dynamics.

As the future work, we plan to improve the spatial
resolution of our method, including the fMRI-based
spatial basis. Also, we plan to include time-frequency
based constraints towards obtaining more accurate source
reconstruction in practice.
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