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Abstract—The path planning problem refers to find the

shortest path to reach the predetermined target position in a
certain complex environment. Particle swarm optimization
(PSO) algorithm is derived from the imitation of the population
cooperation of the flock and the predatory behavior of the
competition. The sharing of information by the individuals in
the swarm makes the movement of the whole swarm in the
problem solution space from disorder process to order process.
In this paper, the improved PSO algorithm based on improved
inertia weights is adopted to solve the path planning problems.
For the three constructed different maps, the improved PSO
algorithm based on five different inertia weight adjustment
strategies is used to solve the path planning problems. The
simulation results are used to verify the effectiveness of the
proposed algorithm and inertia weight adjustment strategies.

Index Terms—path planning problem, particle swarm
optimization algorithm, inertia weight

I. INTRODUCTION
HE path planning problem is one of the main research
contents of motion planning. The motion planning

problem consists of path planning and trajectory planning.
The sequence points or curves connecting the starting point
and the ending position are called paths. The strategy of
forming the path is called path planning [1]. The planning
problem with the topological of point and line networks can
be basically solved by the path planning methods. Therefore,
the path planning has been widely applied in many
application fields, such as the robot autonomous collision-
free operation, the drone obstacle avoidance flight, the cruise
missile avoiding the radar searching, the GPS navigation, the
GIS-based road planning, the vehicle routing problem (VRP)
in the city road network planning and navigation, and the
routing problem in communication technology [2-18].
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According to the basic principles of the path planning solving
algorithms, they can be roughly divided into the classical
algorithms, the graphic methods and intelligent hybrid
algorithms. A* algorithm, Dijkstra algorithm, C-space
algorithm, Floyd algorithm, Voronoi diagram, particle swarm
optimization algorithm, the mixed integer linear
programming method, genetic algorithm, heuristic search
method and ant colony algorithm have been applied on
solving the path planning problem.
Particle swarm optimization (PSO) algorithm is a new

evolutionary algorithm (EA) developed by J. Kennedy and R.
C. Eberhart [19]. The PSO algorithm also starts from the
random solutions and finds the optimal solution through
iteration. It also evaluates the quality of the solutions by
fitness, and finds the global optimum by following the
current searched optimal solution. This kind of algorithm has
attracted the attention of the academic scholars because of its
easy implementation, high precision and fast convergence. It
has demonstrated its superiority in solving many practical
problems, such as the prediction of seismic slope stability,
carton heterogeneous vehicle routing problem. The optimal
power management of plug-in hybrid electric vehicles, the
optimal operation of micro grid, the electrochemical model
parameter identification of a lithium-ion battery, the
mixed-model two-sided assembly line balancing, the
multidimensional Knapsack problem and the trajectory
optimization of manipulator motion planning problem
[20-28]. Inertia weight is an important parameter in PSO
algorithm. In this paper, the PSO algorithm based on different
improved inertia weights is used to solve the path planning
problem. The simulation experiments are carried out to
evaluate the performance of different inertia weights on the
PSO algorithm to solve the typical path planning problems.

II. PARTICLE SWARM OPTIMIZATION ALGORITHM AND
IMPROVED INERTIA WEIGHTS

A. Basic Principles of Particle Swarm Optimization
Algorithm
The particle swarm optimization (PSO) algorithm was

proposed by Eberhart and Kennedy in 1995. It originated
from the imitation of population cooperative and competing
predation behavior of birds. The swarm behavioral measures,
such as competition and collaboration, guide the entire
population moving toward food. Based on the observation of
the activity behavior of animal swarms, the PSO algorithm
adopts the individual's sharing of information in the swarm to
make the movement of the whole swarm in the problem
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solving space from the disordered to the orderly evolution
process so as to obtain the optimal solution. The general
mathematical description of the PSO algorithm is described
as follows.
Assume that there are m particles in a swarm in an

N -dimensional searching space, the velocity and position of
the d -dimensional component of the i -th particle are
updated by the following equations.

   1
1 1 2 2c r c rk k k k k k

id id id id id idv v p x g x         (1)

1 1k k k
id id idx x v   (2)

where, 1k
idv
 is the d -dimensional component of the velocity

vector of particle i at the 1k  iteration, 1k
idx
 is the

d -dimensional component of the position vector of particle
i at the 1k  iteration, k

idp is the d -dimensional component
of the position vector of particle i at the k iteration, and k

idg
is the d -dimensional component of the position vector of the
global optimum at the k iteration. 1c and 2c are the
acceleration factors, which are usually non-negative
constants and have the ability to make particles learn from the
best individuals in the population, and then approach the
historical optimum and the historical optimum within the
population. 1r and 2r are random numbers located in the
scope [0,1].  is the inertia weight, which usually affects the
searching ability of the algorithm in some part of the space.
The proper adjustment of  can overcome the problem that
the particles fall into the local optimal values.

B. Algorithm Flowchart
The flowchart of the PSO algorithm is shown in Fig. 1. The

specific algorithm procedure is described as follows.
Step 1: Initialize the relevant parameters of the PSO

algorithm, the velocity and the position of each particle in the
population.
Step 2: Calculate the fitness value of each particle.
Step 3: For all particles, compare their fitness values with

the individual extreme value. If the fitness value is better than
the individual extreme value, replace the individual extreme
value with the fitness value.
Step 4: For each particle, compare its fitness value with the

global extreme. If the fitness value is better than the global
extreme, replace the global extreme with the fitness value.
Step 5: Update the velocity and position of the particles

based on Eq. (1) and Eq. (2).
Step 6: If the termination condition is satisfied, output the

results, otherwise return to Step 2.

C. Improved Inertia Weights
It can be seen from the Eq. (1) that the inertia weight in the

PSO algorithm is an important factor in regulating the local
search and global search ability. The larger the inertia weight,
the stronger the ability to search globally, but the local search
ability will be weakened. Conversely, the smaller the inertia
weight, the stronger the ability to search locally and the
weaker the global search ability. The former may cause the
algorithm to ignore an optimal solution, but the latter may
make the PSO algorithm fall into the local optimum.

Fig. 1 Flowchart of particle swarm optimization algorithm.

(1) Decremented Inertia Weight

This inertia weight is gradually reduced as the number of
iterations increases [29].  is a function of the iterations
number, which is linearly decreasing from 0.9 to 0.4 along
the straight line. The relationship between  and the
iteration number is described as follows.

  0.5 0.9kk
MaxNumber

     (3)

where, k is the iteration number, and MaxNumber is the
maximum iteration number.

(2) Incremental Inertia Weight

This inertia weight is gradually increased as the number
of iterations increases [30]. The inertia weight  is a
function of the iteration number, which is linearly increasing
from 0.4 to 0.9 along the straight line. The relationship
between  and the iteration number is shown as follows.

  0.5 0.4kw k
MaxNumber

   (4)

where, k is the iteration number, and MaxNumber is the
maximum iteration number.
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(3) Incremental-Decremented Inertia Weight

In this method, with the increment of the iteration number,
the inertia weight is linearly increased firstly, and then
linearly decremented [31]. It has a good global searching
ability in the early stage of the algorithm, and the
convergence is better in the later stage, that is to say that the
inertia weight  slowly and linearly increases from 0.4 to
0.9 along the fold line, then linearly decreases to 0.4. The
incremental-decremented inertia weight  is adjusted by Eq.
(5).

 
1 0.4 0 0.5

1 1.4 0.5 1

k k
MaxNumber MaxNumberk

k k
MaxNumber MaxNumber



     
    


(5)

where, k is the iteration number, and MaxNumber is the
maximum iteration number.

(4) Stochastic Dynamic Inertia Weight

The stochastic dynamic inertia weight is shown in Eq. (6)
[32]. It has a dynamic inertia factor, which is a random
number between 0 and 1.

 
0.5

2
rand

   (6)

where, ()rand is a random number between 0 and 1.

(5) Sinusoidal function inertia weight

The inertia weight with the sinusoidal function [33] is
described as follows.

   0.4 0.5sin / maxk k k   (7)

where, k is the iteration number and maxk is the maximum
iteration number. It can be seen from Eq. (7) that  is
roughly sinusoidal. In the algorithm, the particles do a local
search in the vicinity of itself, and then carry out the global
search to find the optimal value.

III. SIMULATION EXPERIMENTS AND RESULTS ANALYSIS

A. Different Inertia Weights
The simulation environment in this paper adopts the

7Windows operating system, the Intel 2.40GHz processor
with 8G memory, and the Matlab 2014a software. In the
simulation experiments, five different inertia weight
adjusting strategies ( 1( )k , 2 ( )k , 3( )k , 4 ( )k and

5( )k ) are selected to carry out the simulation experiments,
whose expressions and parameters are listed in Table 1.

B. Map Construction
The Matlab simulation software is use to construct three

different maps with the related obstacles. The specifications
of the map are 6 units in the horizontal direction and 8 units in
the vertical direction. They are placed in a plane rectangular
coordinate system. The solution to be found by the improved
PSO algorithm is the accessibility shortest path from the
starting point (0,0) to the ending point (6,8). The constructed
three maps are shown in Fig. 2-4.

C. Simulation Results and Analysis
In order to verify the effectiveness of the adopted

strategies and demonstrate the fairness of the simulation
experiments, the population with the same initialized species
and algorithm parameters are adopted. In this simulation
experiments, the population size is 200, the number of
iterations is 100, the maximum weight inertia is 0.98, and the
learning factors are set as 2. Simulation experiments are
carried out based on PSO algorithm with five different inertia
weight adjustment strategies to solve constructed three path
planning maps. The simulation results by using PSO
algorithm with five different inertia weight adjustment
strategies to solve the path planning problem (map 1#) are
shown in Fig. 5 and Fig. 6. The simulation results by using
PSO algorithm with five different inertia weight adjustment
strategies to solve the path planning problem (map 2#) are
shown in Fig. 7 and Fig. 8. The simulation results by using
PSO algorithm with five different inertia weight adjustment
strategies to solve the path planning problem (map 3#) are
shown in Fig. 9 and Fig. 10. The comparison results of
simulation experiments are shown in Tab. 2.

TABLE 1. SIMULATION TESTING FUNCTIONS

Inertia weight Expression Range

Decremented inertia weight  1 0.5 0.9kk
MaxNumber

     [0.4，0.9]

Incremental inertia weight  2 0.5 0.4kk
MaxNumber

    [0.4，0.9]

Incremental-Decremented inertia weight  3

1 0.4 0 0.5

1 1.4 0.5 1

k k
MaxNumber MaxNumberk

k k
MaxNumber MaxNumber



     
    


[0.4，0.9]

Stochastic dynamic inertia weight  
4 0.5

2
rand

   [0，1]

Sinusoidal function inertia weight    5 max0.4 0.5sin /k k k   [0.4，0.9]
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Fig. 2 Constructed map 1#.
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Fig. 4 Constructed maps 3#.

-2 0 2 4 6 8
0

1

2

3

4

5

6

7

8

Starting point

Ending point

(a) Inertia weight adjustment strategy 1#

-2 0 2 4 6 8
0

1

2

3

4

5

6

7

8

Starting point

Ending point

(b) Inertia weight adjustment strategy 2#

-2 0 2 4 6 8
0

1

2

3

4

5

6

7

8

Ending point

Starting point

(c) Inertia weight adjustment strategy 3#

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_13

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 



-2 0 2 4 6 8
0

1

2

3

4

5

6

7

8

Starting point

Ending point

(d) Inertia weight adjustment strategy 4#
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Fig. 5 Simulation results based on different inertia weight adjustment
strategies (Map 1#).
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Fig. 6 Convergence curves based on five different inertia weights (Map 1#).
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-2 0 2 4 6 8
0

1

2

3

4

5

6

7

8

Starting point

Ending point

(d) Inertia weight adjustment strategy 4#

-2 0 2 4 6 8
0

1

2

3

4

5

6

7

8

Starting point

Ending point

(e) Inertia weight adjustment strategy 5#

Fig. 7 Simulation results based on different inertia weight adjustment
strategies (Map2#).
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Fig. 8 Convergence curves based on five different inertia weights (Map 2#) .
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Fig. 9 Simulation results based on different inertia weight adjustment
strategies (Map 3#).
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Fig. 10 Convergence curves based on five different inertia weights (Map 3#).

TABLE 2 COMPARISON OF SIMULATION PERFORMANCE

IV. CONCLUSION
In this paper, an improved particle swarm optimization

algorithm based on improved inertia weights is adopted to
solve the path planning problem. By setting up three different
path planning maps, the particle swarm optimization
algorithm based on five different inertia weight adjustment
strategies is used to solve the typical path planning problem.
The simulation results verify the effectiveness of the
proposed algorithm and inertia weight adjustment strategies.
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