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Abstract—Recently, extensive real-world networks have
emerged astounding structural properties, such as high-
robustness, tree-hierarchies and low-cost, which bring deep
insights into studying graph theory, combinatorics and topology,
to name a few. In this paper, we investigate how to design an
economical (or low-cost) networks with special graph structures
as requirement. Our specific objective is to design a network
with minimum construction cost while at least two basic but
fundamental graph conditions are required as constraints: (i)
network connectivity, implying no isolated subgraph exists
in the network; (ii) minimum level of capacity requirement
at each node must be satisfied. We propose a mixed-integer
programming (MIP) method to efficiently construct optimal
economical networks. Our computational results show that
no more than n edges are required for designing a network
satisfying the above two conditions. We also tackle a special
network design case when network structure is a spanning tree.
Such an economical spanning tree design problem (ESTDP)
which has been proved to a NP-hard problem in S. Nakano’s
previous work. Three different MIP formulations are proposed
and evaluated on extensive numerical studies. Our compu-
tational results demonstrate Martin’s formation outperforms
the subtour elimination formulation and cutset formulation due
to their non-exponential increasing constraints in terms of
computational time and optimality gap.

Index Terms—NP-completeness, network design, mathemat-
ical programming, economical networks

I. INTRODUCTION

G IVEN a set of nodes V ={1, 2, ..., n}, each node i ∈ V
requires a positive integer value of demand, denoted

by ωi. Initially, we have a empty network G = (V,E)
where edge set E is empty. Every added edge eij between
node i and j will serve as a supply channel and provide a
certain amount of goods to both node i and node j. In this
paper, we aim to design an economical network satisfying
the following fundamental network properties: (i) network
connectivity or reachability; (ii) node demand satisfaction
condition. Specifically, the connectivity condition requires
any two nodes are connected among some path, which
implies at least n − 1 edges are added to the network.
Assume Nv is the set of neighbors connecting node v. To
satisfy its node demand ωv , every added edge eij , i, j ∈ V
to the network will be assigned a positive integer flow fij
such that the total flows incident to node v

∑
i∈Nv

fvi is
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at least the weight ωv . Meanwhile, every new edge eij
added to the network will cause cost cij to total budget.
Our objective of interest is to minimize

∑
i,j∈V cijfij while

keeping the connectivity and demand satisfaction conditions
satisfied. Without specific network structure requirements,
such as spanning tree, minimum staring shape and clique,
we name it as generic economical network design problem
(ENDP).

From the perspective of real applications, let us clarify
why understanding this problem may provide an abstract
model of real-world networks and bring the underlying
benefits for designing artificial networks with respect to
high-efficiency, strong-robustness and low-cost. One intuitive
realistic case arising in facility location network design can
be categorized as ENDP. Suppose there are multiple facto-
ries, each of them requires a certain amount of goods from
other factories to maintain their functioning of assembly lines
[2]. Therefore, transportation network for these factories are
needed constructed and its cost must be reduced as much as
possible. From this perspective, how to design a network
that captures properties of low-cost, high robustness, and
high-effectiveness is of crucial importance. Meanwhile, the
network should provide sufficient transport capacity for all
factory with the traffic unimpeded. Another interesting appli-
cation for this problem can be found in router data package
deliver problem. Suppose one computer sends at most ωij

data packets along edge eij . Meanwhile, the total amount of
packages this computer needs to handle should be at least
ωv =

∑
j∈Nv

ωvj . If this total packets amount it handles
is greater than a minimum service level, our network will
satisfy our needs. Moreover, to ensure every node’s network
functionality, all nodes must be encompassed. Even though
some node is not directly connected with another node, it can
still communicate via various routes as long as the network
is one complete component. As data is transmitting within
network, cost minimization naturally becomes one of top
priorities in our agenda. In general, these network design
problems are increasingly extended and applied to fields as
traffic management, supply chains [3], [4], and epidemiology.

Furthermore, it is also interesting to investigate ENDP
from the viewpoint of optimization. In the field of complex
graphs, small-world networks have been the focus of interest
because of their potential as models for the interaction
networks of complex systems [5], [6], [7], [8], [9], [10],
[11], [12]. For example some networks arise from a natural
random process where an “efficient” network could mean a
relatively few edges lead to fairly small average distance.
Recalling the context of ENDP, if we know all demands of
nodes (potential factories or customers), can we design an
optimal network in a practical time to minimize the cost
while keeping the flow circulating through the whole net-
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work? The answer is intuitively positive if the following sub-
problems are well-defined and being answerable: (i) what is
the network structure and how to define it mathematically;
(ii) how to assign the flow on the edges such that the total
cost is minimized.

First of all, network connectivity is one of the most
fundamental requirements in graph optimization problems
[13], [14]. As a mandatory property in ENDP, its relaxation
will simplify the problem as a linear program (LP), which
can be solved trivially by using any current LP solvers.
Previous work [1] has provided a specific algorithm for
ENDP, which can be run in linear time. Apparently, any
designed network (not tree) must contain at least n edges
to ensure the connectivity. However, an interesting question
arises as well: what if only n − 1 edges are allowed to the
network? Does it increase the complexity of solving? The
authors [1] proved such induced problem is NP-hard. This
problem becomes every harder when only integer flows are
allowed to assign on edges. Although integer flows are not
necessarily meaningful in reality, we know such integrity will
make this problem more difficult enough. Relaxing integrity
will lead to an easier case. Therefore, we focus on solving
difficult scenario of this problem, thereby stronger results
could be obtained.

In this study, we are interested in closing aforementioned
gaps by introducing a mixed-integer programming (MIP)
approach which can find the least cost networks while some
conditions are satisfied. Our contributions are summarized
as follows. (1) We first define and introduce the generic
economical network design problem (ENDP). Later, a special
NP-hard variant of this problem, called economical spanning
tree design problem (ESTDP), is introduced as well. (2) To
solve the general network design problem ENDP, a general
MIP formulation is proposed as a methodology framework
to solve such category of problems efficiently. Specifically,
this model can be easily used to solve the simplified version
of ENDP in S. Nakano’s work [1]. (3) We develop three
different formulations to tackle ESTDP. Generally speaking,
depending on context and types of structural property that
is used, it is very likely to extend our framework for cases
where network structures vary, such as star and clique. (4) To
solve these formulations efficiently, we initially relax expo-
nential subtour elimination constraints from the formulations
and use Gurobi callback method to generate them only if
master problem solutions violate these constraints occurs,
which saves computational time significantly. (5) We perform
an extensive set of computational experiments to validate the
efficiency and applicability of the proposed formulations.

II. PRELIMINARIES

In previous work [1], the authors defined a simplified
variant of ENDP, where no edge cost and the number of
edges are specified, and proposed an efficient algorithm to
find the optimal network. In this context, the possible “extra”,
”loss”, or “overflow” capacity at node v, is defined as,

Lv =
∑
j∈V

fvj − ωv. (1)

The total loss over the whole network is,

L =
∑
v∈V

(∑
j∈V

fvj − ωv

)
= 2

∑
i,j∈V

fij −
∑
v∈V

ωv. (2)

When solving min{L}, it is actually equivalent to
mini,j∈V fij since constant terms or positive multiplier can
be ignored.

Theorem 1: The time and space complexity for solving
ENDP is O(n) and O(n), respectively and the number of
edges in this network is no more than n, where n is number
of nodes in the network [1].

Theorem 1 tells us that, when neither cost capacity c on
edges nor node capability ω are specified, solving the ENDP
is quite easy, which can be solved in linear time and space.
However, when restricting the number of edges of network
to n− 1, this problem becomes computationally difficult to
solve (NP-hard), not to mentioning assignment of positive
integer flow cost on network edges.

III. MATHEMATICAL MODELS FOR ECONOMICAL
NETWORK DESIGN PROBLEM

A. Economical Network Design Problem

As aforementioned in Section I, we consider decision
variable fij for representing positive integer flow assigned
on edge eij . By formulating minimum node weight require-
ment and network connectivity condition as constraints, we
can represent ENDP as the following integer programming
model,

[M1] min
∑
i,j∈V

cijfij (3a)

s. t.
∑
j∈V

fij ≥ ωi, i = {1, 2, ..., n}, (3b)∑
i∈S,j∈S̄

fij > 0,∀ S ⊂ V, S̄ = V \ S, (3c)

fij ∈ Z+,∀ i, j ∈ V. (3d)

In model M1, the objective function is to minimize the
total cost of shipping all positive flows on the network.
Constraints (3b) specify node demand requirements and
constraints (3c) says nodes in a subset S ⊂ V of the
resulting network must have positive flow with nodes in its
complement set S̄ = V \ S, which enforces network con-
nectivity. Note that the number of constraints (3c) increase
exponentially with n.

Before calling the-state-of-art solvers to solveM1 directly,
let us first discuss its characteristic or formulation properties,
in that model could be implemented more efficiently. If
constraints (3c) are removed from the model, solving such
relaxed problem is to solve a linear programming (LP)
problem due to the unimodularity – integer variables fij can
be relaxed as continuous variables such that solving IP is
equivalent to solve LP, which can be solved in a fast way
using one of the-state-of-art solvers. But the resulting net-
work may comprise multiple disconnected subcomponents.
According to Theorem 1, the resulting network has exactly
n or n − 1 edges if we set cij = 1, for all i, j ∈ V ,
which is confirmed by comparing results between this model
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and the algorithm proposed in [1]. Furthermore, since model
M1 does not restrict the number of added edges, the cost
of solving “exponential” formulation is rather inexpensive.
In Section IV, we will demonstrate the efficiency of this
model by testing it on instances of 100 nodes and 200 nodes,
respectively.

B. Economical Spanning Tree Design Problem

To model ESTDP, we propose a “two-stage” mathemat-
ical model. An additional set of binary variables xij ∈
{0, 1}, i, j ∈ V is introduced, where xij equals to one
when there is an edge between node i and node j and
xij = 0 means no such edge exists. The following subtour
elimination formulation for ESTDP, denoted byM2, is given
as,

[M2] min
∑
i,j∈V

cijfij (4a)

s.t.
∑
i,j∈V

xij = n− 1, (4b)∑
i,j∈S

xij ≤ |S| − 1,∀ S ⊂ V, S 6= ∅, (4c)

fij ≤ Kxij ,∀ i, j ∈ V, (4d)∑
j∈V

fij ≥ ωi,∀ i ∈ V, (4e)

xij ∈ {0, 1},∀ i, j ∈ V, (4f)
fij ∈ Z+,∀ i, j ∈ V. (4g)

Constraints (4b) state there are exactly n − 1 edges in
network. Constraints (4c) are the subtour elimination con-
straints which means any subset of nodes S must have at
most |S|−1 edges contained in that subset, which ensure no
subtours. Constraints (4c) state that the weight assigned on
edge eij is restricted by the existence of that edge. If edge eij
exists in network, then the assigned weight should be less
than a sufficient larger integer K. Otherwise, the assigned
weight fij should be zero. Constraints (4e) have the same
meaning as (3b) in M1.

To tackle ESTDP from various formulations, another for-
mulation, called cutset formulation, is proposed as,

[M3] min
∑
i,j∈V

cijfij (5a)

s.t.
∑
i,j∈V

xij = n− 1, (5b)∑
i∈S,j∈S̄

xij ≥ 1,∀ S ⊂ V, S̄ = V − S, (5c)

fij ≤ Kxij ,∀ i, j ∈ V, (5d)∑
j∈V

fij ≥ ωi,∀ i ∈ V, (5e)

xij ∈ {0, 1},∀ i, j ∈ V, (5f)
fij ∈ Z+,∀ i, j ∈ V. (5g)

Compared with formulation M2, the only difference is that
we replace the subtour elimination constraints with cutset
constraints (5c).

Since both model M2 and model M3 are exponentially
increased in constraint size, the computation time could be

inacceptable as the instance size becomes large. Hence, we
give another formulation, called Martin’s formulation. Let
ykij denote the edge eij exists in the spanning tree and node
k is on the side of node j.

[M4] min
∑
i,j∈V

cijfij (6a)

s.t.
∑
i,j∈V

xij = n− 1, (6b)

ykij + ykji = xij ,∀ i, j, k ∈ V, (6c)∑
k∈V

yjik + xij = 1,∀ i, j, k ∈ V, (6d)

fij ≤ Kxij ,∀ i, j ∈ V, (6e)∑
j∈V

fij ≥ ωi,∀ i ∈ V, (6f)

xij , y
k
ij , y

k
ji ∈ {0, 1},∀ i, j, k ∈ V, (6g)

fij ∈ Z+,∀ i, j ∈ V. (6h)

Constraints (6c) guarantee that if eij is selected into the
tree (xij = 1), any node k ∈ V must be either on the side of
node j (ykij = 1) or on the side of node i (ykji = 1). If eij is
not in the tree (xij = 0), any node k cannot be on the side of
node j nor node i (ykij = ykji = 0). Constraints (6d) ensure
that if eij is in the tree, edge ejk which connects node i are
on the side of node i. Otherwise, there must be an edge eik
such that node j is on the side of node k (yjik = 1 for some
node k).

IV. SIMULATION EXPERIMENT

In this section, we will examine the efficiency of the four
proposed formulations testing on different sizes of instances.
All instances in this paper are randomly generated according
to the following recipe. Given n nodes, each of them is
assigned with a positive integer generated randomly from
ωmin to ωmax, where ωmin and ωmax are two pre-specified
positive integers (ωmax > ωmin). Nodes in every instance
are uniformly distributed among a panel 10n × 10n. The
euclidean distance between two nodes actually indicates the
cost of that edge. The computational experiments are per-
formed on a PC with Intel Core I7-8850HQ 6 Core Processor
with vProtm and 32 GB of memory, running Windows
10. All formulations are implemented in C++ programming
language under Visual Studio 2018 and Gurobi Optimizer
8.1. A 1,000-second limit is imposed on the computational
time of all following instances and formulations.

In section IV-A, the efficiency of modelM1 will be tested
on instances of size 100 and 200 nodes. Section IV-B will
further examine the effectiveness among formulations M2,
M3 and M4 from the perspectives of CPU time and op-
timality gap which is mathematically defined as subtraction
of lower bound from upper bound divided by lower bound.

A. Economical Network Design Problem

We start our computational study by showing the perfor-
mance of model M1 on random instances in which node
demands are randomly generated among different interval.
For consistent comparison with the algorithm in paper [1],
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all coefficients in the objective function are set to be one.
ωmin and ωmax are two integers randomly selected from the
interval [1, 300]. The computational results of model M1

over two sets of instances are reported in Table I and II,
respectively. The information for instances are reported in
first three columns. The column “Conn. cuts” reports the
number of connectivity cuts are generated in this model.
The column “Time(s)” reports the computational time and
the column “Gap” reports the gap between the lower bound
and upper bound when running on Gurobi. We observe that
although the weight intervals vary significantly, the gap is
always zero for instances of 100 nodes. We also observe
that there is positive correlation between the “Conn. cuts”
and “Time(s)”. The larger the number of cuts is, the more
CPU time it requires. This is because every violated subtour
elimination constraint found by CALLBACK at the begin-
ning are required to be added consequently to the model. In
Table II, the modelM1 is not capable of reaching optimal on
all instances within 1,000 secs limit since generating model-
required connectivity cuts consumes much more time.

B. Economical Spanning Tree Design

In this section, we compare difference of formulations
M2, M3 and M4 with respect to computational time and
optimality gap. The computational results over instances of
100 nodes and 150 nodes are reported in tables III and
IV, respectively. Overall speaking, model M2 can always
find the optimal solutions in both 100-nodes instances and
150-nodes instances. As different node demand ranges and
node distance costs are assigned, the computational time
varies significantly from different instances. However, we
observe that the average time ofM2 is generally larger than
M3. Although M4 is a model of non-exponential size, the
computational time is significantly larger than bothM2 and
M3. In addition, All three models reach optimality without
no gap on these ten instances.

TABLE I: The computational performance of testing model
M1 on 100-node instances

Instance ωmin ωmax Conn. cuts Time(s) Gap(%)

G-100-01 12 30 341 22.7 0.0
G-100-02 3 70 80 21.3 0.0
G-100-03 5 100 209 17.4 0.0
G-100-04 10 50 110 16.6 0.0
G-100-05 14 79 168 20.3 0.0
G-100-06 31 200 228 33.1 0.0
G-100-07 34 150 173 19.5 0.0
G-100-08 22 88 149 18.7 0.0
G-100-09 32 112 263 32.3 0.0
G-100-10 62 260 133 14.9 0.0

To make comparison on different size of instances, we
respectively generated instances with size 50, 130, 180, and
200, reported Table V. For each size, we generate 5 different
instances. All the weight interval are same, which is [1,
500]. As we can see,M4 outperforms the other two models
in both performance metrics used. All models reach the
optimality quickly. On 130-nodes instances, all models reach
optimality. However,M4 becomes slower in CPU time than
M2 and M3. When running on 180-nodes instances, the
CPU time for all three models increases dramatically. We

TABLE II: The computational performance of testing model
M1 on 200-node instances

Instance ωmin ωmax Conn. cuts Time(s) Gap(%)

G-200-01 41 95 542 145.6 0.0
G-200-02 31 80 356 21.2 0.0
G-200-03 22 76 675 57.1 0.0
G-200-04 141 222 345 11.2 0.0
G-200-05 114 245 351 40.3 0.0
G-200-06 45 121 672 893.1 7.9
G-200-07 36 134 324 133.8 0.0
G-200-08 75 186 562 666.1 0.0
G-200-09 72 131 769 1000.5 9.2
G-200-10 12 140 676 1000.8 12.3

keep increasing the size of instances to 200, M4 reaches
the time limit (1,000s) on all five 200-nodes instances.

TABLE III: The computational performance of modelsM2,
M3 and M4 on 100-node instances

Instance
M2 M3 M4

Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%)

G-100-01 92.3 0.0 62.2 0.0 143.1 0.0
G-100-02 97.1 0.0 81.2 0.0 153.2 0.0
G-100-03 63.2 0.0 35.5 0.0 144.3 0.0
G-100-04 73.7 0.0 66.2 0.0 132.3 0.0
G-100-05 56.7 0.0 25.6 0.0 136.3 0.0
G-100-06 194.3 0.0 51.8 0.0 183.5 0.0
G-100-07 52.3 0.0 23.4 0.0 167.3 0.0
G-100-08 89.2 0.0 38.2 0.0 123.5 0.0
G-100-09 193.6 0.0 25.3 0.0 134.3 0.0
G-100-10 143.3 0.0 93.1 0.0 154.0 0.0

TABLE IV: The computational performance of modelsM2,
M3 and M4 on 150-node instances

Instance
M2 M3 M4

Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%)

G-150-01 132.3 0.0 52.5 0.0 243.1 0.0
G-150-02 195.3 0.0 101.7 0.0 253.2 0.0
G-150-03 163.2 0.0 85.5 0.0 234.3 0.0
G-150-04 173.7 0.0 76.3 0.0 212.6 0.0
G-150-05 156.6 0.0 95.1 0.0 216.6 0.0
G-150-06 153.5 0.0 91.1 0.0 283.7 0.0
G-150-07 252.7 0.0 63.4 0.0 237.1 0.0
G-150-08 155.2 0.0 118.2 0.0 223.5 0.0
G-150-09 160.3 0.0 125.3 0.0 264.2 0.0
G-150-10 203.9 0.0 142.6 0.0 234.0 0.0

V. CONCLUSIONS

In this article, we first proposed a MIP formulation to
solve ENDP on random instances of 100-nodes and 200-
nodes, respectively. This model can efficiently solve 100-
nodes instances with no optimality gap. For larger size
instances, our model can reach less than 12.3% gap within
1,000 seconds limitation. To conquer more difficult variants
of this problem where the constructed network is a spanning
tree, three distinct MIP models are proposed to tackle this
problem from perspective of various constraints. Five sets of
random instances where the instance size varies from 50 to
200 are used to compare their performance.
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TABLE V: The computational performance of models M2,
M3 and M4 on instances of various sizes

Instance
M2 M3 M4

Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%)

G-50-01 8.3 0.0 8.2 0.0 3.1 0.0
G-50-02 8.1 0.0 9.2 0.0 3.2 0.0
G-50-03 9.2 0.0 8.5 0.0 4.3 0.0
G-50-04 9.7 0.0 7.2 0.0 2.3 0.0
G-50-05 8.7 0.0 9.6 0.0 6.3 0.0

G-130-06 294.4 0.0 151.8 0.0 283.5 0.0
G-130-07 152.2 0.0 123.4 0.0 267.3 0.0
G-130-08 189.8 0.0 138.7 0.0 232.5 0.0
G-130-09 153.6 0.0 183.3 0.0 264.3 0.0
G-130-10 143.1 0.0 193.1 0.0 234.1 0.0

G-180-06 594.3 0.0 651.8 0.0 883.5 0.0
G-180-07 252.3 0.0 572.4 0.0 718.3 0.0
G-180-08 679.2 0.0 638.7 0.0 833.7 0.0
G-180-09 593.6 0.0 623.3 0.0 661.3 0.0
G-180-10 843.3 0.0 634.5 0.0 936.1 0.0

G-200-06 1000.3 10.0 1000.8 12.6 1000.3 12.5
G-200-07 973.3 0.0 923.4 0.0 1000.3 23.0
G-200-08 799.2 0.0 688.2 0.0 1000.3 8.70
G-200-09 993.6 0.0 927.7 0.0 1000.3 13.1
G-200-10 1000.3 9.0 963.2 0.0 1000.3 10.0

In this paper, optimizing the cost is the goal we have
only considered when constructing networks. Observe that
it may be not optimization goal (at least the not only one
goal) for some other networks, such as Facebook, Twitter
and co-author networks, which are constructed or developed
for more complex reasons. It is highly possible that multiple
objective functions to optimize and much more requirements
to keep satisfied. In the future, we will put more effort on
these remaining challenging topics.
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