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Abstract—In this study, by applying the minimize residual
technique to a class of upper and lower triangular (ULT)
methods, two types of nonstationary ULT iteration methods
called the minimize residual ULT (MRULT) ones are estab-
lished for solving ill-posed inverse problems. We provide the
convergent analysis of the MRULT-type iteration methods,
which shows that the proposed methods are convergent if the
related parameter satisfies suitable restrictions. And the new
methods further improve the convergence rates of the ULT
ones. Finally, numerical experiments arising from a Fredholm
integral equation of the first kind and image restoration are
reported to further examine the feasibility and effectiveness of
the proposed methods.

Index Terms—upper and lower triangular splitting, minimize
residual, Tikhonov regularization, ill-posed problems, iteration
method.

I. INTRODUCTION

CONSIDER the problem of computing an approximate
solution of large-scale least-squares problems of the

form

min
f∈Rn

∥Af − g∥2, A ∈ Rn×n, f, g ∈ Rn, (1)

where and throughout this paper ∥ ·∥2 denotes the Euclidean
vector norm or the associated induced matrix norm. The
singular values of the matrix A gradually decay to zero
without a significant gap. In particular, the Moore-Penrose
pseudoinverse of A, denoted by A+, is of very large norm.
Hence, A is severely ill-conditioned and may be singular.
Moveover, the data vector g represents available data and
generally is contaminated by an error e ∈ Rn that may
stem from measurement inaccuracies, discretization error,
and eletronic noise in the device used, i.e.,

g = ĝ + e, (2)

where ĝ ∈ Rn stands for the (unknown) error-free vector
associated with g. Let the unavailable linear system of
equation with the error-free right-hand side

Af = ĝ (3)
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be consistent and we denote its solution of minimal Eu-
clidean norm by f̂ . It is our aim to determine an accurate
approximation of f̂ by computing an approximate solution
of the available linear system of Equation (1).

Minimization problems (1) with a matrix of this kind are
commonly referred to as linear discrete ill-posed problems.
They arise from the suitably discretization of ill-posed prob-
lems in various scientific and engineering applications. For
example, a large number of practical problems in image pro-
cessing are the inverse problem of obtaining true data from
observation data, and one of the basic problems is the linear
inverse problem (1), such as image restoration [16], [22],
[23], [25], image decomposition [7], image reconstruction
[28] and so on. In addition, ill-posed problems arise from
the discretization of a Fredholm integral equation of the first
kind on a cube in two or more space-dimensions [14].

The solution of minimal Euclidean norm of (1), given by

A+g = A+ĝ +A+e = f̂ +A+e,

typically is not a meaningful approximate solution of the
system (1), because typically ∥A+e∥2 ≫ ∥f̂∥2. To compute
a useful approximation of f̂ , the first step in our solution
process is to replace (1) by a nearby problem, whose solution
is less sensitive to the error e in g. This replacement is
commonly referred to as regularization. One of the most
popular regularization methods is due to Tikhonov [21], [24],
[10]. Tikhonov regularization replaces the linear system (1)
by the minimization problem

min
f

∥Af − g∥22 + µ2∥Lf∥22, (4)

where µ > 0 is referred to as a regularization parameter
(generally small, i.e., 0 < µ < 1) and the matrix L
as a regularization matrix. The parameter µ balances the
influence of the first term (the fidelity term) and the second
term (the regularization term), which is determined by the
regularization matrix. It is the purpose of the regularization
term µ2∥Lf∥22 to damp the propagated error in the computed
approximation of f̂ . The solution of this system (4), less
sensitive to the error e in g, is considered as an approximation
of the solution of error-free linear system (3). When L
is the identity matrix, the Tikhonov minimization problem
(4) is said to be in standard form, otherwise it is said to
be in general form. In this work, we limit our discussion
to L being the identity matrix. The other cases can be
obtained by using the similar technique. It is easy to see
that the Tikhonov minimization problem is mathematically
equivalent to solving the following normal equation

(ATA+ µ2I)f = AT g. (5)
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Similar to [19], the problem (5) can be translated into an
equivalent 2n× 2n augmented system(

I A
−AT µ2I

)
︸ ︷︷ ︸

K

(
e
f

)
︸ ︷︷ ︸

x

=

(
g
0

)
︸ ︷︷ ︸

b

, (6)

where I and the variable e denote the identity matrix with
proper dimension and additive noise e = g−Af , respectively.
Note that the coefficient matrix K of the system (6) is
non-Hermitian positive-definite. For non-Hermitian positive-
definite systems, Bai et al. in [3] studied efficient iterative
methods based on the Hermitian and skew-Hermitian split-
ting (HSS) of the coefficient matrix K. Due to the high
efficiency and the robustness of the HSS iteration method, it
attracts many researchers attentions, and many HSS variants
were proposed in recent years to solve different kinds of
systems of linear equations [18], [11], [4]. Recently, for
solving augmented system (6), Lv et al. in [19] established a
special HSS (SHSS) iterative method by substituting α = 1
into the second step of the HSS one, which makes the eigen-
values of the corresponding iteration matrix determined more
conveniently. Numerical results included in [19] validate the
SHSS iteration method is superior to the HSS one. Then
Cheng et al. in [6] used the idea of [19] and proposed a new
special HSS (NSHSS) iterative method by setting α = µ2

in the second step of the HSS one. In [5], Benzi established
a generalization of the HSS (GHSS) iteration method for
solving positive definite, non-Hermitian linear systems. It is
shown that the new scheme can outperform the standard HSS
method in some situations. Subsequently, based on GHSS
iteration method proposed in [5], Aghazadeh et al. [1] splitted
the Hermitian part of K as sum of a Hermitian positive
definite matrix and a Hermitian positive semidefinite matrix,
and introduced a restricted version of the GHSS (RGHSS)
iterative method for image restoration. Experimental results
demonstrated that the RGHSS method is more effective
and accurate than the SHSS method. After that, Aminikhah
and Yousefi in [2] first constructed a new splitting of the
Hermitian part of the coefficient matrix K for the GHSS
method, and further presented a new special GHSS (SGHSS)
method for solving ill-posed inverse problems. Lately, Fan
et al. in [8] pointed out a class of upper and lower triangular
(ULT) splitting iteration methods, the first type of the ULT
(ULT-I) splitting iteration method and the second type of
the ULT (ULT-II) splitting iteration method, for solving the
augmented systems. The ULT-I and ULT-II iteration methods
are the forms of

(
I 0

−AT µ2I +Q

)
x(k+ 1

2 ) =

(
0 −A
0 Q

)
x(k) + b(

I A
0 µ2I +Q

)
x(k+1) =

(
0 0
AT Q

)
x(k+ 1

2 ) + b
(7)

and
(

I 0
−AT Q

)
x(k+ 1

2 ) =

(
0 −A
0 Q− µ2I

)
x(k) + b(

I A
0 µ2I +Q

)
x(k+1) =

(
0 0
AT Q

)
x(k+ 1

2 ) + b
, (8)

respectively. The convergence rates and optimal iteration
parameters of the ULT iteration methods were derived. And
numerical experiments illustrated that the versions of the

ULT methods considerably outperform the newly developed
methods such as SHSS and RGHSS methods in terms of the
numerical performance and image recovering quality.

In this paper, we continue to research on solving the 2n-
by-2n linear system (6). In order to further improve the con-
vergence rates of the above ULT methods, inspired by [27],
[26], we introduce the control parameters into the ULT-I and
ULT-II splitting iteration methods to construct a class of non-
stationary ULT iteration methods. The control parameters
involved in our methods are determined by minimizing the
corresponding residual norms, thus the non-stationary ULT
iteration methods are referred to as the minimize residual
ULT (MRULT) iteration ones. It is expected that the MRULT-
type methods converge faster than the ULT ones. In addition,
the convergence properties of the MRULT-type methods are
analyzed.

The arrangement of this paper is organized as follows. In
Section II, we define the first type of the minimize residual
ULT (MRULT-I) iteration method. The property of the pa-
rameters involved in the MRULT-I method is discussed and
the corresponding convergence theory is established here.
The second type of the minimize residual ULT (MRULT-II)
iteration method is presented to solve the augmented systems
(6) in Section III. Similarly, we investigate its convergence
property for the ill-posed problems. Section IV is devoted
to presenting numerical examples to examine the feasibility
and effectiveness of the MRULT-I and MRULT-II methods.
Finally in Section V, we give a brief conclusion for this
paper.

II. THE FIRST TYPE OF THE MRULT METHOD AND ITS
CONVERGENCE ANALYSIS

In [27], the authors proposed the minimize residual HSS
(MRHSS) iteration method to solve non-Hermitian positive
definite linear systems by applying the minimize residual
technique to the HSS one. Two parameters involved in
MRHSS method are adopted by minimizing the residual
norms at each step of the HSS iteration scheme. Numerical
experiments in [27] showed that the MRHSS method has
advantages over the HSS one. Inspired by [27], [26], we
introduce the control parameters into the ULT-I iteration
scheme (7) and establish the MRULT-I iteration method to
further accelerate the convergence rate of the ULT-I iteration
one in this section.

Denote r(k) = b−Kx(k), r(k+
1
2 ) = b−Kx(k+ 1

2 ), and

M1 =

(
I 0

−AT µ2I +Q

)
, N1 =

(
0 −A
0 Q

)
,

M2 =

(
I A
0 µ2I +Q

)
, N2 =

(
0 0
AT Q

)
, (9)

then K1 = M1 − N1 = M2 − N2. And the ULT-I iteration
scheme (7) can be equivalently written as{

x(k+ 1
2 ) = x(k) +M−1

1 r(k)

x(k+1) = x(k+ 1
2 ) +M−1

2 r(k+
1
2 )

. (10)

Enlightened by the idea of [26], [27], we introduce two
arbitrary positive parameters βk and γk into (10) to modify
the ULT-I method, which leads to a new iteration scheme of
the form {

x(k+ 1
2 ) = x(k) + βkM

−1
1 r(k)

x(k+1) = x(k+ 1
2 ) + γkM

−1
2 r(k+

1
2 )

. (11)
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As mentioned in [27], the parameters βk and γk involved in
the iteration scheme (11) are to control the step sizes. If they
are determined by minimizing the corresponding residual
norm, the convergence rate of (11) may be faster than that of
(10). Thus, we adopt the parameters βk and γk to minimize
the residual norm at each step of the iteration scheme (11),
and obtain the minimize residual ULT-I (MRULT-I) iteration
method. Note that (1) is a real linear system, so it may be
proper to adopt βk, γk > 0 here. The residual form of the
iteration scheme (11) can be expressed as{

r(k+
1
2 ) = r(k) − βkKM−1

1 r(k)

r(k+1) = r(k+
1
2 ) − γkKM−1

2 r(k+
1
2 )

. (12)

By simple calculation, the above two residual norms yield

∥r(k+
1
2
)∥22

= (r(k+
1
2
), r(k+

1
2
))

= (r(k) − βkKM−1
1 r(k), r(k) − βkKM−1

1 r(k))

= (r(k), r(k))− (r(k), βkKM−1
1 r(k))− (βkKM−1

1 r(k), r(k))

+β2
k∥KM−1

1 r(k)∥22
= ∥r(k)∥22 − 2βk(r

(k),KM−1
1 r(k)) + β2

k∥KM−1
1 r(k)∥22 (13)

and

∥r(k+1)∥22
= (r(k+1), r(k+1))

= (r(k+
1
2
) − γkKM−1

2 r(k+
1
2
), r(k+

1
2
) − γkKM−1

2 r(k+
1
2
))

= (r(k+
1
2
), r(k+

1
2
))− (r(k+

1
2
), γkKM−1

2 r(k+
1
2
))

−(γkKM−1
2 r(k+

1
2
), r(k+

1
2
)) + γ2

k∥KM−1
2 r(k+

1
2
)∥22

= ∥r(k+
1
2
)∥22 − 2γk(r

(k+ 1
2
),KM−1

2 r(k+
1
2
))

+γ2
k∥KM−1

2 r(k+
1
2
)∥22. (14)

Actually, (r(k),KM−1
1 r(k)) = (KM−1

1 r(k), r(k)) and
(r(k+

1
2 ),KM−1

2 r(k+
1
2 )) = (KM−1

2 r(k+
1
2 ), r(k)) are due

to the fact that KM−1
1 ,KM−1

2 and r(k), r(k+
1
2 ) are real

matrices. By solving the equations ∂∥r(k+1
2
)∥2

2

∂βk
= 0 and

∂∥r(k+1)∥2
2

∂γk
= 0, one then obtains

βk =
(r(k),KM−1

1 r(k))

∥KM−1
1 r(k)∥22

, γk =
(r(k+

1
2
),KM−1

2 r(k+
1
2
))

∥KM−1
2 r(k+

1
2
)∥22

. (15)

It is not difficult to check that ∂2∥r(k+1
2
)∥2

2

∂β2
k

> 0 and
∂2∥r(k+1)∥2

2

∂γ2
k

> 0, which reveals that βk and γk in (15) are

the minimum points for each of the functions ∥r(k+ 1
2 )∥22 and

∥r(k+1)∥22, respectively.
In summary, the detailed implementation of the MRULT-I

iteration method can be listed as follows.
Algorithm 2.1:

1. Let β, γ > 0, and given an initial value f (0) and
e(0) = g − Af (0) with g being the available vector. Given
τ > 0 and M is the maximum prescribed number of outer
iterations,
2. r(0) = b − Kx(0), and divide r(0) into (r

(0)
1 ; r

(0)
2 ) with

r
(0)
1 , r

(0)
2 ∈ Rn;

3. For k = 0, 1, 2, · · · , until ∥r(k)∥2

∥r(0)∥2
> τ or k < M ,

4. compute t1 = AT r
(k)
1 + r

(k)
2 ;

5. solve (µ2I +Q)t2 = t1;
6. compute t3 = r

(k)
1 +At2 and t4 = −AT r

(k)
1 + µ2t2;

7. compute the value of βk: βk =
(r

(k)
1 )T t3+(r

(k)
2 )T t4

∥t3∥2
2+∥t4∥2

2
;

8. compute e(k+
1
2 ) = e(k)+βkr

(k)
1 and f (k+ 1

2 ) = f (k)+βkt2;
9. compute r

(k+ 1
2 )

1 = r
(k)
1 −βkt3 and r

(k+ 1
2 )

2 = r
(k)
2 −βkt4;

10. solve (µ2I +Q)t̄2 = r
(k+ 1

2 )
2 ;

11. compute t̄3 = r
(k+ 1

2 )
1 and t̄4 = −AT r

(k)
1 + (µ2I +

ATA)t̄2;

12. compute the value of γk: γk =
(r

(k+1
2
)

1 )T t̄3+(r
(k+1

2
)

2 )T t̄4
∥t̄3∥2

2+∥t̄4∥2
2

;

13. compute e(k+1) = e(k+
1
2 ) + γk(r

(k+ 1
2 )

1 − At̄2) and
f (k+1) = f (k+ 1

2 ) + γk t̄2;
14. compute r

(k+1)
1 = r

(k+ 1
2 )

1 −γk t̄3 and r
(k+1)
2 = r

(k+ 1
2 )

2 −
γk t̄4;
15. end for

Remark 2.1: When βk = γk = 1, the MRULT-I iteration
method is exactly the ULT-I one presented in [8], which
implies that the MRULT-I iteration method with proper
parameters may be more efficient than the ULT-I one.

In the sequel, we first discuss the properties of the param-
eters βk and γk, and then analyze the convergence of the
MRULT-I iteration method. It follows from the derivations
of βk and γk that the parameters βk and γk in (15) are
the minimum points of the residual norms ∥r(k+ 1

2 )∥ and
∥r(k+1)∥, respectively. While, the residual norm ∥r(k+1)∥
can also be viewed as a real function of the real variable
(βk, γk). We will demonstrate that (βk, γk) defined by (15)
is the minimum point of ∥r(k+1)∥. To this end, we start with
a lemma which is useful in our following proof.

Lemma 2.1: Let K and M2 be defined as in (6) and (9),
respectively, and symmetric positive definite Q ∈ Rn×n

satisfy (Q−ATA)(µ2I+Q)−1 = (µ2I+Q)−1(Q−ATA).
For any vector z ∈ R2n, we have

d(z,KM−1
2 z)

d(∥z∥22)
=

1

∥z∥22
(z,KM−1

2 z).

Proof. It follows from (9) that

KM−1
2 = I −N2M

−1
2

= I −
(

0 0
AT Q

)(
I A
0 µ2I +Q

)−1

= I −
(

0 0
AT Q

)(
I −A(µ2I +Q)−1

0 (µ2I +Q)−1

)
=

(
I 0

−AT I − (Q−ATA)(µ2I +Q)−1

)
.

We now divide the vector z into two parts
(
z1
z2

)
with

z1, z2 ∈ Rn, then the inner product (z,KM−1
2 z) has the

form of

(z,KM−1
2 z)

= zT1 z1 − zT2 A
T z1 + zT2 z2 − zT2 (Q−ATA)(µ2I +Q)−1z2.

Inasmuch as (Q−ATA)(µ2I +Q)−1 = (µ2I +Q)−1(Q−
ATA), the first-order derivative is as follows

d(z,KM−1
2 z)

dz

=

(
2z1 −Az2

−AT z1 + 2z2 − 2(Q−ATA)(µ2I +Q)−1z2

)
. (16)

From the proof of Lemma 1 in [27], one has
dz

d(∥z∥22)
=

1

2∥z∥22
z,
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which together with (16) leads to

d(z,KM−1
2 z)

d(∥z∥22)
= (

d(z,KM−1
2 z)

dz
,

dz

d(∥z∥22)
) =

1

∥z∥22
(z,KM−1

2 z).

This completes the proof of this lemma.
By Lemma 2.1 and with the similar manner applied in the

proof of Theorem 1 in [27], the fact that (βk, γk) defined by
(15) is the minimum point of ∥r(k+1)∥ is demonstrated in
the following theorem.

Theorem 2.1: Let the symmetric positive definite matrix
Q ∈ Rn×n satisfy (Q − ATA)(µ2I + Q)−1 = (µ2I +
Q)−1(Q−ATA). Then the real variable pair (βk, γk) defined
by (15) is the minimum point of ∥r(k+1)∥ of the MRULT-I
iteration scheme (11), which means the values of (βk, γk)
defined by (15) are optimal in the real field R.
Proof. Let r̂(τ) = r(k) − τKM−1

1 r(k) and

ϕ(r̂(τ), ω) = ∥r̂∥22 − 2ω(r̂,KM−1
2 r̂) + ω2∥KM−1

2 r̂∥22.

Thus, we have

r̂(βk) = r(k+
1
2 ), ϕ(r̂(βk), γk) = ∥r(k+1)∥22,

and

∥r̂∥2 = ∥r(k)∥22 − 2τ(r(k),KM−1
1 r(k)) + τ2∥KM−1

1 r(k)∥22.

By Lemma 2.1 and Lemma 1 in [27], one may deduce the
following result

∂ϕ

∂(∥r̂∥2) =
∥r̂∥2

∥r̂∥2 − 2ω

∥r̂∥2 (r̂,KM−1
2 r̂) +

ω2

∥r̂∥2 ∥KM−1
2 r̂∥22 =

ϕ

∥r̂∥2 .

Denote ϕ̂(τ, ω) = ϕ(r̂(τ), ω), then the first-order partial
derivatives of ϕ̂(τ, ω) are as follows

∂ϕ̂

∂τ
=

∂ϕ

∂(∥r̂∥2)
d(∥r̂∥2)

dτ

=
2ϕ

∥r̂∥2
(
τ∥KM−1

1 r(k)∥22 − (r(k),KM−1
1 r(k))

)
,

∂ϕ̂

∂ω
= 2

(
ω∥KM−1

2 r̂∥22 − (r̂,KM−1
2 r̂)

)
.

It can be seen that the real number pair (βk, γk) defined
by (15) is the unique stationary point of the function ϕ̂.
Moreover, (βk, γk) is the minimum point of the function ϕ̂.
Denote

Φ1(τ) = τ∥KM−1
1 r(k)∥22 − (r(k),KM−1

1 r(k))

and

Φ2(τ, ω) = ω∥KM−1
2 r̂∥22 − (r̂,KM−1

2 r̂).

Then, the second-order partial derivatives of ϕ̂(τ, ω) are

∂2ϕ̂

∂τ2
= Φ1(τ)

∂

∂τ

(
2ϕ

∥r̂∥2

)
+

2ϕ

∥r̂∥2
∥KM−1

1 r(k)∥22,

∂2ϕ̂

∂τ∂ω
= Φ1(τ)

∂

∂ω

(
2ϕ

∥r̂∥2

)
,

∂2ϕ̂

∂ω∂τ
= 2

∂Φ2(τ, ω)

∂∥r̂∥2
d(∥r̂∥2)

dτ
= 2

Φ2(τ, ω)

∥r̂∥2
d(∥r̂∥2)

dτ
,

∂2ϕ̂

∂ω2
= 2∥KM−1

2 r̂∥22.

Keep in mind that Φ1(βk) = 0 and Φ2(βk, γk) = 0, then the
Hessian matrix of ϕ̂ at this stationary point (βk, γk) has the
form of ∥r(k+1)∥2

2∥KM−1
1 r(k)∥2

2

∥r(k+1
2
)∥2

2

0

0 2∥KM−1
2 r(k+

1
2 )∥22

 .

It is easy to see that the Hessian matrix is Hermitian positive
definite, which implies the stationary point (βk, γk) defined
by (15) is the unique minimum point of the function ϕ̂ . Up
to now, the proof has been completed.

Based on Theorem 2.1, we give the following theorem
about the relation of ∥r(k+1)∥ and ∥r(k)∥.

Theorem 2.2: For the augmented system (6), if the pa-
rameter matrix Q ∈ Rn×n is symmetric positive definite and
satisfies (Q−ATA)(µ2I+Q)−1 = (µ2I+Q)−1(Q−ATA),
then the residual norm of the MRULT-I iteration method
satisfies the following relation

∥r(k+1)∥2 ≤ ∥A∥2∥r(k)∥2, (17)

where

A =

(
0 0

GAT G

)
with G = −ATA(µ2I + Q)−1 + (Q − ATA)(µ2I +
Q)−1Q(µ2I +Q)−1.
Proof. From (12), the residual r(k+1) of the MRULT-I
method yields

r(k+1)

= r(k) − βkKM−1
1 r(k) − γkKM−1

2

(
r(k) − βkKM−1

1 r(k)
)

=
(
I − βkKM−1

1 − γkKM−1
2 + βkγkKM−1

2 KM−1
1

)
r(k)

= (I − γkKM−1
2 )(I − βkKM−1

1 )r(k),

which together with (βk, γk) being the minimum point of
the function ∥r(k+1)∥2 leads to

∥r(k+1)∥2 = ∥(I − γkKM−1
2 )(I − βkKM−1

1 )r(k)∥2
≤ ∥(I −KM−1

2 )(I −KM−1
1 )r(k)∥2

≤ ∥(I −KM−1
2 )(I −KM−1

1 )∥2∥r(k)∥2
= ∥N2M

−1
2 N1M

−1
1 ∥2∥r(k)∥2. (18)

The last equation is due to I − KM−1
2 = N2M

−1
2 and

I − KM−1
1 = N1M

−1
1 . Next, we analyze the structure

of the matrix N2M
−1
2 N1M

−1
1 . By employing algebraic

manipulations, we obtain

N2M
−1
2 N1M

−1
1

=

(
0 0
AT Q

)(
I A
0 µ2I +Q

)−1

×
(

0 −A
0 Q

)(
I 0

−AT µ2I +Q

)−1

=

(
0 0
AT Q

)(
I −A(µ2I +Q)−1

0 (µ2I +Q)−1

)
×
(

0 −A
0 Q

)(
I 0

(µ2I +Q)−1AT (µ2I +Q)−1

)
=

(
0 0
0 −ATA+ (Q−ATA)(µ2I +Q)−1Q

)
×
(

I 0
(µ2I +Q)−1AT (µ2I +Q)−1

)
=

(
0 0

GAT G

)
,
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where G = −ATA(µ2I + Q)−1 + (Q − ATA)(µ2I +
Q)−1Q(µ2I + Q)−1. It follows from the above proof that
the conclusion (17) holds.

In particular, we study the convergence of the MRULT-I
iteration method with Q = sI and Q = sI + ATA (s > 0)
in detail, respectively. To this end, the following lemma is
firstly presented.

Lemma 2.2: Let X = diag(x1, x2, · · · , xn) and Y =
diag(y1, y2, · · · , yn) be two real diagonal matrices, then∥∥∥∥( 0 0

XY X

)∥∥∥∥
2

= max
1≤i≤n

|xi|
√
1 + y2i .

Proof. The proof of this lemma is similar to that of Lemma
4.1 in [17], so we omit it here.

Theorem 2.3: For the augmented system (6), the MRULT-
I iteration method with Q = sI(s > 0) is convergent if the
following conditions

f1(s) = (1 + cos θ)s2 + 2s(µ2 cos θ − σ2
1)

+ µ2(µ2 cos θ − σ2
1) > 0

f2(s) = (1− cos θ)s2 − 2s(µ2 cos θ + σ2
n)

− µ2(µ2 cos θ + σ2
n) < 0

(19)

hold true, where tan θ = σ1.
Proof. Since the matrix Q = sI satisfies (Q−ATA)(µ2I +
Q)−1 = (µ2I +Q)−1(Q−ATA), it follows from Theorem
2.2 that

∥r(k+1)∥2 ≤
∥∥∥∥( 0 0

HAT H

)∥∥∥∥
2

∥r(k)∥2

with H = −ATA
µ2+s + s(sI−ATA)

(µ2+s)2 . The singular value decom-
position (SVD) of A is defined as

A = UΣV T , (20)

where U = [u1, u2, · · · , un], V = [v1, v2, · · · , vn] ∈ Rn×n

are orthogonal matrices and Σ = diag[σ1, σ2, · · · , σn] ∈
Rn×n has non-negative diagonal elements appearing in non-
increasing order such that σ1 ≥ σ2 ≥ · · ·σn ≥ 0. The num-
bers σi are the singular values of A. By (20), straightforward
computation reveals that

∥r(k+1)∥2

≤
∥∥∥∥( 0 0

HAT H

)∥∥∥∥
2

∥r(k)∥2

=

∥∥∥∥( U 0
0 V

)(
0 0

Λ̌ΣT Λ̌

)(
UT 0
0 V T

)∥∥∥∥
2

∥r(k)∥2

=

∥∥∥∥( 0 0
Λ̌ΣT Λ̌

)∥∥∥∥
2

∥r(k)∥2,

where Λ̌ = −ΣTΣ
µ2+s + s(sI−ΣTΣ)

(µ2+s)2 . Therefore, by making use
of Lemma 2.2, we can conduct the estimate

∥r(k+1)∥2

≤
∥∥∥∥( 0 0

Λ̌ΣT Λ̌

)∥∥∥∥
2

∥r(k)∥2

≤ max
1≤i≤n

{∣∣∣∣−σ2
i (µ

2 + s) + s(s− σ2
i )

(µ2 + s)2

∣∣∣∣√1 + σ2
i

}
∥r(k)∥2.

(21)

To make the MRULT-I iteration method with Q = sI
convergent, it is enough to have∣∣∣∣−σ2

i (µ
2 + s) + s(s− σ2

i )

(µ2 + s)2

∣∣∣∣2 (1 + σ2
i ) < 1 (22)

for all σi(1 ≤ i ≤ n). For notational simplicity we denote
by

ci =

∣∣∣∣−σ2
i (µ

2 + s) + s(s− σ2
i )

(µ2 + s)2

∣∣∣∣ .
If ci < cos θ and σ1 = tan θ hold for all 1 ≤ i ≤ n, then
c2i (1+σ2

i ) < cos2 θ(1+tan2 θ) = 1, which makes Inequality
(22) valid. Thus, we only solve the inequality ci < cos θ, i.e.,

− cos θ <
−σ2

i (µ
2 + s) + s(s− σ2

i )

(µ2 + s)2
< cos θ. (23)

Due to the fact that −σ2
i (µ

2+s)+s(s−σ2
i )

(µ2+s)2 =
−σ2

i (µ
2+2s)+s2

(µ2+s)2 is
a strictly monotone decreasing function with regard to σ2

i ,
Inequality (23) is equivalent to

−σ2
1(µ

2 + s) + s(s− σ2
1)

(µ2 + s)2
> − cos θ

and

−σ2
n(µ

2 + s) + s(s− σ2
n)

(µ2 + s)2
< cos θ.

Directly solving the above inequalities yields the sufficient
conditions (19), which guarantee the convergence of the
MRULT-I iteration method with Q = sI(s > 0).

Theorem 2.4: For the augmented system (6), the MRULT-
I iteration method with Q = sI+ATA(s > 0) is convergent
if the following conditions

f1(s) = (1 + cos θ)s2 + 2s(µ2 + σ2
1) cos θ

+ (µ2 + σ2
1)[cos θ(µ

2 + σ2
1)− σ2

1 ] > 0
f2(s) = (1− cos θ)s2 − 2s(µ2 + σ2

n) cos θ
− (µ2 + σ2

n)[cos θ(µ
2 + σ2

n) + σ2
n] < 0

(24)

hold true, where tan θ = σ1.
Proof. The matrix Q = sI+ATA satisfies (Q−ATA)(µ2I+
Q)−1 = (µ2I +Q)−1(Q−ATA), thus, from Theorem 2.2,
we have

∥r(k+1)∥2 ≤
∥∥∥∥( 0 0

WAT W

)∥∥∥∥
2

∥r(k)∥2, (25)

where W = −ATA[(µ2 + s)I + ATA]−1 + s[(µ2 + s)I +
ATA]−1(sI+ATA)[(µ2+s)I+ATA]−1. By means of (20),
concrete computations give

W = V ΛV T

and

WAT = V ΛΣTUT ,

where Λ = −ΣTΣ
[
(µ2 + s)I +ΣTΣ

]−1
+ s

[
(µ2 + s)I+

ΣTΣ
]−1

(sI + ΣTΣ)
[
(µ2 + s)I +ΣTΣ

]−1
is a diagonal

matrix. Submitting the above equations into (25) yields

∥r(k+1)∥2

≤
∥∥∥∥( 0 0

V ΛΣTUT V ΛV T

)∥∥∥∥
2

∥r(k)∥2

=

∥∥∥∥( U 0
0 V

)(
0 0

ΛΣT Λ

)(
UT 0
0 V T

)∥∥∥∥
2

∥r(k)∥2

=

∥∥∥∥( 0 0
ΛΣT Λ

)∥∥∥∥
2

∥r(k)∥2.
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Taking into account that ΛΣT and Λ are both diagonal
matrices and using Lemma 2.2, we infer that

∥r(k+1)∥2

≤ max
1≤i≤n

{∣∣∣∣ (s+ σ2
i )(s− σ2

i )− µ2σ2
i

(µ2 + s+ σ2
i )

2

∣∣∣∣√1 + σ2
i

}
∥r(k)∥2.

The MRULT-I iteration method with Q = sI + ATA is
convergent if and only if∣∣∣∣ (s+ σ2

i )(s− σ2
i )− µ2σ2

i

(µ2 + s+ σ2
i )

2

∣∣∣∣2 (1 + σ2
i ) < 1 (26)

for all σi(1 ≤ i ≤ n). Let us denote

ĉi =

∣∣∣∣ (s+ σ2
i )(s− σ2

i )− µ2σ2
i

(µ2 + s+ σ2
i )

2

∣∣∣∣ .
Similar to the proof of Theorem 2.3, if ĉi < cos θ and σ1 =
tan θ hold for all 1 ≤ i ≤ n, then ĉ2i (1 + σ2

i ) < cos2 θ(1 +
tan2 θ) = 1, which is exactly (26). Moreover, ĉi < cos θ is
equivalent to

− cos θ <
(s+ σ2

i )(s− σ2
i )− µ2σ2

i

(µ2 + s+ σ2
i )

2
< cos θ. (27)

It is not difficult to verify that (s+σ2
i )(s−σ2

i )−µ2σ2
i

(µ2+s+σ2
i
)2

=
s2−σ2

i (µ
2+σ2

i )

(µ2+s+σ2
i
)2

is a strictly monotone decreasing function with
regard to σ2

i , so Inequality (27) holds if and only if

(s+ σ2
1)(s− σ2

1)− µ2σ2
1

(µ2 + s+ σ2
1)

2
> − cos θ

and

(s+ σ2
n)(s− σ2

n)− µ2σ2
n

(µ2 + s+ σ2
n)

2
< cos θ.

The sufficient conditions (24) for the convergence of the
MRULT-I iteration method with Q = sI + ATA follow by
solving the above inequalities.

III. THE SECOND TYPE OF MRULT METHOD AND ITS
CONVERGENCE ANALYSIS

In this section, we discuss the second type of the MRULT
(MRULT-II) iteration method for solving the augmented
systems (6) by modifying the ULT-II iteration scheme (8).
Denote

K1 =

(
I 0

−AT Q

)
, L1 =

(
0 −A
0 Q− µ2I

)
,

then an equivalent form of the ULT-II iteration scheme (8)
is as follows{

x(k+ 1
2 ) = x(k) +K−1

1 r(k)

x(k+1) = x(k+ 1
2 ) +M−1

2 r(k+
1
2 )

, (28)

where r(k) and r(k+
1
2 ) are defined as in Section II. Using

the similar acceleration techniques of [27], [26], we propose
the MRULT-II method incorporating two positive parameters
β̄k and γ̄k to solve the augmented systems (6), which yields
the following iteration scheme{

x(k+ 1
2 ) = x(k) + β̄kK

−1
1 r(k)

x(k+1) = x(k+ 1
2 ) + γ̄kM

−1
2 r(k+

1
2 )

. (29)

The residual form of the iteration scheme (29) can be written
as {

r(k+
1
2 ) = r(k) − β̄kKK−1

1 r(k)

r(k+1) = r(k+
1
2 ) − γ̄kKM−1

2 r(k+
1
2 )

. (30)

By virtue of the same technique of the MRULT-I iteration
method, the parameters β̄k and γ̄k in the MRULT-II iteration
method are determined by minimizing the residual norms
∥r(k+ 1

2 )∥ and ∥r(k+1)∥, respectively. As a matter of fact, by
direct computation, it has

∥r(k+
1
2
)∥22

= (r(k+
1
2
), r(k+

1
2
))

= (r(k) − β̄kKK−1
1 r(k), r(k) − β̄kKK−1

1 r(k))

= (r(k), r(k))− (r(k), β̄kKK−1
1 r(k))− (β̄kKK−1

1 r(k), r(k))

+β̄2
k∥KK−1

1 r(k)∥22
= ∥r(k)∥22 − 2β̄k(r

(k),KK−1
1 r(k)) + β̄2

k∥KK−1
1 r(k)∥22

and

∥r(k+1)∥22
= (r(k+1), r(k+1))

= (r(k+
1
2
) − γ̄kKM−1

2 r(k+
1
2
), r(k+

1
2
) − γ̄kKM−1

2 r(k+
1
2
))

= (r(k+
1
2
), r(k+

1
2
))− (r(k+

1
2
), γ̄kKM−1

2 r(k+
1
2
))

−(γ̄kKM−1
2 r(k+

1
2
), r(k+

1
2
)) + γ̄2

k∥KM−1
2 r(k+

1
2
)∥22

= ∥r(k+
1
2
)∥22 − 2γ̄k(r

(k+ 1
2
),KM−1

2 r(k+
1
2
))

+γ̄2
k∥KM−1

2 r(k+
1
2
)∥22.

As discussed in Section II, one then obtains

β̄k =
(r(k),KK−1

1 r(k))

∥KK−1
1 r(k)∥22

, γ̄k =
(r(k+

1
2
),KM−1

2 r(k+
1
2
))

∥KM−1
2 r(k+

1
2
)∥22

. (31)

Therefore, we have the following specific description of
the MRULT-II iteration method.

Algorithm 3.1:
1. Let β̄, γ̄ > 0, and given an initial value f (0) and
e(0) = g − Af (0) with g being the available vector. Given
τ > 0 and M is the maximum prescribed number of outer
iterations,
2. r(0) = b − Kx(0), and divide r(0) into (r

(0)
1 ; r

(0)
2 ) with

r
(0)
1 , r

(0)
2 ∈ Rn;

3. For k = 0, 1, 2, · · · , until ∥r(k)∥2

∥r(0)∥2
> τ or k < M ,

4. compute t1 = AT r
(k)
1 + r

(k)
2 ;

5. solve Qt2 = t1;
6. compute t3 = r

(k)
1 +At2 and t4 = −AT r

(k)
1 + µ2t2;

7. compute the value of β̄k: β̄k =
(r

(k)
1 )T t3+(r

(k)
2 )T t4

∥t3∥2
2+∥t4∥2

2
;

8. compute e(k+
1
2 ) = e(k)+β̄kr

(k)
1 and f (k+ 1

2 ) = f (k)+β̄kt2;
9. compute r

(k+ 1
2 )

1 = r
(k)
1 − β̄kt3 and r

(k+ 1
2 )

2 = r
(k)
2 − β̄kt4;

10. solve (µ2I +Q)t̄2 = r
(k+ 1

2 )
2 ;

11. compute t̄3 = r
(k+ 1

2 )
1 and t̄4 = −AT r

(k)
1 + (µ2I +

ATA)t̄2;

12. compute the value of γ̄k: γ̄k =
(r

(k+1
2
)

1 )T t̄3+(r
(k+1

2
)

2 )T t̄4
∥t̄3∥2

2+∥t̄4∥2
2

;

13. compute e(k+1) = e(k+
1
2 ) + γ̄k(r

(k+ 1
2 )

1 − At̄2) and
f (k+1) = f (k+ 1

2 ) + γ̄k t̄2;
14. compute r

(k+1)
1 = r

(k+ 1
2 )

1 − γ̄k t̄3 and r
(k+1)
2 = r

(k+ 1
2 )

2 −
γ̄k t̄4;
15. end for
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Remark 3.1: If β̄k = γ̄k = 1, the MRULT-II iteration
method automatically reduces to the ULT-II one, which
means that the convergent rate of the MRULT-II iteration
method is at least not slower than that of the ULT-II one.

By making using of Lemma 2.1 and the similar proof
of Theorem 2.1 with only technical modifications, we can
demonstrate that ∥r(k+1)∥ of the MRULT-II iteration scheme
(29) can attain its minimum at the point (β̄k, γ̄k) defined by
(31).

Theorem 3.1: Let symmetric positive definite Q ∈ Rn×n

satisfy (Q−ATA)(µ2I+Q)−1 = (µ2I+Q)−1(Q−ATA).
Then the point (β̄k, γ̄k) defined by (31) is the minimum point
of ∥r(k+1)∥ of the MRULT-II iteration scheme (29), which
reveals the values of (β̄k, γ̄k) defined by (31) are optimal in
the real field R.

What follows investigates the convergence properties of
the proposed method. In particular, based on Theorem
3.1, we derive the following convergence properties of the
MRULT-II iteration method with Q = sI and Q = sI+ATA
(s > 0), respectively.

Theorem 3.2: For the augmented system (6), if the pa-
rameter matrix Q ∈ Rn×n is symmetric positive definite and
satisfies (Q−ATA)(µ2I+Q)−1 = (µ2I+Q)−1(Q−ATA),
then the residual norm of the MRULT-II iteration method
satisfies the following relation

∥r(k+1)∥2 ≤ ∥Ā∥2∥r(k)∥2, (32)

where

Ā =

(
0 0

GAT G

)
with G = −ATAQ−1 + (Q − ATA)(µ2I + Q)−1(Q −
µ2I)Q−1.
Proof. Since (β̄k, γ̄k) is the minimum point of the function
∥r(k+1)∥2 and the equations I − KM−1

2 = N2M
−1
2 and

I −KK−1
1 = L1K

−1
1 hold true, it immediately leads to the

following result

∥r(k+1)∥2
= ∥(I − γ̄kKM−1

2 )(I − β̄kKK−1
1 )r(k)∥2

≤ ∥(I −KM−1
2 )(I −KK−1

1 )r(k)∥2
≤ ∥(I −KM−1

2 )(I −KK−1
1 )∥2∥r(k)∥2

= ∥N2M
−1
2 L1K

−1
1 ∥2∥r(k)∥2. (33)

Simple matrix calculations result in

N2M
−1
2 N1K

−1
1

=

(
0 0
AT Q

)(
I A
0 µ2I +Q

)−1

×
(

0 −A
0 Q− µ2I

)(
I 0

−AT Q

)−1

=

(
0 0
AT Q

)(
I −A(µ2I +Q)−1

0 (µ2I +Q)−1

)
×
(

0 −A
0 Q− µ2I

)(
I 0

Q−1AT Q−1

)
=

(
0 0
0 −ATA+ (Q−ATA)(µ2I +Q)−1(Q− µ2I)

)
×
(

I 0
Q−1AT Q−1

)
=

(
0 0

GAT G

)
,

where G = −ATAQ−1 + (Q − ATA)(µ2I + Q)−1(Q −
µ2I)Q−1. We then immediately get the conclusion (32).

Theorem 3.3: For the augmented system (6), the MRULT-
II iteration method with Q = sI(s > 0) is convergent if the
parameter s satisfies

µ2(1− cos θ) + 2σ2
1

1 + cos θ
< s <

µ2(1 + cos θ) + 2σ2
n

1− cos θ
(34)

as µ2 >
σ2
1−σ2

n−cos θ(σ2
1+σ2

n)
2 cos θ , where tan θ = σ1.

Proof. By Theorem 3.2, it has

∥r(k+1)∥2 ≤
∥∥∥∥( 0 0

WAT W

)∥∥∥∥
2

∥r(k)∥2 (35)

with W = −ATA
s + (s−µ2)(sI−ATA)

s(µ2+s) . According to (20), we
have

W = V Λ̄V T

and

WAT = V Λ̄ΣTUT ,

where Λ̄ = −(µ2+s)ΣTΣ+(s−µ2)(sI−ΣTΣ)
s(µ2+s) is a diagonal ma-

trix. Taking the above equations into (35) leads to

∥r(k+1)∥2

≤
∥∥∥∥( 0 0

V Λ̄ΣTUT V Λ̄V T

)∥∥∥∥
2

∥r(k)∥2

=

∥∥∥∥( U 0
0 V

)(
0 0

Λ̄ΣT Λ̄

)(
UT 0
0 V T

)∥∥∥∥
2

∥r(k)∥2

=

∥∥∥∥( 0 0
Λ̄ΣT Λ̄

)∥∥∥∥
2

∥r(k)∥2,

which gives

∥r(k+1)∥2 ≤ max
1≤i≤n

{∣∣∣∣−2σ2
i + s− µ2

µ2 + s

∣∣∣∣√1 + σ2
i

}
∥r(k)∥2

in view of Lemma 2.2. It is well known that the MRULT-II
iteration method with Q = sI is convergent if and only if∣∣∣∣−2σ2

i + s− µ2

µ2 + s

∣∣∣∣2 (1 + σ2
i ) < 1 (36)

for all σi(1 ≤ i ≤ n). Denote by

c̄i =

∣∣∣∣−2σ2
i + s− µ2

µ2 + s

∣∣∣∣ .
With a quite similar strategy utilized in Theorem 2.3, if c̄i <
cos θ and σ1 = tan θ hold for all 1 ≤ i ≤ n, then c̄2i (1 +
σ2
i ) < cos2 θ(1+tan2 θ) = 1, i.e., Inequality (36) holds true.

Solving the inequality c̄i < cos θ is working out

− cos θ <
−2σ2

i + s− µ2

µ2 + s
< cos θ. (37)

It then follows from the decreasing property of −2σ2
i+s−µ2

µ2+s

with regard to σ2
i that Inequality (37) is equivalent to

−2σ2
1 + s− µ2

µ2 + s
> − cos θ and

−2σ2
n + s− µ2

µ2 + s
< cos θ,

from which one may deduce the sufficient condition (34)
for the convergence of the MRULT-I iteration method with
Q = sI .
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Theorem 3.4: For the augmented system (6), the MRULT-
II iteration method with Q = sI+ATA(s > 0) is convergent
if the following conditions

f1(s) = (1 + cos θ)s2 + [(cos θ − 1)µ2 + 2σ2
1 cos θ]s

+ σ2
1(µ

2 + σ2
1)(cos θ − 1) > 0

f2(s) = (1− cos θ)s2 − [(cos θ + 1)µ2 + 2σ2
n cos θ]s

− σ2
n(µ

2 + σ2
n)(cos θ + 1) < 0

(38)

hold true, where tan θ = σ1.
Proof. By Theorem 3.2 and the SVD of A in (20), we get

∥r(k+1)∥2

≤
∥∥∥∥( 0 0

V Λ̃ΣTUT V Λ̃V T

)∥∥∥∥
2

∥r(k)∥2

=

∥∥∥∥( U 0
0 V

)(
0 0

Λ̃ΣT Λ̃

)(
UT 0
0 V T

)∥∥∥∥
2

∥r(k)∥2

=

∥∥∥∥( 0 0

Λ̃ΣT Λ̃

)∥∥∥∥
2

∥r(k)∥2,

where Λ̃ = −ΣTΣ(sI + ΣTΣ)−1 + s[(µ2 + s)I +
ΣTΣ]−1[(s−µ2)I+ΣTΣ](sI+ΣTΣ)−1. Based on Lemma
2.2, one has

∥r(k+1)∥2

≤ max
1≤i≤n

{∣∣∣∣−(µ2 + σ2
i )σ

2
i + s(s− µ2)

(µ2 + s+ σ2
i )(s+ σ2

i )

∣∣∣∣√1 + σ2
i

}
∥r(k)∥2.

To guarantee the MRULT-II iteration method with Q =
sI +ATA convergent is to make∣∣∣∣−(µ2 + σ2

i )σ
2
i + s(s− µ2)

(µ2 + s+ σ2
i )(s+ σ2

i )

∣∣∣∣2 (1 + σ2
i ) < 1 (39)

for all σi(1 ≤ i ≤ n). Denote by

c̃i =

∣∣∣∣−(µ2 + σ2
i )σ

2
i + s(s− µ2)

(µ2 + s+ σ2
i )(s+ σ2

i )

∣∣∣∣ .
By making use of the technique applied in Theorem 2.3,
if c̃i < cos θ and σ1 = tan θ hold for all 1 ≤ i ≤ n,
then c̃2i (1 + σ2

i ) < cos2 θ(1 + tan2 θ) = 1. The inequality
c̃i < cos θ can be equivalently transformed into the following
inequality

− cos θ <
−(µ2 + σ2

i )σ
2
i + s(s− µ2)

(µ2 + s+ σ2
i )(s+ σ2

i )
< cos θ. (40)

Taking a derivative of −(µ2+σ2
i )σ

2
i+s(s−µ2)

(µ2+s+σ2
i
)(s+σ2

i
)

with respect to σ2
i

reveals that it is strictly monotone decreasing about σ2
i , thus

we can rewrite Inequality (40) into the following equivalent
form

−(µ2 + σ2
1)σ

2
1 + s(s− µ2)

(µ2 + s+ σ2
1)(s+ σ2

1)
> − cos θ

and

−(µ2 + σ2
n)σ

2
n + s(s− µ2)

(µ2 + s+ σ2
n)(s+ σ2

n)
< cos θ.

The conclusions (38) follow by directly solving the above
inequalities.

IV. NUMERICAL EXAMPLES

In this section, two examples arising from a Fredholm
integral equation of the first kind and image restoration
are presented to examine the effectiveness of the proposed
methods. The numerical results of the MRULT-type methods
including the number of iteration steps (denoted by ‘IT’) and
the total computing times in seconds (denoted by ‘CPU’)
are compared with those of the special HSS (SHSS), new
special HSS (NSHSS), restricted version of the generalized
HSS (RGHSS), special GHSS (SGHSS) and the ULT-type
ones mentioned in Section I. The versions of the MRULT-
I iteration method with the parameter matrices Q = sI
and Q = sI + ATA are denoted by MRULT− IQ1 and
MRULT− IQ2 ones, respectively, and the MRULT-II iter-
ation method with the parameter matrices Q = sI and
Q = sI + ATA are abbreviated as MRULT− IIQ1 and
MRULT− IIQ2

ones, respectively. All experiments are im-
plemented in MATLAB (version R2016b) on a personal com-
puter with Intel (R) Pentium (R) CPU G3240T 2.870GHz,
16.0 GB memory and Windows 10 system.

The error vector e in g has normally distributed entries
with zero mean and unit variance and is scaled so that the
contaminated g, defined by (2), has a specified noise level

ϵ = ∥e∥/∥ĝ∥,

where the error-free right-hand side ĝ is defined as in (3).
The initial approximate solution f (0) = 0 is used for all the
iterative methods in Example 4.1, while for image restoration
problems in Example 4.2 the initial approximate solution
f (0) = g is adopted. The parameter ϵ is set to 0.001 in
two examples.

In examples, the optimal values of unknown parameters for
the SHSS, NSHSS, RGHSS, SGHSS and ULT-type methods
have been presented in [19], [6], [1], [2], [8], and the optimal
parameters of the MRULT− I and MRULT− II methods
are chosen as the experimentally found optimal ones which
lead to the least number of iteration steps. The optimal value
of the regularization parameter has been investigated [12],
[20], [9]. In our computation, the GCV scheme is adopted
to determine a suitable value for regularization parameter µ
[9]. The best regularization parameter value µ minimizes the
following GCV functional

G(µ) =
∥A(ATA+ µ2I)−1AT g − g∥22

(trace(I −A(ATA+ µ2I)−1AT ))2
.

A quantity, the relative error (RES), is commonly applied
to measure the accuracy of these methods for ill-posed
problems and image restoration. The proposed quantity is
defined as follows:

RES =
∥fnumerical − fexact∥2

∥fexact∥2
,

where fnumerical and fexact are the numerical solutions (or
restored images) and exact solutions (or the original images),
respectively. In image restoration problem, a smaller RES-
value usually implies that the restoration is of higher quality.
Somehow this may be not consistent with visual judgment.
Therefore, the restored images also are displayed in the
following examples.

Example 4.1: (Example from Hansen Tools [13]) Consid-
er the test example gravity(500,1) from Hansen Tools
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TABLE I: Numerical results of methods of Example 4.1 with µ = 0.0068.
Method Parameters IT CPU RES

SHSS α = 0.9543 500 0.2322 0.8130

NSHSS α = 4.5749e− 6 500 0.2347 0.9554

RGHSS (α, β) = (0.001, 0.001) 19 0.0108 0.0010

SGHSS (ω, τ) = (0.6, 1.0274e− 3) 217 0.1078 0.0010

ULT− IQ1 s = 0.4172 500 1.3257 4.3841

ULT− IQ2 s = 0.8 500 0.0972 0.0221

ULT− IIQ1 s = 0.4172 500 0.4823 4.7534

ULT− IIQ2 s = 0.0437 3 0.0159 0.0187

MRULT− IQ1 s = 1.9 121 0.2770 0.0233

MRULT− IQ2
s = 0.01 2 0.0065 0.0158

MRULT− IIQ1 s = 1.6 121 0.2901 0.0240

MRULT− IQ2 s = 0.01 2 0.0071 0.0147

[13]. The associated perturbed data vector g is obtained by
using Matlab code g = ĝ + 0.001 × rand(size(ĝ)) in the
test.

We apply Algorithms 2.1 and 3.1 with Q = sI and
Q = sI + ATA to Example 4.1 and compare the IT, CPU
times and RES of the MRULT-type methods with those of the
SHSS, NSHSS, RGHSS, SGHSS and ULT-type ones. For the
test problem, the regularization parameter µ determined by
GCV is 0.0068. All iteration processes are terminated once
the current residual satisfies ∥r(k)∥2/∥r(0)∥2 < 10−5 or the
number of iterations exceeds the largest prescribed iteration
step M = 500, where r(k) = b−Kx(k) is the residual at the
kth iteration. In our implementations, the linear sub-systems
are solved by the sparse Cholesky factorization when the
coefficient matrix is symmetric positive definite.

The parameters, IT, CPU times and RES of the tested
iteration methods are listed in Table I, and the exact and
numerical solutions are draw in Figure 1 for n = 500. From
Table 1, it can be seen that that the MRULT-type iteration
methods can successfully compute approximate solution of
high quality. Moreover, the MRULT-type iteration methods
can achieve smaller relative error with least IT and CPU
times compared with the SHSS and NSHSS ones. Although
the relative errors of the MRULT-type iteration methods
are bigger than that of the RGHSS and SGHSS ones, the
MRULT− IQ2 and MRULT− IIQ2 iteration methods need
less iteration steps. Besides, from these numerical results,
we can observe that the MRULT-I iteration methods with
Q = sI and Q = sI + ATA are superior to the ULT-I
ones with Q = sI and Q = sI + ATA, respectively, and
the conclusion also holds true for the MRULT-II iteration
methods. In order to show more clearly that the convergence
rates of the MRULT-type methods are faster than that of
the ULT-type ones, we draw the plots of their relative errors
with respect to iterations k in Figure 2. From Figure 2, it can
be seen that the MRULT-type methods further improve the
convergence rates of the ULT-type ones. Moreover, the plots
of relative errors with respect to iterations k are also drawn
in Figure 3 to compare the convergence behaviour of the
MRULT-I and MRULT-II methods with different parameter
matrix Q. And Figure 3 indicates that the MRULT-I and
MRULT-II methods are comparable. As these results, our
proposed algorithms surpass some other ones and are more
effective for solving the ill-posed problems.

TABLE II: Numerical results of methods of Example 4.2 with µ = 0.0042.
Method Parameters IT CPU RES

SHSS α = 0.3491 500 1.6402 0.0717

NSHSS α = 1.9858e− 3 500 2.9766 0.1965

RGHSS (α, β) = (0.0361, 0.001) 8 0.0267 0.0548

SGHSS (ω, τ) = (0.6, 2.0622e− 3) 9 0.0302 0.0473

ULT− IQ1 s = 1.02 500 1.7532 0.0851

ULT− IQ2 s = 12 500 2.0577 0.1953

ULT− IIQ1 s = 1.0179 500 1.2897 0.0851

ULT− IIQ2 s = 0.1338 423 1.7649 0.0565

MRULT− IQ1 s = 0.99 366 1.6182 0.0568

MRULT− IQ2
s = 0.001 6 2.0308 0.0544

MRULT− IIQ1 s = 0.98 476 0.0427 0.0569

MRULT− IIQ2 s = 0.001 6 0.0429 0.0543

Example 4.2: (Image restoration) In this example, we
let the exact image be the ‘brain’ image from MATLAB.
It is represented by an array of 128 × 128 pixels and
shown on the left-hand side of Figure 4. Choose PSF =
psfDefocus([7, 7], 3) in [15] to blur the example, and a
‘noisy’ available vector g is generated by using MATLAB
code g = ĝ + 0.001× rand(size(ĝ)). The PSF and blurred
image in the example are shown on the middle side and
the right-hand side of Figure 4, respectively. The purpose
of the experiment is to illustrate that the MRULT-type
iterative methods perform better than the SHSS, NSHSS,
RGHSS, SGHSS and ULT-type ones for image restoration.
Furthermore, the relative error of the blurred image is 0.2772.

In this test, we apply the periodic BCs to construct the
blurring matrix A. Here the matrix A is block circulan-
t with circulant blocks, which can perform matrix-vector
multiplications and provide the spectral factorization of the
blurring matrix A via two-dimensional fast Fourier trans-
formations (FFTs). Therefore the regularization parameter µ
computed by the GCV method and the optimal values of
the unknown parameters for all iterative methods involving
the singular values of A can be easily obtained via FFTs,
see [15] for more details. Moreover, we can also use the
FFTs to solve the linear systems with the symmetric positive
definite coefficient matrices in Algorithms 2.1 and 3.1. All
computations for the tested iteration methods are terminated
once the current residual satisfies ∥r(k)∥2/∥r(0)∥2 < 10−4

or the number of iterations exceeds the largest prescribed
iteration step M = 600, where r(k) = b − Kx(k) is the
residual at the kth iteration.

IT, CPU times and RES for the tested methods and the
restored images by the twelve iterative methods are exhibited
in Table II and in Figure 5, respectively. From Table II,
we can see that the MRULT− IQ2 and MRULT− IIQ2

iteration methods just need 6 iterations and less CPU as they
are terminated. Moreover, the restorations with the MRULT-
type methods are of higher quality, because the relative errors
of the MRULT-type methods are smaller than some others.
Figure 5 also demonstrates the higher visual quality of the
restored images with the MRULT-type methods. As a whole,
the proposed methods in this paper perform better than some
tested ones and are effective for solving image restoration
problems.
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Fig. 1: Example 4.1-gravity(500, 1) test case: the exact solution and its numerical solution.
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Fig. 2: Example 4.1-gravity(500, 1) test case: the relative error versus iteration k for tested iterative methods.
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Fig. 3: Example 4.1-gravity(500, 1) test case: the relative error versus iteration k for tested iterative methods.

(a) True Image (b) PSF (c) blurred noisy image

Fig. 4: True image, PSF and blurred image of Example 4.2.

V. CONCLUSION

Inspired by [27], this paper puts forward two types of
non-stationary upper and lower triangular iteration methods
called the minimize residual ULT (MRULT) ones to give
the approximate solution of for ill-posed inverse problems.
By introducing the control parameters into the ULT-I and
ULT-II splitting iteration methods, we establish the iterative
sequences (11) and (29) to accelerate the convergence rates
of the ULT-I and ULT-II ones, respectively. Two parameters
involved in the MRULT methods are adopted by minimizing
the residual norms at each step of the MRULT ones. And
when the parameters are adopted as specific values, the
MRULT-I and MRULT-II methods reduce to the ULT-I and
ULT-II ones, respectively. Thus, the convergent rates of
the MRULT methods are at least not slower than those of
the ULT ones. Moreover, we investigate analytically the
convergence properties of the MRULT methods. And the
presented numerical examples verify that our methods are
superior to some existing ones and effective for solving ill-
posed problems.
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