
Better Approximation Algorithm for Point-set
Diameter

Mahdi Imanparast, and Seyed Naser Hashemi

Abstract—The problem of computing the diameter of a set
of points on a dataset is one of the fundamental issues in com-
putational geometry, which is used in many applications. Since
precisely computing the diameter has required quadratic time,
some approximation approaches to this problem is considered.
In this paper, we propose a new (1 + O(ε))-approximation
algorithm with O(n+ 1/ε(d−1)/2) running time for computing
the diameter of a set of n points in the d-dimensional Euclidean
space for a fixed dimension d, where 0 < ε 6 1. This
result provides some improvements in the running time of this
problem in comparison with previous algorithms.

Index Terms—Computational geometry, approximation algo-
rithms, diameter, point-set, fixed dimensions.

I. INTRODUCTION

COMPUTING the diameter of a point-set has a long
history and is used in various fields, such as database,

data mining, clustering, vision [1], and interconnection net-
works [2]. For example, in a database containing a set of
images of the same size, it is possible to consider each image
with d pixels as a point in the d-dimensional space for a
fixed dimension d. In this case, computing the diameter in
this dataset means finding two most different images. For a
finite set of n points, the purpose of computing the diameter
of a point-set is to find two points with maximum distance in
the point-set. A trivial brute-force solution for the diameter
problem is to calculate the distance between each pair of
points and then select the maximum distance which takes
O(dn2) time. By reducing from the set disjointness problem,
it can be shown that computing the diameter of n points in Rd
requires Ω(n log n) operations in the algebraic computation-
tree model [3].

There are well-known solutions to this problem in two
and three dimensions. This problem can be solved at the
optimal time O(n log n) in the plane, but in three dimen-
sions, it is a bit more difficult. Several attempts have been
made to solve the diameter problem at the optimal time
in three dimensions, and finally, Ramos [4] presented an
optimal deterministic O(n log n)-time algorithm in R3. In
the case of higher dimensions (for d > 3), the brute-force
algorithm needs O(dn2) time, which is too slow for large-
scale datasets that appear in the fields. Hence, it seems to
be necessary to use approximation algorithms for comput-
ing the diameter in these dimensions. A 2-approximation
algorithm with O(dn) time in d-dimensional space can
easily be obtained by choosing a point from the point-
set, and then finding the farthest point of it by brute-force

Manuscript received April 28, 2019; revised July 30, 2019.
M. Imanparast is with the Department of Mathematics and Com-

puter Science, Amirkabir University of Technology, Tehran, Iran (e-mail:
m.imanparast@aut.ac.ir)

S. N. Hashemi is with the Department of Mathematics and Com-
puter Science, Amirkabir University of Technology, Tehran, Iran (e-mail:
nhashemi@aut.ac.ir)

TABLE I
A SUMMARY OF THE COMPLEXITY OF SOME UTILIZABLE

NON-CONSTANT APPROXIMATION ALGORITHMS FOR COMPUTING THE
DIAMETER OF A POINT-SET IN d-DIMENSIONAL EUCLIDEAN SPACE. OUR

RESULT IS PRESENTED IN THE LAST ROW.

Ref. Approx. Factor Running Time Year

[6] 1 + ε O(
n

ε(d−1)/2
) 1992

[7] 1 + ε O(n+ 1/ε2(d−1)) 2001
[8] 1 + ε O((n+ 1/ε2d) log 1

ε
) 2001

[9] 1 + ε O(n+ 1/ε
3(d−1)

2) 2002
[11] 1 + ε O(n+ 1/εd−1) 2018
[9] 1 +O(ε) O(n+ 1/εd−

1
2) 2002

[10] 1 +O(ε) O(n+ 1/εd−
3
2) 2006

[11] 1 +O(ε) O(n+ 1/ε
2d
3
− 1

3) 2018
[12] 1 +O(ε) O((n/

√
ε+ 1/ε

d
2
+1)(log 1

ε
)O(1)) 2017

[13] 1 +O(ε) O(n log 1
ε
+ 1/ε

(d−1)
2

+α) 2017

Ours 1 +O(ε) O(n+ 1/ε
(d−1)

2) 2019

manner. The first non-trivial approximation algorithm for
the diameter is presented by Egecioglu and Kalantari [5],
which calculates a

√
3-approximation with O(dn) time. They

also provided an iterative algorithm with O(tdn) time and
an approximation factor

√
5− 2

√
3, where t is the number

of iterations of the algorithm. Agarwal et al. [6] proposed
the first (1 + ε)-approximation algorithm for computing the
diameter in Rd with O(n/ε(d−1)/2) time by projection to
directions. Subsequently, several approximation algorithms
have been proposed in [7], [8], [9], [10], [11], each of
which improved the required time to solve this problem.
Recently, Chan [12] has presented an approximation algo-
rithm based on the Chebyshev polynomials with the running
time O((n/

√
ε+1/ε

d
2+1)(log 1

ε)O(1)), for computing a (1+
O(ε))-approximation of the diameter, and Arya et al. [13]
have also shown that by applying an efficient decomposition
of a convex body using a hierarchy of Macbeath regions, it
is possible to have an approximation for the diameter of a
set of points in time O(n log 1

ε + 1/ε
(d−1)

2 +α), where α is a
small positive constant. Table I provides a summary overview
of non-constant approximation algorithms for computing the
diameter of a set of points.

A. Our result

In this paper, we propose a simple (1 + O(ε))-
approximation algorithm for computing the diameter of a
set S of n points in Rd with O(n + 1/ε(d−1)/2) time and
O(n) space, where 0 < ε 6 1. As stated in Table I, two new
results have been recently presented for the diameter problem
in [12] and [13]. It should be noted that our algorithm is
completely different in terms of computational technique.

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_10

(Advance online publication: 20 November 2019)

__

ξ

ξ

ξ
p

d

p̂

q̂

p

q

`

Fig. 1. Rounding the points of the set S to their central-cell points in a
ξ-grid. Two points p̂ and q̂ are the corresponding central-cell points for two
points p and q which are the diametrical pair (p, q) ∈ S.

The polynomial technique provided by Chan [12] is based
on using Chebyshev polynomials and discrete upper envelope
subroutine [10], and the method presented by Arya et al. [13]
requires the use of complex data structures to approximately
answer queries for polytope membership, directional width,
and nearest-neighbor. While our algorithm in comparison
with these algorithms is simpler in terms of understanding
and data structure. The rest of this paper is organized as
follows. The proposed algorithm is introduced in section II.
Analysis of the algorithm is described in section III. And we
conclude our paper in section VI.

II. THE PROPOSED ALGORITHM

In this section, we describe our new approximation algo-
rithm to compute the diameter of a set S of n points in Rd.
The main idea of our algorithm is based on rounding the
points to the grids. We first round the points to their central-
cell points on a grid and then in two phases to their nearest
grid-points for different grid cell sizes. The most important
advantage of these sequential rounding by increasing the
grid cell size is that it will not only reduce the number
of points we examine, but also it will reduce the search
domain for computing the diameter at each rounding phase.
In fact, by computing the diameter in the set of rounded
points in the third phases, we divide the problem into a set
of subproblems that helps us in solving subproblems in the
previous rounded point-sets and ultimately leads to finding
a (1 +O(ε))-approximation of the true diameter.

We first find the extreme points in each coordinate and
compute the axis-parallel bounding box of S , which is
denoted by B(S). We use the largest length side ` of B(S)
to impose grids on the point-set. In first rounding phase, we
decompose B(S) to a grid of regular hypercubes with side
length ξ, where ξ = ε`/2

√
d. We call each hypercube a cell.

See Fig. 1. On the other hand, for the diametrical pair points
p and q and their corresponding approximate diametrical
pair points p̂ and q̂, the true diameter and the approximate
diameter will be D = ||p−q|| and D̂ = ||p̂− q̂||. This means
that the first rounding provides a (1 + ε)-approximation for
the diametrical pair (p, q) ∈ S (for more details see [11]).
Then, we repeat the same rounding process twice for grids

ξ1

ξ2

B0
1

B0
2

B1

B2

p̂00

q̂00

p̂0

q̂0

`

D̂00

D̂0

2ξ2

2ξ1

Fig. 2. An example of rounding the points of the rounded point-set Ŝ to
a ξ1-grid, and then rounding the points of the set Ŝ′ to a ξ2-grid.

with side length ξ1 ←
√
ε`/2
√
d and ξ2 ← ε

1
4 `/2
√
d. We

assume that Bδ(p) denotes a hypercube with side length δ and
central-point p. We also use notation Diam(B1,B2) for the
process of computing the diameter of the point-set B1 ∪B2.
In the following, we present our algorithm in more details
in Algorithm 1.

Algorithm 1: Approximate Diameter (S, ε)
Input: a set S of n points in Rd and an error parameter ε.

Output: approximate diameter D̂.
1: Compute the axis-parallel bounding box B(S) for the point-set S.
2: `← Find the length of the largest side in B(S).
3: Set ξ ← ε`/2

√
d, ξ1 ←

√
ε`/2
√
d and ξ2 ← ε

1
4 `/2

√
d.

4: Ŝ ← Round each point of S to its central-cell point in a ξ-grid.
5: Ŝ′ ← Round each point of Ŝ to its nearest grid-point in a ξ1-grid.
6: Ŝ′′ ← Round each point of Ŝ′ to its nearest grid-point in a ξ2-grid.
7: D̂′′ ← Compute the diameter of the point-set Ŝ′′ by brute-force manner.
8: Compute a list of the diametrical pairs (p̂′′, q̂′′), such that

D̂′′ = ||p̂′′ − q̂′′||.
9: Corresponding to each diametrical pair (p̂′′, q̂′′) ∈ Ŝ′′, find points of
Ŝ′ which are inside two hypercubes B2ξ2 (p̂′′) and B2ξ2 (q̂′′), and
store them in two point-sets B′1 and B′2.

10: D̂′ ← For each pair (B′1,B′2) corresponding to each diametrical pair
(p̂′′, q̂′′) ∈ Ŝ′′, compute Diam(B′1,B′2), by brute-force man-
ner and return the maximum value between them.

11: For the computed diameter D̂′, compute a list of the diametrical pairs
(p̂′, q̂′), such that D̂′ = ||p̂′ − q̂′||.

12: Corresponding to each diametrical pair (p̂′, q̂′) ∈ Ŝ′, find points of
Ŝ which are inside two hypercubes B2ξ1 (p̂′) and B2ξ1 (q̂′), and store
them in two point-sets B1 and B2.

13: D̂ ← Compute Diam(B1,B2), corresponding to each diametrical
pair (p̂′, q̂′) ∈ Ŝ′ by Chan’s [9] recursive approach and return
the maximum value between them.

14: Output D̂.

In Fig. 2, we illustrate an example of rounding the points
of the rounding point-set Ŝ to a ξ1-grid, and then rounding
points of the new point-set Ŝ ′ to a ξ2-grid. Points of the
rounded point-set Ŝ are shown by circle points (◦) and their
corresponding nearest grid-points in point-set Ŝ ′ are shown
by blue points (•). Moreover, the points of the point-set Ŝ ′′
are shown by small squares (2).

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_10

(Advance online publication: 20 November 2019)

__

p

q

p0
q0

p

"

`

Fig. 3. Projecting two points p and q on direction `.

The searching domain for finding the diameter of the
point-set Ŝ is reduced into two point-sets B1 and B2. It
should be noted that we use a hypercube B2ξ1(p̂′) of side
length 2ξ1 to make sure that we do not lose any points of
the rounded point-set Ŝ around a grid-point p̂′ ∈ Ŝ ′ (see
Lemma 1). As can be seen in Fig. 2, starting from the point-
set Ŝ ′′, and finding the points of the previous set Ŝ ′ contained
within two hypercubes B′1 and B′2, and repeating the same
process for the point-set Ŝ ′, finally an approximate diameter
for the point-set Ŝ is computed.

What needs to be further explained is the last step of the
algorithm in which Chan’s [9] recursive approach is used to
compute the approximate diameter. As previously mentioned,
Agarwal et al. [6] introduced an approximation algorithm that
in O(n/ε(d−1)/2) time could find a (1 + ε)-approximation
for the diameter of a set of n points. Their result is based on
the following simple observation. Let denote the projection
of a point-set S on the line l by Sl. See Fig. 3. Then, if two
points p and q are the diametrical pair of the point-set S,
and p′ and q′ be their projection on the line l, such that the
angle between pq and p′q′ be at most

√
ε, we have

||p′ − q′|| 6 ||p− q|| 6 (1 + ε)||p′ − q′||. (1)

This means that ||p′ − q′|| is a (1 + ε)-approximation of
||p− q||.

Now, we can find O(1/ε(d−1)/2) numbers of directions in
Rd, for example by constructing a uniform grid on a unit
sphere, such that for each vector x ∈ Rd, there is a direction
that the angle between this direction and vector x be at most√
ε [6]. So, it is sufficient to project the point-set S on each

of these directions and compute their diameter. Then, we can
consider the maximum value of the computed diameters as
a (1 + ε)-approximate diameter for the point-set S.

Chan [9] observed that instead of running their method on
n points, the points can be first rounded to a grid, in which
case, the number of points would be reduced from n to m =
O(1/ε(d−1)). Then, by applying Agarwal et al. [6] method
on this rounded point-set, we need O((1/εd−1)/ε(d−1)/2) =
O(1/ε3(d−1)/2) time to compute the maximum diameter over
all O(1/ε(d−1)/2) directions. Taking into account O(n) time
we spend for rounding to a grid, this new approach computes
a (1+ε)-approximation for the diameter of a set of n points
in O(n+ 1/ε3(d−1)/2) time.

Chan [10] also observed that in Agarwal et al. [6] method,
instead of projecting rounded points on O(1/ε(d−1)/2) d-
dimensional unit vectors, one can project m = O(1/ε(d−1))
rounded points on a set of O(1/

√
ε) 2-dimensional unit vec-

tors to reduce the problem to O(1/
√
ε) numbers of (d− 1)-

dimensional subproblems which can be solved recursively.

Let us denote the required time for computing the diameter
of m points in a d-dimensional space with td(m), then for
a rounded point-set on a grid with m = O(1/εd−1) points,
this recursive approach breaks the problem into O(1/

√
ε)

subproblems in a (d−1) dimensional space. Hence, we have
a recurrence

td(m) = O(m+ 1/
√
εtd−1(O(1/εd−1))). (2)

By assuming E = 1/ε, we can rewrite the recurrence as:

td(m) = O(m+ E
1
2 td−1(O(Ed−1))). (3)

This can be solved to td(m) = O(m+Ed−
1
2). In this case,

m = O(1/εd−1), so, this recursion takes O(1/εd−
1
2) time.

Taking into account O(n) time, we spent for rounding to
a grid at the first, Chan’s recursive approach computes a
(1 + O(ε))-approximation for the diameter of a set of n
points in O(n + 1/εd−

1
2) time [9]. For more details on the

Agarwal et al. and Chan’s recursive methods, the readers are
referred to [9] and [11].

III. ANALYSIS

In this section, we analyze the proposed algorithm. For
this purpose, we first show in the following lemma that it is
sufficient to consider a hypercube of side length of twice of
the grid cell size at diametrical pairs in rounded point-sets.

Lemma 1. Considering the points inside hypercubes with
side length of 2ξ1 around the rounded points p̂1 and q̂1 are
sufficient to find an approximate diameter.

Proof: Consider a special case of Fig. 4, in which the
defining points of the true diameter are located at the upper
boundary of the hypercube B1 and the lower boundary of the
hypercube B2. In this case, the true diameter between two
points v and w is D = Diam(S) = ||v − w||. On the other
hand, D̂1 = Diam(Ŝ′) = ||p̂1′ − q̂1′||. For the approximate
diameter, we will have two points a and d, which means that
D̂ = Diam(Ŝ) = Diam(B1,B2) = ||a− d||. Now, suppose
the size of the sides of the hypercubes B1 and B2 be less
than 2ξ1. In this case, two points b and c are considered
for the approximate diameter. Then, D̂′ = ||b − c|| is the
approximate diameter in this case.

On the other hand, according to Fig. 1, for the true
diameter and the approximate diameter, we have:

D − ξ
√
d 6 D̂ 6 D + ξ

√
d. (4)

Given that ξ = ε`/2
√
d and ` 6 D, we have:

D 6 D̂ + ε`/2 6 D + ε`. (5)

If we assume that D̃ = D̂ + ε`/2, we have:

D 6 D̃ 6 (1 + ε)D. (6)

Therefore, the final approximate diameter is D̃ = D̂ + ε`/2
(for more details see [11]). So, suppose ε = 1/36. Since
` = 102. In this case, we will have ξ = 1, ξ1 = 6, and we
have:

D = ||v − w|| = 102.313, (7)

and
D̃ = D̂ + ε`/2,

D̃ = ||a−d||+ε`/2 = 101.815 +
1

36
· 102

2
= 103.232, (8)

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_10

(Advance online publication: 20 November 2019)

__

ξ

ξ1

ℓ = 102

a

b

c

d

v

w

p̂1
′

q̂1
′

B1

B2

....

....

....

....

Fig. 4. A case in proof of the Lemma 1.

and
D̃′ = D̂′ + ε`/2,

D̃′ = ||b− c||+ ε`/2 = 91.924 +
1

36
· 102

2
= 93.341, (9)

Finally, we can see that the approximate diameter D̃
satisfy the relation D 6 D̃ 6 (1 + ε)D, and for the
approximate diameter D̃′, the relation D 6 D̃′ 6 (1+ε)D is
not established. So, this indicates that the considering points
inside a hypercube of side length 2ξ1 is a good choice, and
this is sufficient to select the points.

Now, we can prove the following theorem about the
computed diameter in Algorithm 1.

Theorem 2. Algorithm 1 computes a (1+O(ε))-approximate
diameter for a set S of n points in Rd in O(n+ 1/ε(d−1)/2)
time and O(n) space, where 0 < ε 6 1.

Proof: Finding the extreme points in all coordinates and
finding the largest side of B(S) can be done in O(dn) time.
The rounding step takes O(d) time for each point, and for all
of them takes O(dn) time. But for computing the diameter
over the rounded point-set Ŝ ′′, in line 7 of the Algorithm
1, we need to know the number of points in the set Ŝ ′′.
We know that the largest side of the bounding box B(S)
has length ` and the side length of each cell in the ξ2-
grid is ξ2 = ε

1
4 `/2
√
d. On the other hand, the volume of

a hypercube of side length L in d-dimensional space is Ld.
Since, corresponding to each point in the point-set Ŝ ′′, we
can take a hypercube of side length ξ2. Therefore, in order
to count the maximum number of points inside the point-
set Ŝ ′′, it is sufficient to calculate the number of hypercubes
of side length ξ2 in a hypercube (bounding box) with side
length ` + ξ2. See Fig. 2. This means that the number of
grid-points in an imposed ξ2-grid to the bounding box B(S)
is at most

(`+ ξ2)d

(ξ2)d
= (

`

ε
1
4 `/2
√
d

+1)d = (
2
√
d

ε
1
4

+1)d = O(
(2
√
d)d

ε
d
4

).

(10)
So, the number of points in Ŝ ′′ is at most O((2

√
d)d/ε

d
4).

This can be reduced to O((2
√
d)d/ε

d
4−

1
4) by discarding

some internal points which do not have any potential to

(a) (b)

B B

Fig. 5. The maximum number of diametrical pairs on a regular grid in
two dimensional space. The squares (2) denote the rounded points on the
grid.

be the diametrical pairs in rounded point-set Ŝ ′′. This can
be done by considering all the points in the ξ2-grid, which
are same in their (d− 1) coordinates and keep only highest
and lowest. Hence, by the brute-force quadratic algorithm,
we need O((2

√
d)d/ε

d
4−

1
4)2) = O((2

√
d)2d/ε

d
2−

1
2) time

for computing all distances between points of the point-set
Ŝ ′′, and its diametrical pair list. Then, for a diametrical pair
(p̂′′, q̂′′) in point-set Ŝ ′′, we compute two sets B′1 and B′2 in
O(dn) time. They include points of Ŝ ′ which are inside two
hypercubes B2ξ2(p̂′′) and B2ξ2(q̂′′), respectively. In addition,
for computing the diameter of the point-set B′1∪B′2, we need
to know the number of points in each of two point-sets B′1
and B′2. On the other hand, the number of points in two sets
B′1 or B′2 is equivalent to the number of hypercubes of size
Bξ1 that can be in a hypercube of size B2ξ2 , which is at most

V ol(B2ξ2)

V ol(Bξ1)
=

(2ε
1
4 `/2
√
d)d

(
√
ε`/2
√
d)d

=
(2ε

1
4)d

(ε
1
2)d

=
(2)d

ε
d
4

. (11)

This means that the number of points in two point-sets B′1
and B′2 is at most O((2)d/ε

d
4), which can be also reduced

to O(2d/ε
d
4−

1
4). Hence, for computing Diam(B′1,B′2), we

need O(((2)d/ε
d
4−

1
4)2) = O((2)2d/ε

d
2−

1
2) time by quadratic

brute-force manner. On the other hand, we might have
more than one diametrical pair (B′1,B′2). Since the point-
set Ŝ ′′ is a set of grid-points on a regular grid, so we
could have in the worst-case O(2d) different diametrical
pairs (B′1,B′2) in the point-set Ŝ ′′. Two examples of the
diametrical pairs on regular girds in the two-dimensional
space are shown in Fig. 4. Therefore, this step takes at most
O(2d · (2)2d/ε

d
2−

1
2) = O((2

√
2)2d/ε

d
2−

1
2) time.

In the next step, for each diametrical pair (p̂′, q̂′) ∈ Ŝ ′,
we compute two sets B1 and B2 which include points of set
Ŝ which are inside two hypercubes B2ξ1(p̂′) and B2ξ1(q̂′),
respectively. Moreover, the number of points in two sets B1
or B2 is at most

V ol(B2ξ1)

V ol(Bξ)
=

(2
√
ε`/2
√
d)d

(ε`/2
√
d)d

=
(2ε

1
2)d

εd
=

(2)d

ε
d
2

. (12)

This can be reduced to O((2)d/ε
d
2−

1
2), by keeping only

highest and lowest points which are same in their (d − 1)
coordinates. Now, for computing Diam(B1,B2), we use
Chan’s [9] recursive approach instead of using the quadratic
brute-force algorithm on the point-set B1 ∪ B2. On the
other hand, computing the diameter of a set of O(1/ε

d
2−

1
2)

points using Chan’s recursive approach takes the following
recurrence based on the relation (2): td(m) = O(m +

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_10

(Advance online publication: 20 November 2019)

__

1/
√
εtd−1(O(1/ε

d
2−

1
2))). By assuming E = 1/ε, we can

rewrite the recurrence as:

td(m) = O(m+ E
1
2 td−1(O(E

d
2−

1
2))). (13)

This can be solved to td(m) = O(m + E
d
2). In this case,

m = O(E
d
2−

1
2), so, this recursion takes O(E

d
2 +E

d
2−

1
2) =

O(1/ε
d
2−

1
2) time. Moreover, if we have more than one

diametrical pair (p̂′, q̂′) in point-set Ŝ ′, then this step takes at
most O((2d)(2)d/ε

d
2−

1
2) = O(22d/ε

d
2−

1
2) time. Therefore,

we can write the total complexity time of the algorithm
as follows, which includes required time for three times
rounding the point-sets to the grids with O(dn) time, and the
required time to find points inside the hypercubes (B1,B2) or
(B′1,B′2), which can take at most O(2ddn) time, plus the time
of calculating the diameter in each of three sets of rounded
points:

Td(n) = O(dn) +O(dn) +O(dn) +O(2ddn) +O(
(2
√
d)2d

ε
d
2−

1
2

)

+O(2ddn) +O(
(2
√

2)2d

ε
d
2−

1
2

) +O(
22d

ε
d
2−

1
2

),

6 O(2ddn+
(2
√
d)2d

ε
d
2−

1
2

). (14)

Since d is fixed, we have:

Td(n) = O(n+
1

ε
(d−1)

2

). (15)

On the other hand, we know that according to Lemma 1,
the points of the set Ŝ provide a (1 + ε)-approximate for
the true diameter of the point-set S, and also the Chan’s
recursive approach computes a (1 + O(ε))-approximate for
the diameter of the point-set Ŝ. So, the proposed algorithm
provides a (1 +O(ε))-approximation diameter for the diam-
eter of the initial point-set S. About the required space, we
only need O(n) space for storing required point-sets. So, this
completes the proof.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have presented a simple (1 + O(ε))-
approximation algorithm to compute the diameter of a point-
set S of n points in Rd for a fixed dimension d with O(n+
1/ε(d−1)/2) time, where 0 < ε 6 1. As an open problem,
one can ask whether it is possible that the point-set diameter
is computed in O(n+ 1/εα) time such that α < d/2.

REFERENCES

[1] P. Techa-angkoon and S. Rattanaudomsawat, ”Time-optimal algorithm
for computing the diameter of a point set on a completely overlapping
network,”In Proceedings of the International Multi Conference of
Engineers and Computer Scientists (IMECS 2009), vol. 1, 2009.

[2] A. Ganesan, ”An Efficient Algorithm for the Diameter of Cayley Graphs
Generated by Transposition Trees,” IAENG International Journal of
Applied Mathematics, vol. 42, no. 4, pp. 214-223, 2012.

[3] F. P. Preparata and M. I. Shamos, ”Computational Geometry: an
Introduction,” New York, Springer-Verlag, pp. 176-182, 1985.

[4] E. A. Ramos, ”An optimal deterministic algorithm for computing the
diameter of a three-dimensional point set,” Discrete and Computational
Geometry, vol. 26, pp. 245-265, 2001.

[5] O. Egecioglu and B. Kalantari, ”Approximating the diameter of a set
of points in the Euclidean space,” Information Processing Letters, vol.
32, no. 4, pp. 205-211, 1989.

[6] P. K. Agarwal, J. Matousek, and S. Suri, ”Farthest neighbors maximum
spanning trees and related problems in higher dimensions,” Computa-
tional Geometry: Theory and Applications, vol. 1, pp. 189-201, 1992.

[7] G. Barequet and S. Har-Peled, ”Efficiently approximating the minimum-
volume bounding box of a point set in three dimensions,” Journal of
Algorithms, vol. 38, pp. 91-109, 2001.

[8] S. Har-Peled, ”A practical approach for computing the diameter of a
point set,” In Proceedings of the 17th annual Symposium on Computa-
tional Geometry (SoCG’01), pp. 177-186, 2001.

[9] T. M. Chan, ”Approximating the diameter, width, smallest enclosing
cylinder, and minimum-width annulus,” International Journal of Com-
putational Geometry and Applications, pp. 67-85, 2002.

[10] T. M. Chan, ”Faster core-set constructions and data stream algorithms
in fixed dimensions,” Computational Geometry: Theory and Applica-
tions, vol. 35, pp. 20-35, 2006.

[11] M. Imanparast, S. N. Hashemi, and A. Mohades, ”An Efficient
Approximation for Point-set Diameter in Higher Dimensions,” In Pro-
ceedings of the 30th Canadian Conference on Computational Geometry
(CCCG’18), pp. 72-77, 2018.

[12] T. M. Chan, ”Applications of Chebyshev polynomials to low-
dimensional computational geometry,” In Proceedings of the 33rd In-
ternational Symposium on Computational Geometry (SoCG’17), pages
26:1-15, 2017.

[13] S. Arya, G. D. da Fonseca, and D. M. Mount, ”Near-optimal
ε-kernel construction and related problems,” In Proceedings of the
33rd International Symposium on Computational Geometry (SoCG’17),
pages 10:1-15, 2017.

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_10

(Advance online publication: 20 November 2019)

__

