
APIHelper: Helping Junior Android Programmers
Learn API Usage

Jingjing Zhao, Tao Song, Yuxia Sun*

Abstract—Android SDK provides programmers with a va-
riety of APIs to conveniently build applications, but due to
the misunderstanding of the API usage, programmers may
misuse the APIs, leading to various problems including se-
curity issues, energy consumption issues, and user experience
issues. To alleviate those issues, this paper proposes a tool,
called APIHelper, to help junior Android programmers learn
the API usage. By tracking and managing API invocation,
APIHelper enable junior Android programmers to follow how
an app implements a functionality with its API call sequence,
to understand the necessity of a specific API for a specific
functionality implementation, and to optimize an app by finding
and removing needless APIs. And because of that, APIHelper
can also be used as a teaching tool.

Index Terms—API invocation, energy consumption issues,
security issues, user experience issues.

I. INTRODUCTION

API (Application Programming Interface) is a predefined
function that provides programmers with the ability to

access a set of routines based on a piece of software or
hardware[1]. As Android SDK evolves, programmers can
conveniently build applications with a variety of APIs it
provides. However, when programmers misunderstand the
API usage, they will misuse the API, which may cause some
security, energy consumption, and user experience issues,
so how to help the programmers understand the API usage
becomes a subject to be studied. For a certain functionality
of an application, if you want to minimize the impact on
system performance and get the best user experience, you
need to use the most suitable and necessary API, but identify
which API is the most suitable for the implementation of the
functionality needs programmers’ thoroughly understanding
for API. For junior programmers or students, they may not
understand the API well, so learning the specific functionality
implementation of widely used applications is a quick way
to learn the API usage.

Android uses the permission mechanism to protect user’s
sensitive and privacy information. The existing permission
management mechanism will affect all the APIs related to
the permission, and can not meet the requirements of the
one-by-one management of the API, but APIHelper can.
When implementing a certain functionality, the misuse of
energy-consuming APIs may cause a large amount of power
consumption of the Android device, and frequent charging
and discharging will also affect the battery life. The way
an application embeds an advertisement can bring profits to

This work was supported by the National Natural Science Foundation
(#61402197) of China, Guangdong Province Science and Technology Plan
Project (#2017A040405030) in China, Tianhe District Science and Technol-
ogy Plan Project (#201702YH108) in Guangzhou City of China.

Jingjing Zhao, Tao Song, Yuxia Sun are with the Department of Computer
Science, Jinan University, Guangzhou, 510632, China. (*Corresponding
author: Yuxia Sun, e-mail: tyxsun@email.jnu.edu.cn)

programmers, but the introduction of advertisements may
degrade the performance of the device, affect the user
experience, and increase battery consumption. So which of
the most appropriate and necessary energy-consuming APIs
and advertising APIs are used to fulfill the requirements is
a valuable skill that junior programmers need to learn. They
can use APIHelper to learn how these APIs are used by
existing applications on the market, in order to understand
the API usage well.

In this paper, we design and implement a tool named
APIHelper that monitors and manages various Android APIs
in real time, which is convenient for junior programmers to
understand the usage of learning API. We focus on three
APIs, the Permission API, the Energy-consuming API, and
the Advertising API. APIHelper is based on the Xposed open
source framework. It can hook various types of APIs, track
and manage the execution of these APIs, and generate a API
invocation log of a certain functionality. The programmers
can run a certain functionality of an app, set the start and
end time of the monitoring, view the sequence of API calls
related to this functionality displayed in the log, analyze
the APIs appearing in the sequence, which can make them
learn how to implement the same or similar functionality.
APIHelper also provides the ability to manage APIs, that
is, programmers can allow or deny API invocation, then
they can test whether the API call affects the application’s
implementation of a certain functionality. If no effect, they
should study this API and avoid using it when implementing
the same functionality. APIHelper also implements a black
and white list that saves the programmer’s choices, which
can make the process easier and faster, and supports APIs
that require custom configuration. All in all, APIHelper is
extensive and flexible, providing a way for programmers to
better understand the API.

Our main contribution in this paper are as follows:
1) A tool, named APIHelper, is developed by tracking

and managing API invocation of Android apps to help
junior Android programmers learn API usage. Design
and implementation of the tool is dilated.

2) The following typical application scenarios of API-
Helper are demonstrated: (1) APIHelper enables pro-
grammers to follow the API call sequence of any func-
tionality implemented by any app. (2) APIHelper helps
programmers understand the necessity of a specific
API in implementing a specific functionality of an
app. (3) APIHelper guides programmers to optimize
the implementation of apps by finding and removing
needless APIs.

II. RELATED WORK

Due to there is no studies for using the tools which monitor
API calls to help junior programmers learn the API usage,

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_12

Volume 47, Issue 1: March 2020

 
______________________________________________________________________________________ 



this paper reviews the various technologies of monitoring and
managing APIs.

Android permission management is a hot topic of research
today, because it plays a vital role in protecting user privacy
and sensitive information. In view of the current coarse
granularity of Android permission management mechanism,
it is necessary to fine-tune the management granularity to
the API level, which requires obtaining APIs related to
permission. These APIs can be collected in Android doc-
uments by crawlers implemented by python. However, the
permissions provided by Android documents are limited[2].
Stowaway[2], a tool for detecting excessive permission grants
in compiled Android applications, lists 1,259 permission
APIs for specific versions. Perman[3] monitors KRM (kernel
reference monitor) and FRM (framework reference monitor)
to intercept application permission requests and track the
asynchronous execution of applications at the thread level,
it can distinguish the permission request is from third-party
library or from original application. Users can choose to grant
or deny permission requests from different modules, which
is great for application permission management. However,
this method affects all APIs related to permissions, which is
different from APIHelper that can monitor the permissions
APIs one by one. He Y[4] detects the privacy leaks of third-
party libraries by hooking APIs related to Android privacy.

As for the relationship between energy consumption and
API, Abhinav Pathak et al.[5] mentioned that incorrect
programming and improper use of API are the reasons for
high energy consumption. Mario Linares-Vásquez et al.[6]
measured the energy consumption data of the hardware and
analyzed the usage mode of the high-energy API based on
the data, which is convenient for developers to use this mode
to reduce energy consumption. SAAD[7] detects resource
leak by context sensitive analysis and produce energy report
, it can detect more than eighty resource leaks according
to resource API information. Hu Y[8] proposed a predictive
model that maps energy consumption to APIs, which can
give developers guidance. Cruz L[9] studied the commit issue
and pull request of 1027 Android program and proposed 22
design patterns that can improve energy efficiency. Nijim
et al.[10] proposed an energy-aware data mining predictive
technique for hybrid storage systems named En-Stor, which
uses data mining predictive to save energy.

For handling advertisements in Android apps,
miAdBlocker[11] uses aspect-oriented programming
to insert a force monitor at the bytecode level,
enabling users to disable advertisements for each app.
Perman[3] restricts the display of advertisements by
denying the permission requests(such as INTERNET and
ACCESS NETWORK STATE) of the advertising platform
module. However, APIHelper can restrict advertisements
by prohibiting APIs provided by third-party ad platform
SDK, the granularity is smaller. Boyuan He[12] are the
first to reveal the preference of developers and users for ad
networks and ad types, they study 697 unique APIs from
164 ad networks. AdCapsule[13] is a user-level solution
to confine advertisements, it uses permission sandbox and
file sandbox to isolate the permission and file used by
advertisement, so ad library and ad content cannot read
or write any file outside sandbox, which can relieve the
security and privacy issues. LS Chen et al.[14] tried to

identify which type of advertisement can attract customers
more and the important mobile advertisements factors of
influencing the customer’s loyalty, so as to make a balance
between the customer’s experience and the profit.

The dynamic monitoring technology of Android applica-
tions includes kernel layer monitoring and application layer
monitoring. Yoon C et al. [15] propose a energy metering
system which monitors and computes the energy consump-
tion of Android program at the kernel level. Aurasium[16]
is an application layer monitoring tool that is different from
hooking technology. It uses Dalvik layer code tampering and
repackaging techniques to monitor specific sensitive APIs.
Cheng Sun et al.[17] proposed a monitoring system which
uses Xposed to track sensitive API calls and log, but his text
is not specifically regulated.

III. TARGET APIS

The research in this paper is aimed at three
APIs(permission API, energy consumption API, and
advertising API). It provides ideas for the research of
helping junior Android programmers learn the API usage,
we will add more types of APIs later.

We first build a collection of permission APIs that API-
Helper needs to use. PScout[18] extracts the permission
specification for any Android version, provides a complete
mapping between API calls and permissions. So we first
parse the CSV file that holds this mapping, then collect the
APIs and their related information, that is, the API name,
the class to which the API belongs, and the permission
corresponding to the API. Finally, we use the collected
information to construct a collection of more than 30,000
APIs related to more than 90 permissions. But there are some
permissions only corresponding to an API, as shown in Table
I.

TABLE I
PERMISSION API

API Corresponding Permission

forceRemoteSubmixFull
Volume

android.permission.CAPTURE AUDIO OUTPUT

clearApplicationUserData android.permission.CLEAR APP USER DATA

deleteApplicationCacheFiles android.permission.DELETE CACHE FILES

getPackageSizeInfo android.permission.GET PACKAGE SIZE

checkShowToOwnerOnly android.permission.INTERNAL SYSTEM WINDOW

movePackage android.permission.MOVE PACKAGE

getNextEntry android.permission.READ LOG

setRingtonePlayer android.permission.REMOTE AUDIO PLAYBACK

setTouchCalibrationFor In-
putDevice

android.permission.SET INPUT CALIBRATION

tryPointerSpeed android.permission.SET POINTER SPEED

setWallpaper android.permission.SET WALLPAPER

setWallpaperComponent android.permission.SET WALLPAPER COMPONENT

shutdown android.permission.SHUTDOWN

Then we build a collection of energy-consuming APIs
that APIHelper needs to use. Network behavior is the most

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_12

Volume 47, Issue 1: March 2020

 
______________________________________________________________________________________ 



energy-consuming behavior in Android applications[19], es-
pecially the operation of making http requests, so the API
that makes http requests belongs to the energy consumption
API. Android natively provides two network access methods
based on HttpUrlConnection and HttpClient, the latter is
removed in Android 6.0, so we only focus on the API
that makes http requests based on HttpUrlConnection. In
addition, Android has many network request frameworks,
among which the widely used application is OkHttp, so we
extract the API related to the network request from OkHttp’s
Javadoc document. In addition to the APIs associated with
network behavior, applications can use the lock mechanism
to prevent the system or WiFi from going to sleep, which
also increases power consumption, so the APIs associated
with WakeLock and WifiLock are also energy-consuming
APIs. The above APIs are summarized as shown in Table
II.

TABLE II
ENERGY-CONSUMING API

Energy-
Consuming
Operation

Corresponding Class Corresponding
API

NetWork java.net.URL openConnection

NetWork java.net.HttpURLConnection setRequestMethod

NetWork com.squareup.okhttp.Request.Builder url

NetWork com.squareup.okhttp.Request.Builder build

WakeLock android.os.PowerManager.WakeLock acquire

WifiLock android.net.wifi.WifiManager.WifiLock acquire

Finally, we build a collection of ad APIs that APIHelper
needs to use. The third-party ad platform SDK access guide
lists which contains various APIs for adding banner ads,
interstitial ads, native ads, and incentive advertising, etc.,
such as the loadAd() method for requesting ads, and the
show() method for displaying ads, etc. The access of the
third-party advertising platform SDK is not unique, that is,
the developer can choose to access advertising platforms
such as AdMob, Xunfei, and Youmi. Because the use of
Admob advertising platform is more common, we use the
API provided by it as APIHelper’s advertising API, as shown
in Table III.

TABLE III
ADVERTISING API

Ad
Formats

Corresponding Class Corresponding
API

Banner com.google.android.gms.ads.AdView loadAd

Interstitial com.google.android.gms.ads.InterstitialAd loadAd

Interstitial com.google.android.gms.ads.InterstitialAd show

Rewarded
Video

com.google.android.gms.ads.reward. Re-
wardedVideoAd

loadAd

Rewarded
Video

com.google.android.gms.ads.reward. Re-
wardedVideoAd

show

Native com.google.android.gms.ads.AdLoader loadAd

Native com.google.android.gms.ads.AdLoader loadAds

IV. DESIGN AND IMPLEMENTATION OF APIHELPER

A. Design of APIHelper

Based on the API collected in the previous section, API-
Helper implements the following functionality:

1) During the running of the application, when the API is
called, if the API is not in the cache or black and white
list, APIHelper will block the calling thread of this
API, pop up the widow to display the API information,
and then wait for the programmers to select the next
operation, such as, allowing or denying the API call,
adding the API to the blacklist or whitelist, as shown
in Figure1. When the programmer chooses to allow or
deny the API call, APIHelper will allow or disable
the operation of the API correspondingly, and add
the programmer’s selection result to the cache. In the
preset expiration time (e.g., 20 seconds), when the
application calls the API again, the choice will not be
asked.

Fig. 1. user selection Interface

2) API whose thread is blocked can be added to the
blacklist or whitelist by the programmer. If the API
in the black and white list is called again by the same
application, APIHelper no longer prompts the user to
select the option but disables or allows it by default.
APIHelper provides programmers with a interface for
managing APIs, they can view or remove APIs in the
black and white list, as shown in Figure 2(a) and 2(b).

3) APIHelper can monitor the use of APIs and generate
the API invocation log during the running of the
application. The management interface is shown in
Figure2(c), displaying many types of applications, the
programmer can click one application(e.g., Flow Free)
and view the invocation log, as shown in Figure2(d).

4) APIHelper supports the programmers to have special
research on some APIs by custom configuration. Pro-
grammers can select a certain type of API in the
interface to study, as shown in Figure 2(e). They also
can select the permission API first, then monitor some
specific APIs in the permission API list and ignore
others, as shown in Figure2(f).

B. Implementation of APIHelper

APIHelper is based on Xposed and is mainly composed of
AhService(APIHelper Service), ToolInit, HookManager and
database module. The AhService is the core of interaction
between modules. The class ToolInit is a module registered
to Xposed and is the entry point for APIHelper startup. The
class HookManager uses a lot of Java reflection technology

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_12

Volume 47, Issue 1: March 2020

 
______________________________________________________________________________________ 



(a) The Entry Of White-
BlackList

(b) WhiteList Management
Interface

(c) APIHelper Management
Interface

(d) Invocation Log

(e) API Types (f) Permission API List

Fig. 2. Functional diagram

to get the instance of all APIs to be monitored. At the same
time, in order to implement APIHelper database manage-
ment, the DBUtils module supporting ORM in the xUtils
framework is used. The overall architecture of APIHelper is
shown in Figure 3.

The class ToolInit is an initialization module based on the
Xposed framework. It is automatically loaded by Xposed and
is the first module launched by APIHelper. ToolInit imple-
ments the interfaces IXposedHookZygoteInit and IXposed-
HookLoadPackage provided by XposedBridge.jar package.
The method initZygote(StartupParam startupParam) in the
IXposedHookZygoteInit interface will be called when Zygote
is initialized, it should complete two operations: register and
start AhService; call the HookManager module to monitor
the system’s API. When the App package is loaded, the
method handleLoadPackage(XC LoadPackage.LoadPackage

Fig. 3. The Overall Architecture Of APIHelper

Param loadPackageParam) in the IXposedHookLoadPackage
interface is called, and the parameter loadPackageParam is
used to obtain the class Class of the third-party library. In
the handleLoadPackage, the HookManager module is called
to monitor the API of the third-party library.

HookManager is the control class for monitoring APIs.
It obtains an instance of the API by using Java’s reflec-
tion technology according to the collected API set, and
then calls the method hookMethod(Member hookMethod,
XC MethodHook callback) provided by the Xposed-
Bridge.jar package to monitor the API. The instance of an
API that needs to be monitored may be a constructor of
a class or a general method, for which the overload and
override need to be considered. The idea of getting an API
instance is: (1) Initialize listMember to store instance of
API; (2) Add the constructor directly to listMember; (3)
For general methods, initialize listParameters to save the list
of parameters of APIs added to the listMember, extract all
methods of the class of the API, filter the abstract method,
after that you may get multiple overloaded methods of the
same name, then use listParameters to filter the overridden
method, and add the last remaining methods and their param-
eter lists to listMember and listParameters, take their parent
class to continue the operation until the parent class is empty;
finally, call the method hookMethod(Member hookMethod,
XC Method Hook callback) provided by XposedBridge.jar
to hook the API in listMember.

The AhService is the core of APIHelper. It provides a
control interface for blocking API calls, popping up dialog
box, recording logs, and obtaining black and white lists. In
order to start the AhService when the Android system starts,
APIHelper registers the AhService as the service process of
the system by calling the method addService of the class
ServiceManager in the reflection way. Because AhService
runs in the system service process, and the APIs that need
to be hooked run in their respective third-party application
processes, APIHelper interacts with third-party APIs through
the Binder interprocess communication library. APIHelper
also calls the method getService to obtain the AhService
proxy object and performs the following initialization op-
erations: (1) setting the AhService semaphore to limit the
popup window and handle the ANR problem; (2) obtaining
the process context for manipulating the UI; (3) initializing
worker thread to process the message queue; (4)initializing
the database and cache.

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_12

Volume 47, Issue 1: March 2020

 
______________________________________________________________________________________ 



V. APPLICATION SCENARIOS OF APIHELPER

A. Learn API call sequence of app functionality

Given a specific functionality of an app, by using the
APIHelper, the junior Android programmers can learn the
implementation of the functionality at the API level, that is,
follow the API call sequence of specific functionality. The
API call sequence corresponding to a specific functionality is
the API sequences shown in the invocation log in the period
from the start to the end of using the functionality, which
will show differences due to the difference of functionality.
The call sequence will include permission APIs, energy
consumption APIs, and advertising APIs, so programmers
can learn the usage of a certain API from an application,
that is, the type of API used, the number of API used, and
the time of API calls, providing reference and preliminary
preparation for writing their own program.

B. Learn necessary APIs of functionality implementation

By using the APIHelper, the junior Android programmers
can be impressed with the necessity of a specific API for
a specific functionality implementation in an app. They can
perform the following operations : First, clear APIHelper’s
cache and black and white list, and then use a certain
functionality of an application. When the popup window
is displayed, programmers can choose to allow or deny the
API call separately, observe the impact of two cases, if the
functionality is abnormal, then the API can be considered to
have an important role in this functionality, and conversely,
the existence of the API is considered to be insignificant.
So the programmers can understand the necessity of the API
for the specific functionality better. For example, when the
programmer sends a text message to ”10010”, APIHelper
monitors the API sendTextMessage() in the class SmsMan-
ager of the short message application, and pops up a window
waiting for the programmer’s selection. The programmer
clicks the allow button, the short message is normally sent;
but when the programmer clicks deny button, the short
message is failed to sent, so the API sendTextMessage() is
necessary for the functionality of sending message.

C. Optimize App by finding and removing needless APIs

For a specific functionality of an app, when the junior
Android programmer disables a specific API and the func-
tionality is still normal, this API will be considered to be
needless API and should be removed, so as to alleviate some
issues to optimize program.

There may exists security issues in the app, such as,
excessive grants of permissions. By using the APIHelper,
they can find this problem by determining if the unnecessary
API is the only API corresponding to a permission, if so, this
permission is an excessively applied permission and should
be removed. They can also find this issue by comparing the
APIs in the invocation log with the APIs present in the ap-
plication and associated with the permission this application
applied for. For example, an application applies for the per-
mission SET WALLPAPER, and the only corresponding API
for this permission is setWallpaper(), but the invocation log
shows that this API has never been called, so the permission
SET WALLPAPER is an excessively applied permission and
should be removed.

There may exists energy consumption issues in the app
due to the unnecessary use of energy consuming APIs. By
using the APIHelper, the programmers can find this problem
by finding the needless energy consumption APIs and solve
it by removing the needless APIs.

There may exists user experience issues in the app due
to the frequent use of ad API, because if the frequency
of the ad API call is too high, the ad will be repeatedly
popped up on the user interface, making user very annoyed.
The programmers can find this problem by finding the
unnecessary ad APIs and solve it by reducing the APIs
appropriately, which can optimize the user experience on the
condition that guaranteeing the programmers’ fundamental
interests.

D. Help students learn the API usage

In fact, besides the junior Android programmers, the
teacher also can use the APIHelper to help students who
will become Android programmers in the future learn the
API usage as a teaching tool, which is a good example
of interesting and practical teaching. As mentioned before,
APIHelper enables students to learn the API call sequence
and necessary APIs of specific functionality, which can
impress them with the API usage and make them use the
API more appropriately when needed. APIHelper also can
help students learn to optimize the implementation of apps
by finding and removing needless APIs, which can make
them understand the API usage more thoroughly.

In addition, APIHelper enables students to learn the usage
of a specified type of APIs. For example, if a student wants
to learn which advertisement APIs are invocated in any App
developed by others, he only needs to choose the “Ad API”
option in the “API Types” menu and run the APP. Then,
APIHelper will display in sequence all the Ad APIs that
are invocated during the APP’s execution, and ignore all the
other types of APIs. APIHelper can facilitate students to learn
such commonly-used API types as permission API, energy-
consumption API and Ad API.

VI. USER SURVEY OF APIHELPER

As presented in the previous section, APIHelper can be
used as a teaching tool. In this section, we will report the
result of a user survey conducted among 38 students who
are junior Android programmers. The students are asked to
use APIHelper in the above three application scenarios, and
then to score (on 10 points scale) whether APIHelper can
help them in learning App development.

As the survey results show, most students think APIHelper
helpful for learning how to use APIs. Table IV lists the
average scores of three learning scenarios. As the table
shows, in the view of the students, APIHelper can effectively
help them optimize Apps by finding and removing needless
APIs, which is its most attractive application scenario with
the highest score of 9.6. The students think APIHelper useful
when they want to learn API call sequence belonging to
a specified app functionality, which is scored 9.1. For the
third application scenario shown in the table, some students
consider it duplicate with the second scenario in the table to
some extent, but other students don’t feel so, they think these
two scenarios are different because the third scenario focuses

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_12

Volume 47, Issue 1: March 2020

 
______________________________________________________________________________________ 



on the necessary APIs specially, which has one more process
of finding and removing needless APIs in the particular
functionality implementation. And thus the score is lower
than 9.0. As for the implementation of monitoring specified
type of APIs, the students believe that it is convenient in the
above three scenarios when they want to study the usage of
a specified type of API.

Additionally, some interesting suggestions to improve
APIHelper are made by the students. For examples, more
Ad APIs can be added, more API types can be supported,
API callers from the third-party library or Android system
can also be included.

TABLE IV
THE SCORE OF THREE APPLICATION SCENARIOS

Application Scenario Score

Optimize App by finding and removing needless APIs 9.6

Learn API call sequence of app functionality 9.1

Learn necessary APIs of functionality implementation 8.3

VII. CONCLUSION AND FUTURE WORK

In this paper, we implement a tool named APIHelper
based on the Xposed framework, which helps the junior
Android programmers learn the usage of the permission
APIs, energy consumption APIs, and advertising APIs. And
we have demonstrated four typical application scenarios of
APIHelper, that is, enabling junior programmers follow the
API call sequence of any specific functionality of any app,
helping them understand the necessity of a specific API
for a specific functionality implementation, guiding them to
optimize app by finding and removing needless APIs, etc.
It has extensiveness and flexibility, and provides a friendly
interface for the programmers.

APIHelper can be improved in the following directions:
showing the caller of API is from a third-party library or the
Android system, recommending API sequences to implement
a specified functionality, supporting more API types, and so
on.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their
valuable and constructive comments.

REFERENCES

[1] “Api,” [Online]. Available: http://baike.baidu.com/link?url=KUnTlX6J
g47PdvE0NHhOMyHjj1Fsz15RTcpAk82QrUDEcc8WFPaEDNt3TJf6
U990EohGTvzRFyYWMKp-tpVb4q. [Accessed: June-2018].

[2] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM conference
on Computer and communications security. ACM, 2011, pp. 627–
638.

[3] J. Fu, Y. Zhou, H. Liu, Y. Kang, and X. Wang, “Perman: Fine-grained
permission management for android applications,” in 2017 IEEE 28th
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 2017, pp. 250–259.

[4] Y. He, X. Yang, B. Hu, and W. Wang, “Dynamic privacy leakage anal-
ysis of android third-party libraries,” Journal of Information Security
and Applications, vol. 46, pp. 259–270, 2019.

[5] A. Pathak, Y. C. Hu, and M. Zhang, “Bootstrapping energy debugging
on smartphones: a first look at energy bugs in mobile devices,” in
Proceedings of the 10th ACM Workshop on Hot Topics in Networks.
ACM, 2011, p. 5.

[6] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy api usage
patterns in android apps: an empirical study,” in Proceedings of the
11th Working Conference on Mining Software Repositories. ACM,
2014, pp. 2–11.

[7] H. Jiang, H. Yang, S. Qin, Z. Su, J. Zhang, and J. Yan, “Detecting
energy bugs in android apps using static analysis,” in International
Conference on Formal Engineering Methods. Springer, 2017, pp.
192–208.

[8] Y. Hu, J. Yan, D. Yan, Q. Lu, and J. Yan, “Lightweight energy
consumption analysis and prediction for android applications,” Science
of Computer Programming, vol. 162, pp. 132–147, 2018.

[9] L. Cruz and R. Abreu, “Catalog of energy patterns for mobile
applications,” Empirical Software Engineering, pp. 1–27, 2019.

[10] M. Nijim and H. Albataineh, “En-stor: Energy-aware hybrid mobile
storage system using predictive prefetching and data mining engine.”
Engineering Letters, vol. 26, no. 2, pp. 252–256, 2018.

[11] K. El-Harake, Y. Falcone, W. Jerad, M. Langet, and M. Mamlouk,
“Blocking advertisements on android devices using monitoring tech-
niques,” in International Symposium On Leveraging Applications of
Formal Methods, Verification and Validation. Springer, 2014, pp.
239–253.

[12] B. He, H. Xu, L. Jin, G. Guo, Y. Chen, and G. Weng, “An investigation
into android in-app ad practice: Implications for app developers,” in
IEEE INFOCOM 2018-IEEE Conference on Computer Communica-
tions. IEEE, 2018, pp. 2465–2473.

[13] X. Zhu, J. Li, Y. Zhou, and J. Ma, “Adcapsule: Practical confinement
of advertisements in android applications,” IEEE Transactions on
Dependable and Secure Computing, 2018.

[14] L.-S. Chen and C.-C. Liu, “Using feature selection approaches to
identify crucial factors of mobile advertisements,” in Proceedings
of the International MultiConference of Engineers and Computer
Scientists, vol. 1, 2015.

[15] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, “Appscope: Applica-
tion energy metering framework for android smartphone using kernel
activity monitoring,” in Presented as part of the 2012 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 12), 2012, pp. 387–
400.

[16] R. Xu, H. Saı̈di, and R. Anderson, “Aurasium: Practical policy
enforcement for android applications,” in Presented as part of the 21st
{USENIX} Security Symposium ({USENIX} Security 12), 2012, pp.
539–552.

[17] C. Sun and S. Qin, “A monitoring method of sensitive calls based
on the android platform software behavior,” in 2015 5th International
Conference on Computer Sciences and Automation Engineering (ICC-
SAE 2015). Atlantis Press, 2016.

[18] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing
the android permission specification,” in Proceedings of the 2012 ACM
conference on Computer and communications security. ACM, 2012,
pp. 217–228.

[19] D. Li, S. Hao, J. Gui, and W. G. Halfond, “An empirical study
of the energy consumption of android applications,” in 2014 IEEE
International Conference on Software Maintenance and Evolution.
IEEE, 2014, pp. 121–130.

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_12

Volume 47, Issue 1: March 2020

 
______________________________________________________________________________________ 




