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Parameter Estimation for the a-Stable Vasicek
Model Based on Discrete Observations

Chao Wei

Abstract—This paper is concerned with parameter estimation
for Vasicek model driven by a-stable motion from discrete
observation. The contrast function is used to obtain the least
squares estimator. The strong consistency and asymptotic distri-
bution of the estimators are studied by using ergodic theorem,
Holder inequality and Markov inequality. Some numerical
calculus and simulations are given to verify the effectiveness
of estimator.

Index Terms—parameter estimation, parameter estimation,
a-stable noises, discrete observations, consistency.

I. INTRODUCTION

Itd type stochastic differential equations are widely used
in the modeling of stochastic phenomena in the fields of
physics, chemistry, medicine( [5], [16]). Recently, they are
applied to describe the dynamics of a financial asset, such
as Cox-Ingersoll-Ross( [9], [10]), Chan-Karloyi-Longstaft-
Sanders ( [7]) and Hull-White model ( [8]). However, part
or all of the parameters in stochastic model are always
unknown. In the past few decades, some methods have
been put forward to estimate the parameters for Itd type
stochastic differential equations, such as maximum likelihood
estimation( [24], [25]), least squares estimation( [6], [14],
[21]) and Bayes estimation( [12], [15]). But, in fact, non-
Gaussian noise can more accurately reflect the practical ran-
dom perturbation. -stable noise, as a kind of important non-
Gaussian noise, has attracted wide attention in the research
and practice in the fields of engineering, economy and society
and has been studied by some authors such as Bertoin(
[3]) and Applebaum( [1]. From a practical point of view
in parametric inference, it is more realistic and interesting
to consider parameter estimation for stochastic differential
equations driven by a-stable motion. Recently, a number of
literatures have been devoted to the parameter estimation
for the models with a-stable noises. When the coefficient
is constant, drift parameter estimation has been investigated
( [17]-{19D.

Vasicek model, which was introduced by Oldrich Alfons
Vasicek in 1977( [23]), is a mathematical model describing
the evolution of interest rates. It is a type of one-factor
short rate model as it describes interest rate movements as
driven by only one source of market risk. The model can
be used in the valuation of interest rate derivatives, and
has also been adapted for credit markets. It is known that
parameter estimation for Vasicek model driven by Brownian
motion has been well developed( [22], [27]). However, some
features of the financial processes cannot be captured by the
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Vasicek model, for example, discontinuous sample paths and
heavy tailed properties. Therefore, it is natural to replace
the Brownian motion by non-Gaussian noise. Recently, the
parameter estimation problems for Vasicek model driven by
small Lévy noises have been studied by some authors. For
example, Davis( [11]) used Malliavin calculus and Monte
Carlo estimation to study the estimator of the Vasicek model
driven by jump process, Bao( [2]) developed the approximate
bias of the ordinary least squares estimator of the Vasicek
model driven by continuous-time Lévy processes. But, the
explicit expression of the estimation error and the consistency
of the estimators have not been discussed and there are few
literature about the parameter estimation problem for Vasicek
model driven by a-stable noises.

In this paper, we consider the parameter estimation prob-
lem for Vasicek model with a-stable noises from discrete
observations. The contrast function is introduced to obtain
the least squares estimator. The strong consistency and
asymptotic distribution of the estimator are proved by using
ergodic theorem, Holder inequality and Markov inequality.
Some numerical calculus and simulations are given to verify
the effectiveness of estimator.

This paper is organized as follows. In Section 2, the
Vasicek model driven by «-stable noises is introduced, the
contrast function is given and the explicit formula of the
least squares estimators is obtained. In Section 3, the strong
consistency of the estimators are proved. In Section 4, some
simulation results are made. The conclusion is given in
Section 5.

II. PROBLEM FORMULATION AND PRELIMINARIES

Let (Q2,.%#,P) be a basic probability space equipped
with a right continuous and increasing family of o-algebras
{Zi}i>0 and Z = {Z,,t > 0} be a strictly symmetric -
stable Lévy motion.

A random variable 7 is said to have a stable distribu-
tion with index of stability o € (0,2], scale parameter
o € (0,00), skewness parameter 5 € [—1,1] and location
parameter p € (—o0, 00) if it has the following characteristic
function:

Pn(u)
—o%|ul*(1 —iBsgn(u) tan %) +ipu,ifa # 1,

2
—o|ul(1 +iB—sgn(u)log |u|) + ipu,ifa = 1.
71'

We denote  ~ S, (0,8, 1). When u = 0, we say 7 is
strictly a-stable, if in addition S = 0, we call  symmetrical
a-stable. Throughout this paper, it is assumed that a-stable
motion is strictly symmetrical and « € (1, 2).

In this paper, we investigate the parameter estimation prob-
lem for a-stable Vasicek model described by the following
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stochastic differential equation:

{dXt =(0 + v X,)dt + dZ, 0

Xo =0,

where 6 and ~ are unknown parameters with v < 0 and Z
is a strictly symmetric a-stable motion on R with the index
€ (1,2).
It is assumed that the process {X;,t > 0} can be observed
at discrete point {¢; = ih,i =0,1,2,...,n} with h > 0. We
introduce the following contrast function:

0 ’7) = Z |Xt1 - Xti—l - (0 + ’th'val)Ati_1|27 (2)

where At;_1 =t; —t;_1 = h.
Then, we can obtain the estimators as follows
g i (X = X )X 3 X
" h(Z?ﬂ Xt 1)? —nhZZLl X7
Z?:l(Xti - Xti—l) Z:‘L:l Xz,
h(Z?:l Xt ,)? —nh Z?:l X
/7\ _ Z?ZI(Xti - Xti—l) ZZL:I Xt'i—l
" h(Z?:I Xf/i,—l )2 —nh Z?:l Xt%‘q
oy (X = Xy )X
A3y Xei ) )2 = nh 30, Xt21>1 ‘
Since the a-stable Vasicek model can be written as

9 t
X = Xpexp?t —;(1 —exp™) +/ exp?t=9) /X, dZ,.
0

3)

N “)
The expression of 6,, and 7,, can be changed as
é\n :Q(ew}I - 1)
~h
n t; —s
S XP L Y tii1 =2z,
(Z? 1 Xt1)?— nhZ? 1
Zz lXt1 1 Zz 1 Xt7 1 ft v(tims ng
(Zz:l Xt1—1) - nh Ez:l Xt2i,1
1 ®)

S Xe L S [ e todz,
h(Z;L:I Xti—l)Q —nh Z?:l Xt2,i,1
nzzl:l Xti—l,f‘ti e“/(ti—s)dZ

h(3 iy Xe o)) —nh 3 X7

III. MAIN RESULTS AND PROOFS

In the following theorem, the strong consistency of the
least square estimators 6,, and 7,, are proved.
Theorem 1: When h — 0 and nh — oo,

0, 30,
An “30 0.
Proof: Since X, is ergodic, by the ergodic theorem and
Corollary 3.1 in , it can be checked that

1
nh—{%o - Z | X, .| =ElXx| = —5g0 -5 (6)

=1

nli)II;OEZ|Xfl P =EX|P =00, p>a,as. (7)

=1

ti o
|Z;L:1 ti1 ev(tl s)dZs|

lim sup

t.
nee P ft_l

and

, Py =y
lim sup

|e'y(t7-,—s) |ads

X, , e"/(ti_s)dZs|

Sl DA

Moreover,

i X, X

1Jt;

X, erti=s)|eds

Yotz gz,

|
Z?:l Xti—l Z

h(Z?:l th‘71 )2
n t;
i=1 th—l fti71

—nh3 X7
erti=s)qz.

=0,a.s.

(i Xi

'i—1)2 —nh Z?:l

2
Xi

—1

> Xt2i—1 |3 fti ev(ti_s)dZJ

< n
T RS X )2 —nh Y XE

+Z?:1 ‘Xti—l || Zi:l Xti—l ft7_1

=0,a.s.

e’Y(tz_s)dZS|

|h(2?:1 Xi,_,)? —nh Z?:l X?

According to (6), (7) and (8), it follows that

Y X |Zz 1ft7 eV(tl_s)dZ|

(i 1th )2
‘Zz 1 t: 1

—nhY ",
v(ts —s)dZ |

i

1 ti—1

71|

X n
|h(2i=1 th‘,—l )
n t;
<y T

—nhY " X}

-

=947, | g _

-

1

— n
nZzltll

nyia X

|€’y(f —s ‘ads

1

ary

X n
(i Xein)?

1—1
—nh Z? 1

|Zl ) :z‘ eV(ti=s) g7, |ea7h

1

< sup

n zlft

|€’Y (ti—s) ads

(;Z Ith 11?2
%Ei;llxn_lI?
a.s.
= 0.

Volume 47, Issue 1: March 2020

-1

hary

®)

Z/ |e'ytfs)|ads
ti—1

dic1 j;s |€7(ti’_s)|ad5 i—



IAENG International Journal of Computer Science, 47:1, IJCS 47 1 14

when h — 0 and nh — oo, by Holder inequality and (6), and

7, 9), btai n ; o
(7), (9), we obtain nl S Xe ftt-l,l =)z, |

n n t; (ti—s) - -
Zi:l ‘Xt:1 || Zi:l Xtifl ft7—nl e’ . dZS' |h(Zz:1 Xti—l)Q —nh Zi:l XtQi—1‘
|h(Zz 1 th 1)2 - nh Zi:l Xti71| < eha'y —1 Z?:l |Xti—1 |a
IZz i Xn e dZ| T hay AT 1Xh )P - nh 3T XE
t; g
2im1 ft Xy, ertimo)]ods |Zz e, Xt L etdz |
ti i—S) | i—S
Zi:l |Xti—1|2i:1 j;ifl |Xt1/_1e’y(t7. )| ds Z 1‘];1 1 i 1@7(t1 «)‘ads
h(Zn |Xti—1 ‘)2 —nh ZZL:l |Xt¢71 |2 < ha’y -1
| Z,L 1 ttl Xti,lev(t"_s)dZA ehcwy -1 - hOé’}/
< sup — oy y 1
no i ftH Xy, erttizsl]ads  ay S X0 2 (LS 1x, )%
Z’?:l ‘th‘,—1|2?=1 |Xt7:_1|a (% 2?:1 ‘Xt'i—1|2)§ " =1 ot
WSy [Xe )2 — nh S [ X, 2 S Y X etz
. X sup —, -
< su |Zl 1 ‘];1 1 Xt GW(tl )dZ§| eha'y -1 n Zi:l ftiil |Xt171e’\/(ti_s)|ad8
n z 1 fm 1 tz 1€ (b —s)lads ha’y a;;. 0,
230 | X,
X n Zl:l [ Kt When h — 0, it is obvious that
(& i X, D2
n fui=1 17t _ (1 n 2\1-%
G X, D% (7 Zimr [ X ?) h_q
a8 N — 7. (12)
When h — 0, it is obvious that Therefore, with above results, we obtain that
h ~ a.s.
M —h. (10) Yn — - (13)
~vh
. . The proof is complete. [ |
Therefore, with above Tsults, we obtain that Remark 1: If the Vasicek model is driven by the small
6, “3 0. (11) «-stable noises described by the following stochastic differ-
. ential equation:
Since
‘Zz X, S [ etz {d));’t i(& +yXy)dt +edZ;, te0,1] a4
(Zi:l Xt'i—l)Q —nh Zz 1 tl 1 o=
ny e Xi, j;_’il eVti=9)qz, where 6 and ~ are unknown parameters. Without loss of
e 2_ S 2 | generality, it is assumed that ¢ € (0, 1].
(Zn:Z 1 Xto) N ;1 ! . Consider the following contrast function
Zi:l |Xt7:71|| Ei:l .];5;_1 e’Y( l_s)dZs| n
- |h(2? 1 Xt )2 - nh Z;L:l Xth‘—ll Pn,s(‘g»'Y) = Z ‘th _Xti,1 - (€+7Xti71)Ati,1|2, (15)
n\ Zz L X, ft ev(tifs)dZS| i=1
IS, X P — kS, X2 where Atiy =t —ti1 = 3.

. ) It is easy to obtain the least square estimators
Moreover, by Holder inequality and (6), (7), (9), we obtain

that 5 i (X = Xe )Xe ) 3 X
S X LI ) e tdz, " (i X,y )P =m0 X7
‘h(Zizl Xti—l) —nh Zi 1 X 2 | . -n Zgzl(Xti - X, ) %:?:1 Xz_
Z?:l | Xe | Z ft |67 (ti—s) |*ds , (En:i:l X, )2 — nZizl X7
= hL K P — ik S X7 oo =izt X = Ko ) e (16
|Z ) ffl y(ti—s) dZ,| (Zi:l "i(tifl) - nZizl X;:L,
— _n i (X — X ) >0 Xa
> Sl lertimo]eds (X, )P —nyr X2 |
eher —1 DI \th 1|

ha L5 X, - X
VG i e D? = i X P Let X° = (X?,t > 0) be the solution to the underlying

51 |Z?:1 ft,;_l eﬂ/(ti_s)dZS| ordinary differential equation under the true value of the
nP 2?21 ft1 |e7(ti—s)|ads parameters:
20, dX? = (0 +yXD)dt, X = . (17)

Volume 47, Issue 1: March 2020



IAENG International Journal of Computer Science, 47:1, IJCS 47 1 14

Note that

1 ti 123
X, — Xy, = EGJr’y/ Xsder{—:/ dZs. (18)
t; ti—1

Then, we can give a more explicit decomposition for 6,
and 7, . as follows

—1

- ny i 1ff1 | Xsds X2

=0+ T KT e

nry XJ,I 1ft | Xads X,
(Z 1) —nZ

"521':1 ti—1 ft dZ Zz 1
T X oS, XE
ned i, Jtl 1 dZs Zi:l ti,1
(27 Xy _)2—n 30 X7 1

t; 2
R ti_ 1X5ds%z Xt

55/ Aue L= s o

'\/Z;{,l:leifl ft X ds Zq 1 Xt, i—1
G X, )2*i e XZ,

n n 2ui=1 1

t; 1
52?1 ti_ 1ftl1dZ DI 1 Xt
T T 2
(Z 1 Xt 1)2 n :L1X7 1

sz:;lf,,i A DY e

— 71 ) T .
(Zzyletzfﬁ Tn 772 1X21 1

ti—1

ny >l ft L Xs LEDIME 1Xt —1

e = ( ?Elxti—l) —n i X «i,l
n?y S0 Xy, 1ftt' Xsds
T X, P, KT
n?e 3, X ti— lft
HO e R i
ne 3 i 1ft7_ 1 4Zs Zi:l Xti—l
SIS SRSSEETS SN
_’YE:L=1ft' Xdal 1 Xty

o (l = 1 Xt 1)2 ZL 1X21~,1

v Xy fzi,l Xsds

BES 2_1 3\ 2
(= im1 Xt 1) n 7',:1Xt,i_1

€2 2im1 Xty fttl le
(% ?:lXti—1)2_7 i= 1X21 1
eXi i, A% T Xe
_(%ZyletFJQ_% i X21 1

Lemma 1: When ¢ — 0 and n — oo, we have

sup |X; — X7 5o.

0<t<1
Proof: Observe that

t t
Xt—X?:W/ (Xs—Xg)ds—i-a/ dZ,. (19)
0 0
By using the Cauchy-Schwarz inequality, we find
X — X2
t t
< 272|/ (Xs — X0)ds|* + 252|/ dZ,|?
0 0
t t
< 272t/ |Xs — X2%ds +2¢% sup | | dZ,|?
0 0<t<1 Jo
According to the Gronwall’s inequality, we obtain
t
X, — X012 <222 sup | [ dZ,)2. (20)
0<t<1 Jo

Then, it follows that

t
— X0 < V2ee” sup | [ dzZ. (21)

o<t<1 Jo

sup | X
0<t<1

By the Markov inequality, for any given 6 > 0, when
e — 0, we have

t
IP’(\/§5672 sup | | dZs| > 6)

o<t<1 Jo

t
<5 W2 B[ sup | [ dZ,|]

o<t<1 Jo
1

g(s-lﬂserE[(/ ds)*]
0

:(;71\@6‘672

— 0.

Therefore, it is easy to check that

sup | X, — X% 5 o. (22)
0<t<1
The proof is complete. ]
Proposition 1: When € — 0 and n — co, we have,
1 ¢ 2 P, ! 02
=N X7 5 (XDt
nia 0
Proof: Since
lzn:XQ _li(XO >2+1zn:(X2 (XO )2)
n ti—1 n ti—1 n i—1 ti—1 .
i=1 i=1 i=1
(23)
It is clear that
RN 0 2 F ! 042
- X )PS i (X0)2dt. (24)
i=1

)?), according to Lemma 2
| 5 fol | X7 |dt, When & — 0

1\ 2 0

For n Zi:l(X 1 (Xti—l
and the fact that 2 3" | X7
and n — oo, we have

—1

1 n
Y (KE L - (X))
i=1
1 n
= ‘ﬁ Z(Xti—l +Xt0i_1)(Xti—1 - X2_1)|
=1

=X (X [+ XD

1 n
S ﬁ ; |th:71
) n

E ;“Xti—l
1 Z X

E - ti—1

+2— Z|X0 1 Xe, , — XP

IN

=X P 2AXE X, - XD

- X0

o

< (sup |X;y — X7[)?
0<t<1

1 n
+2 sup |X;— X2=) X0
OS@I t t\nigl toa
Eo.
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Therefore, we obtain

1 n 1
=3 x2 i/ (X0)2dt.
nia ' 0

The proof is complete. ]

In the following theorem, the consistency of the least
squares estimators are proved.

Theorem 2: When ¢ — 0, n — oo and enl=a — 0, the
least squares estimators ,, . and ﬁn,g are consistent, namely

(25)

é\n,s £> 07 an,e £> -
Proof: According to Proposition 1, it is clear that
1 n 1 n P 1 1
2 2 0 71\2 0\2
GX P xS b= [ xbra
(26)
With the results that L > X7 ER fol (X2)2dt and

D DD, O KR fol XDdt, when & — 0 and n — oo, it can
be checked that

n t: n 1 1
i 1 P
v XsdsEE X7, —w/o Xtdt/o (X7)2dt,
i=1

i=17ti—1
(27)
and

rYi:Xti—l /ti Xsds%i:Xtiﬂ
i=1 ti-1 i=1

1 1
fwy/ XtXtOdt/ X0dt.
0 0

According to Lemma 2, we have

0> Xty
i=1Yti-1 i=1
- Z Xti—l
i=1

1< P
Xods— Z;Xm =0.

ti—1

Since

n t;
EDPP. / dZ,|
i=1 ti-1
n t;
< EZ|X75¢71||/ dZS|
i=1 tim1
n ti
<Y+ X, - X2 DI [ azl
i=1 ti—1

n ti
<e X[ az
i=1 ti—1

ti
+e sup |Xt—XtOH/ dZg|.
0<t<1 ti—1

By the Markov inequality, we have

P(\sDXa,lH/t iZ,|| > )

i=1 i1

<s > X0l [ dz
i=1 ti—1

n
< 5*152 \Xg_l |n*é
i=1
n

1
— 571{5”17%5 Z X2,

i=1

which implies that £ ., | X}

ti—1

Hf:_l dZy| L oase -0,
n — oo and enl~a — 0.

According to Lemma 2, when ¢ — 0 and n — oo, it is
obvious that

t;

e sup | X, — X0 [ az, 5o (28)
0<t<1 ti1
Then, we have
n ts P
ey Xi, / dZs = 0. (29)
i=1 ti1

With the results of Proposition 1, (13) and (18), we have

n t; n
€2 i1 Xty j;si_l dZs3 3200 Xy L (30)
(% Z?:l Xti71)2 - % Z?:l X§L71

Moreover, when ¢ — 0 and n — oo, it is easy to check
that

n ti n
€ im1 fti,l AZs5 Y X3, o (31
1 ﬁ: Xt»_ 2 _ 1 7,1: X2. .
n £Lai=1 i-1 n =17

Therefore, by (13), (16), (19) and (20), When ¢ — 0,
n — oo and en!~% — 0, we have

~

O 50,

Using the same methods, it can be easily to check that
1
When ¢ — 0, n — oo and en' == — 0, we have

~ P
Yne =7 7.

The proof is complete. ]
Theorem 3: When ¢ — 0, n — oo and ne — oo,

e (0 —0)
4 (oKD o Xpdi— [y (X%dD) ¢ o0
(fo det)Z - fo (XtO)th
e Fne —7) S (o (X)) — Jo XPdt) S4(1,0,0).

(foy X0dt)? — [ (XD)2dt

Proof: According to the explicit decomposition for é\n’s,
it is obvious that
e (O — 0)
e Y fttj,l Nodsy 300, X7,
(7 i X ) — s X X7
e Xe, i Xads S X,
- (% Z?:l Xti71)2 - %Z?:l Xt2ifl
Z?:l Xty fttb,l dZs% Z?:l Xt
(G i X)) = 5 i X,
S i, 2 Y X
(Gl Xe )P - R Xl XE
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ti

When ¢ — 0, n — oo and ne — oo,
Xds|

n
17 Z Xti—l
i=1 ti—1
n t;
<e YRl [ Xas
i=1 ti-1

5*1n*1922(|Xti_1 X 1+1X2_D

sup | X

ti—1<t<t;
P
— 0.

Then, it is easy to check that

i=17ti—1
Hence
57172?:1];5 Xods+ i Xi, L (32)
(%Z?:l Xti—l) 71125 1 ti—1 7
and
e i Xy Jy) | Xedsy, Zz 1 Xiy b
—0. (33
(E Zi:l th‘—l) - 52@:1
Since
x|
ti—1
ti
= Z(Xti*1 - X?z‘—l +Xg—1)/ dZS
i=1 tiz1
n t;
:Z(XtH —Xg_l)/ dZ,
; ti—1
t;
eyx [
ti—1
According to Theorem 1, we have
n . 4 .
> (X, - X0 ) dZs = 0. (34)
i=1 ti-1
Moreover,
t;
x|
1 1
:/ ngig(tifl,ti](s)dzs
0 =1
, 1 n
_z o/o SOXD 10 (5)7ds,
i=1
/d
where Z = Z.
Since
(35)

1 n 1
/ SOXS T, 0y (5)%ds — / (X0)*ds,
0 i 0

it is clear that

1 n 1
Z’o/ S UXD Ly a(s)ds “3 z’o/ (X%)ds.
[ — 0

(36)

It immediately follows that
Soxe [zt oraisoon. 6
ti—1

Then, we have

e (One — 0) $
XNedt)a [ X2dt — [ (XD)2dt
((f ( S fO Of02 )Sa(17070)
(Jo X0dt)? — [1(X0)2dt
As
571(&71,5 - '7)

5_1'7 Z?:l fti’i,l XSdS% Z?:l Xti—l
(i Xe )2 = 5 i XE

_ n ti
17 Zi:l Xt7 1 j;t Xsds -1
- n —& 7
(%Zz 1th 1) Zz 1 ti—1
Z’L lXt'L 1 L,L 1
( Z’L lXtL 1) “n ZiZI
n t; n
Zi:l tioa dZSH Zi:l Xti—l
(3 2 Xy )2 = 5 i X2
It is obvious that
5_1’7 Z?:l ftil XSdS% Z?:l Xti—l
(3 iy Xuo 0 )? = 5 2 X7
— n t;
ey Xy, 1ft X.ds )
- n —& 7
(%21‘:1 Xti—l) ZL 1 ti—1
£o,
and
n t;
Zi:l Xti—l j;gi71 dz
(F i X )2 — 2 i X2,
n ti n
B Zi:l ft,;_l dZS% Zi:l Xti—l
(lZ:IlthlQ_lZ?l
(X0)>dt)s — [ XOdt)
fo o fo e Sa(Lo,o).
(fo X0dt)2 — [ (XD)2dt
Then, we have
1 1 1
(XN)xdt)s — [ Xdt)
e e — ) 4 Lo Jo X2dt) 5 1 0,0).
(Jo X0dt)? — [1(X0)2dt
(33)
The proof is complete. [ |

IV. SIMULATIONS

In this experiment, we generate a discrete sample
(Xt,)i=0,1,...n and compute 6,, and 7,, from the sample. We
let xp = 1 and @ = 1.8. For every given true value of
the parameters-0 and -, the size of the sample is represented
as“Size n” and given in the first column of the table. In Table
1, h = 0.1, the size is increasing from 1000 to 5000. In Table
2, h = 0.01, the size is increasing from 10000 to 50000.
The tables list the value of “6 — LSE” and “y — LSE”, and
the absolute errors (AE) of LSE, LSE means least squares
estimator.
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Two tables illustrate that when n is large enough and h is

small enough, the obtained estimators are very close to the
true parameter value. Therefore, the methods used in this
paper are effective and the obtained estimators are good.

TABLE I
LSE SIMULATION RESULTS OF 6 AND ~y

True Aver AE
0,7) Size n 0 - v - 0 5
LSE LSE
1000 1.3526 -2.4132 0.3526 0.4132
2000 1.2350 -2.2915 0.2350 0.2915
(1,-2)
3000 1.1706 -2.1852 0.1706 0.1852
5000 1.0217 -2.0471 0.0217 0.0471
1000 2.4016 -3.3218 0.4016 0.3218
2000 2.2908 -3.2651 0.2908 0.2651
(2,-3)
3000 2.1683 -3.1710 0.1683 0.1710
5000 2.0462 -3.0235 0.0462 0.0235

V. CONCLUSION

The aim of this paper is to estimate the parameters

for Vasicek model driven by a-stable noises from discrete
observation. The contrast function has been introduced to
obtain the least squares estimators. The strong consistency
of the estimators have been discussed by using ergodic
theorem, Holder inequality and Markov inequality. Some
numerical calculus and simulations have been given to verify
the effectiveness of estimators. Further research tops will
include parameter estimation for partially observed stochastic
differential equation driven by a-stable noises.
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