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Abstract—A trajectory tracking control system design of
mobile robot based on poles domination approach is presented.
A two-wheeled robot is used as a study case in deriving the
method. Trajectory tracking problem of the robot is formulated
as a stabilization problem of the robot posture error dynamics.
A state feedback control system is applied in stabilizing the
posture error dynamics. The state feedback control law is
designed by approximating the posture error dynamics as a
third order linear system. A control gain matrix is obtained
through factorizing the closed loop system characteristic into
a first and a second order systems. Elements of the control
matrix are determined by defining the desired closed loop
system characteristic, i.e: time constant, system damping, and
natural frequency. Domination of the first order system part
and the second order system part in the closed loop system
are evaluated through computer simulations. The results show
that domination of the second order system part resulted in
better tracking performance than domination of the first order
system part. This presented method offers a simple technique
for designing a mobile-robot trajectory tracking system.

Index Terms—Autonomous mobile robot, two-wheeled robot,
trajectory tracking control, control design, poles domination.

I. INTRODUCTION

Autonomous mobile robot (AMR) is one of the most
interesting research topics in the last three decades. The
AMR is a mobile robot that is able to move autonomously
from one location to another location. The AMR is equipped
with a trajectory tracking control system (TTCS) that acts as
a driver to steer the robot. The TTCS integrates a navigation
system and a control system. The navigation system is to
determine current positions and orientation of the robot. The
position and orientation of the robot are known as the robot
posture. The current posture robot is compared to the desired
posture, and the different is known as the posture error. The
control system is applied to minimize the posture error such
that the robot posture approaches to the desired posture.

Mobile robots have several types and include ground
mobile robot, aerial mobile robot, water-surface mobile
robot, and underwater mobile robot. A study on developing
autonomous ground mobile robot was firstly reported by
Kanayama et al. in [1]. They developed an autonomous
four-wheeled robot. The robot has two active wheels and
two passive wheels. A TTCS was developed to make the
robot move autonomously. The TTCS was designed using
the Lyapunov-base control method based. The experimental
results show that the robot was able to move on a desired
route to reach a destination. Since then, several studies on
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developing autonomous four-wheeled robot were presented
by applying different control methods, for examples: back-
stepping control [2], [3], Lyapunov direct’s method [4], [5],
sliding mode control [6], adaptive control [7], and particle
swarm optimization [8].

Another interesting ground mobile robot is a two-wheeled
robots (TWR). The TWR is a ground mobile robot where
the robot body is supported by two active wheels only. The
wheels are driven by two independent high-torque electric
motor. Utilizing two wheels only makes maneuverability of
the TWR higher than the four wheeled robot. However, the
TWR is statically unstable due to the two wheels usage.
Thanks to the active stabilizing system for solving the TWR
instability problem. The active stabilization system is a state
feedback control system for actively stabilizing the TWR.
The TWR is very potential in developing autonomous vehicle
with high maneuverability.

An autonomous TWR was firstly presented in [9]. The
TWR was able to move autonomously on a desired straight
line path from indoor to outdoor as reported in the ex-
perimental results. The control system was designed using
the optimal control method. The control system consisted
of two control loops: active stabilization (balancing) control
loop and trajectory tracking control loop. Both control loops
accommodated three control tasks: balancing and speed con-
trol, steering control, and straight line tracking control. The
experimental test results showed that coupling between the
both control loops is low and neglect-able for small angular
velocity of heading motion. The other studies on autonomous
two wheel robot have also been presented by applying
different control methods. A development of autonomous
TWR by applying partial states feedback linearization control
was presented in [10]. Adapative control scheme was studied
to overcome parameter uncertainties in autonomous TWR,
for examples: adaptive backstepping control [11], adaptive
sliding mode control [12], and neural networks [13].

An observation showed that the presented autonomous
TWRs were designed to track a certain set of desired position
or velocities, but not an arbitrary trajectory in an earth-
fixed coordinate system [14]. A certain set data of desired
position or velocities have to be defined before operating the
autonomous TWR. It is quite practical in real application.
Defining the desired trajectory in earth-fixed coordinate
system is more practically as it is can be integrated with
modern navigation system, for example: global positioning
system (GPS). Yue et al. presented an autonomous TWR
that is able to track an arbritrary trajectory in earth-fixed
coordinate system [14]. Model predictive control (MPC) was
applied in designing TTCS of the autonomous TWR. Another
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Fig. 1. TWR coordinate systems.

study on TWR tracking control system in a earth-fixed frame
coordinate system by has also been reported in [15], where
the TTCS was designed using optimal control method.

This paper presents a design of TTCS for autonomous
TWR based on the system poles domination. Goal of the
study is to obtain a simple controller that is implementable
in a low cost microcontroller. The TWR is assumed to be
stabilized where the TWR stabilization system can adopt,
for examples [16]–[19]. Moreover, coupling between control
loops of the stabilization system and the TTCS is neglected.
Presentation of the paper is organized as follows. Section I
describes introduction, literature review, and motivation of
the work. Section II presents the derivation of trajectory
tracking control problem as a stabilization problem of posture
error dynamics. Section III described the TTCS design
based on the system pole domination. Section IV provides
simulation results of applying the designed TTCS and the
performance analysis. Section V discusses comparison of
the locally asymptotically stable trajectory tracking system
and the globally asymptotically stable trajectory tracking
system. Finally, conclusion is presented in Section VI. This
paper is an extended work of [20] by providing more detail
explanation of the method, more simulation results, and
performance comparison of the locally asymptotic stable
(LAS) and the globally asymptotically stable (GAS) trajec-
tory tracking control systems.

II. TRAJECTORY TRACKING PROBLEM

Two units of two-wheeled robot (TWR) on a planar space
are shown in Figure 1. Both robots are named the TWR A
and the TWR B. Trajectory of the TWR B is defined as the
reference trajectory for the TWR A such that the TWR A is
desired to track the TWR B movement.

Three coordinate systems are defined to describe position
and orientation of both robots as shown in Figure 1. The three
coordinate systems are the inertial coordinate system (xIyI ),
the TWR A body coordinate system (xAyA), and the TWR
B body coordinate system (xByB). The inertial coordinate
system is a fixed frame coordinate system where the origin
is located at a defined point. Both TWR A and TWR B body
coordinate systems is sticking on the robot body and move

along with the robot movements. Origin of the robot body
coordinate system is usually located at the center mass of
the robot. The three coordinate systems are used to express
position and orientation of the robots. The robot position
describes location of the robot with respect to a reference,
while the robot orientation describes the robot heading angle
with respect to the reference. The inertial coordinate system
as a fixed frame coordinate system is commonly used as
the reference for determining the position and orientation.
Position and orientation of the robot is also known as the
robot posture.

Let both TWRs are moving on the planar space. The TWR
A moves with linear velocity ua and angular velocity ra,
while the TWR B moves linear velocity ub and angular
velocity rb. The TWR velocities are expressed in the TWR
body coordinate system, where the linear velocity is inline
to the x-axis and the angular velocity axis is inline to the z-
axis as shown in the Figure 1. The TWR A velocities can be
expressed into the inertial coordinate system by the following
relation:

ẋa = ua cosψa
ẏa = ua sinψa
ψ̇a = ra.

(1)

Expressing the TWR B velocities in the inertial coordinate
system is given as follows:

ẋb = ub cosψb
ẏb = ub sinψb
ψ̇b = rb.

(2)

Based on the Figure 1, postures of the TWR A and TWR
B at an instant time is defined with respect to the inertial
coordinate system as follows:

ξa =

 xa
ya
ψa

 and ξb =

 xb
yb
ψb

 , (3)

where ξa is the posture of TWR A, xa and ya is the position
of TWR A, ψa is the heading angle of TWR A, ξb is the
posture of TWR B, xb and yb is the position of TWR B, and
ψb is the heading angle of TWR B.

The TWR A is tracking the TWR B trajectory if the TWR
A posture approaches the TWR B posture. Deviation of the
TWR A posture with respect to the TWR B posture is called
the posture error and defined as follows:

ξe = ξb − ξa =

 xe
ye
ψe

 =

 xb − xa
yb − ya
ψb − ψa

 , (4)

where ξe is the posture error of TWR A with respect to the
TWR B, xe and ye are the position deviation of TWR A from
the TWR B position, and ψe is the heading angle deviation
of TWR A with respect to the TWR B heading angle. The
posture error is desired to be minimum such the TWR A
posture approaches the TWR B posture. Zero posture error
is an ideal condition where the TWR A posture is exactly the
same as the the TWR B posture. When the posture error is
not equal to zero, the TWR A needs to correct its posture to
vanish the error. Since the posture error in (4) is expressed in
the inertial coordinate system (xIyI ), it is more convenience
to transform the posture error into the the TWR A body
coordinate system (xAyA). Transformation of the posture
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error from the inertial coordinate system into the TWR A
body coordinate system is done using the following relation:

ξeA = RAIξe, (5)

where ξeA is the posture error represented in the TWR A
body coordinate system, RAI is the transformation matrix
from the inertial coordinate system into the TWR A body
coordinate system, and ξe is the posture error represented in
the inertial coordinate system as given in (4). There variables
are defined as follows:

ξeA =

 xeA
yeA
ψeA

 (6)

and

RAI =

 cosψa sinψa 0
− sinψa cosψa 0

0 0 1

 . (7)

Substituting (4), (6) and (7) into (5) results in: xeA
yeA
ψeA

 =

 cosψa sinψa 0
− sinψa cosψa 0

0 0 1

 xb − xa
yb − ya
ψb − ψa

 (8)

Since the TWR A and TWR B are moving, the TWR
postures and the posture error are time varying. Dynamics
of the posture error is given by time derivative of the posture
error ξeA as follows:

ξ̇eA = ṘAIξe +RAI ξ̇e (9)

and through a further calculation results in [15]: ẋeA
ẏeA
ψ̇eA

 =

 rayeA + ub cosψeA − ua
−raxeA + ub sinψeA

rb − ra

 . (10)

The (10) is the posture error dynamics of TWR A with
respect to the TWR B expressed in the TWR A coordinate
system. The posture error is decreasing and vanish if the
posture error dynamics is asymptotically stable. The (10) has
two manipulated variables, ua and ra, to make it asymptotic
stable. The trajectory tracking problem is hereby formulated
as a stabilization problem of the posture error dynamics.

III. TRAJECTORY TRACKING CONTROL SYSTEM DESIGN

A state feedback control is applied to stabilize the posture
error dynamics. The posture error dynamics represented in
(10) are a non-linear dynamic system. Assuming the heading
angle error (ψeA ) is small, the non-linear system (10) can be
approximated by the following linear system: ẋeA

ẏeA
ψ̇eA

 =

 rayeA + ub − ua
−raxeA + ubψeA

rb − ra

 . (11)

Define a state vector

ξeA =

 xeA
yeA
ψeA

 (12)

and therefore the (11) can be expressed into the following
equation:

ξ̇eA = GξeA +Hµ, (13)

where ξ̇e is the time derivative of system states vector, G is
the system matrix, H is the input matrix, and µ is the system
input vector, and they are defined as follows:

G =

 0 ra 0
−ra 0 ub
0 0 0

 , H =

 1 0
0 0
0 1

 ,
µ =

[
µ1

µ2

]
=

[
ub − ua
rb − ra

]
.

Assume that the TWR A is initially at idle position on
the planar space, where ua = 0 and ra = 0. Using this
assumption, the system matrix of (13) to be:

G =

 0 0 0
0 0 ub
0 0 0

 , (14)

where the system matrix eigenvalues are λ1 = 0, λ2 = 0,
and λ3 = 0. The three eigenvalues are the open loop system
eigenvalues of (13).

Now, define the system input vector of (13) as follows:

µ = −KξeA (15)

where K is a control gain matrix and the matrix elements
are defined as follows:

K =

[
k11 k12 k13
k21 k22 k23

]
. (16)

Substituting (15) into (13) results in:

ξ̇eA = (G−HK)ξeA . (17)

The (17) is the closed loop trajectory tracking control system.
The closed loop trajectory tracking control system matrix is
defined as follows:

Gcl = G−HK (18)

and substituting (14), (16) and the matrix H of of (13) into
(18) results in:

Gcl = G−HK =

 −k11 −k12 −k13
0 0 ub
−k21 −k22 −k23

 . (19)

Characteristic of the closed loop system (17) is determined
by eigenvalues of Gcl. The eigenvalues are obtained by
solving the following equation:

det (λI −Gcl) =

∣∣∣∣∣∣
λ+ k11 k12 k13

0 λ −ub
k21 k22 λ+ k23

∣∣∣∣∣∣ = 0, (20)

where det() is the mathematics operator for calculating deter-
minant of a matrix, λ are the eigenvalues, and I is an identity
matrix. The closed loop system (17) is asymptotically stable
if all of the eigenvalues have negative real part. The control
gain matrix K is manipulable to make the closed loop system
matrix asymptotically stable. The closed loop system matrix
can be simplified by defining k12 = 0, k13 = 0, and k21 = 0
such that the control gain matrix K in (16) to be:

K =

[
k11 0 0
0 k22 k23

]
. (21)
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and the closed loop system matrix (20) becomes:

Gcl =

 −k11 0 0
0 0 ub
0 −k22 −k23

 . (22)

Eigenvalues of (22) are obtained by solving the following
equation:

det (λI −Gcl) =

∣∣∣∣∣∣
λ+ k11 0 0

0 λ −ub
0 k22 λ+ k23

∣∣∣∣∣∣ = 0 (23)

that can be represented as follows:

(λ+ k11)
(
λ2 + k23λ+ ubk22

)
= 0. (24)

The (24) is the characteristics equation of the closed loop
system (17).

The characteristic equation (24) is a third order system
and factorized into a first order system and a second order
system. A third order dynamics system is generally expressed
in the following form:(

λ+
1

τ

)(
λ2 + 2ζωnλ+ ω2

n

)
= 0, (25)

where τ is the time constant, ζ is the system damping
coefficient, and ωn is the system natural frequency. The third
order system is composed of a first order system and a second
order system. Therefore, the third order system response is
a combination of the first order system response and the
second order system response. Stability of the third order
system is determined by stability of the first order system
and the second order system. Asymptotically stable of the
third order system can be achieved if and only if both the first
order system and the second order system are asymptotically
stable.

The first order system part of (25) is expressed by:

λ+
1

τ
= 0. (26)

Denote eigenvalue of the first order system as λ1 and
therefore λ1 = − 1

τ . The first order system is asymptotically
stable for the negative eigenvalue. It can be achieved by
selecting a positive time constant, τ > 0.

The second order system part of (25) is described by:

λ2 + 2ζωnλ+ ω2
n = 0. (27)

Let λ2 and λ3 are eigenvalues of the second order system.
Both eigenvalues are generally expressed as follows:

λ2,3 = −ζωn ± jωn
√
1− ζ2, (28)

where j is an imaginary number, j =
√
−1. The second

order system is asymptotically stable if the eigenvalues have
negative real part, i.e., Re(λ2) < 0 and Re(λ3) < 0, where
the Re() is a mathematics operator to get the real part of a
complex number. Both λ2 and λ3 have the same real part
given as follows:

Re(λ2) = Re(λ3) = −ζωn (29)

The (29) implicates that the stability of the second order
system is determined by the system damping ζ and natural
frequency of the system ωn. Since the natural frequency is
always positive, stability of the second order system is solely

determined by the system damping. The second order system
is asymptotically stable if the system damping is positive,
ζ > 0, such that eigenvalues of the system have negative
real number.

Comparing the (24) and the (25) shows that k11 = 1
τ ,

k23 = 2ζωn, and ubk22 = ω2
n. Since ω2

n is a non negative
number, the ub and k22 have to be in the same sign.
Asymptotic stability of the (24) is achieved by control gain
matrix (21) with the following criteria:

k11 > 0
k23 > 0
ubk22 > 0.

(30)

For certain condition, the third order system response may
be dominated by either the first order system response or the
second order system response. Domination of the first order
system is indicated by an eigenvalue that is located closer
to imaginary axis than the two other eigenvalues. While, the
domination of the second order system is indicated by a pair
of complex conjugate eigenvalues that is located closer to the
imaginary axis than another eigenvalue. Eigenvalues located
close to the imaginary axis are known as the dominant poles.

IV. SIMULATION AND RESULTS

A trajectory tracking control system (TTCS) is designed
by applying the control gain matrix (21). Performance of the
TTCS is demonstrated through computer simulation with the
following scenario. Two units of two-wheeled robot (TWR)
named the TWR A and the TWR B are on a planar space.
The TWR A is initially located at (−0.5, 1) in an inertial
coordinate system with heading angle 90◦. While, the TWR
B is initially located at (0, 0) in the inertial coordinate system
with heading angle 0◦. The heading angle is measured with
respect to x-axis of the inertial coordinate system. Therefore,
initial postures of the TWR B and TWR A are denoted by
ξb(0) = [0, 0, 0◦]T and ξa(0) = [−0.5, 1, 90◦]T , respectively.
Deviation of the TWR A initial posture with respect to the
TWR B initial posture is known as the initial posture error
and expressed as follows:

ξe(0) = ξb(0)− ξa(0) =

 0.5
−1
−90◦

 . (31)

The TWR B is simulated moving for 2π seconds at a constant
linear velocity, ub = 1 m/s but varying angular velocity ωb
given as follows:

ωb(t) =

{
1 rad/s for 0 < t ≤ π
−1 rad/s for π < t ≤ 2π

(32)

where t is the simulation time. The TWR B is defined to
be a reference for the TWR A movement. The TWR A is
equipped with the TTCS and desired to track the TWR B
movement trajectory.

Control law of the TTCS was defined in (15) and rewritten
as follows:

µ = −KξeA , (33)

where ξeA is the posture error represented in the TWR A
body coordinate system (5) and K is the control gain matrix
(21). Elements of the control gain matrix are determined
based on the criteria in (30). Six controllers of TTCS
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TABLE I
THE DESIGNED TRAJECTORY TRACKING CONTROL SYSTEM BASED ON

POLE DOMINATION APPROACH

Controller Desired Control gain Closed loop
characteristic matrix (K) poles

1a
τ = 1
ζ = 0.2
ωn = 10

[
1 0 0
0 100 4

]
λ1 = −1

λ2,3 = −2± j9.798

1b
τ = 0.2
ζ = 0.2
ωn = 10

[
5 0 0
0 100 4

]
λ1 = −5

λ2,3 = −2± j9.798

1c
τ = 0.1
ζ = 0.2
ωn = 10

[
10 0 0
0 100 4

]
λ1 = −10

λ2,3 = −2± j9.798

2a
τ = 1
ζ = 0.7
ωn = 10

[
1 0 0
0 100 14

]
λ1 = −1

λ2,3 = −7± j7

2b
τ = 0.2
ζ = 0.7
ωn = 10

[
5 0 0
0 100 14

]
λ1 = −5

λ2,3 = −7± j7

2c
τ = 0.1
ζ = 0.7
ωn = 10

[
10 0 0
0 100 14

]
λ1 = −10

λ2,3 = −7± j7

are designed and presented in the Table I. The controllers
are designed by defining the desired closed loop system
characteristic (25) that includes the first order system part
and the second order system part. Characteristic of the first
order system is represented by the time constant (τ ), while
the second order system characteristic is represented by the
system damping (ζ) and the natural frequency (ωn).

The controller 1a is designed based on the following
criteria: τ = 1 second, ζ = 0.1, and ωn = 10 rad/s. The
controller 1a results in a closed loop system with eigenvalues:
λ1 = −1 and λ2,3 = −2± j9.798. The λ1 is located closer
to the imaginary axis than the λ2,3. It makes the closed loop
system response to be dominated by the first order system
part.

The controllers 1b and 1c are designed to have the same
characteristic of the second order system part to the controller
1a, but different characteristic of the first order system part.
The controller 1b is designed by defining τ = 0.2 seconds,
ζ = 0.1, and ωn = 10 rad/s. The controller 1b results
in a closed loop system with eigenvalues: λ1 = −5 and
λ2,3 = −2± j9.798, where the λ2,3 are located closer to the
imaginary axis than the λ1. The closed loop system response
of using the controller 1b will be dominated by the second
order system part. The controller 1c is designed based on the
following criteria: τ = 0.1 seconds, ζ = 0.1, and ωn = 10
rad/s. Applying the controller 1c results in a closed loop
system with eigenvalues: λ1 = −10 and λ2,3 = −2±j9.798.
The controller 1c makes the closed loop system be more
dominated by the second order system part than the controller
1b.

Simulation results of using the controllers 1a, 1b, and 1c
on the TWR A for tracking the TWR B trajectory are shown
in the Figures 2 and 3. Both figures shows that the three
controllers were able to make the TWR A track the TWR
B trajectory. The controller 1a required the longest time for
TWR A to track the TWR B compared to the controllers 1b
and 1c. The fastest tracking was achieved by the controller
1c but the TWR A trajectory showed an overshoot and
oscillations. Tracking performance of the controller 1b was
a little bit slower than the controller 1c but still much faster
than the the controller 1a, but the controller 1b resulted in
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Fig. 2. Tracking control performance of using low-damping trajectory
tracking control system.
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very small overshoot. The Figure 3 shows the posture error
of using the three controllers. The posture error of using
controller 1a was decreasing very slow and required a long
time period to converge zero. The controller 1a requires 4
seconds for the xe, 2.8 seconds for the ye, and 3.6 seconds
for the ψe to converge zero. The posture error was converging
to zero faster using the controller 1b than the controller 1a,
i.e.: 1.3 seconds for xe, 1 seconds for ye, and 1.8 seconds for
ψe. The controller 1b resulted in a small oscillation of the
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ψe. The fastest decreasing posture error was achieved using
the controller 1c, but it results in a significant oscillation on
the ψe. The oscillation caused a longer time for the posture
error convergence to zero. The converging time of the posture
error using the controller 1c are 1.8 seconds for the xe, 0.9
seconds for the ye, and 1.8 seconds for the ψe. Comparing the
trajectory tracking performance among the three controllers,
the controller 1b shows the best tracking performance.

The controllers 1a, 1b, and 1c resulted in low-damping
closed loop systems. Increasing the closed loop system
damping is expected to result a better tracking performance.
Therefore, three new controllers are designed and named the
controllers 2a, 2b, and 2c as presented in the Table I. The
three controllers are designed to have the same characteristic
on second order system part but different characteristic on
first order system part of the closed loop system. The second
order system part of the closed loop systems is designed to
have the system damping 0.7 and the frequency natural 10
rad/s. The first order system part of the closed loop systems is
designed to have the time constant 1 second for the controller
2a, 0.2 seconds for the controller 2b, and 0.1 seconds for
the controller 2c. Applying the three controllers result in the
closed loop systems with same eigenvalues of the second
order system part, λ2,3 = −7 ± j7, but varying eigenvalue
of the first order system part, i.e.: λ1 = −1 for the controller
2a, λ1 = −5 for the controller 2b, and λ1 = −10 for the
controller 2c.

Performances of the new controllers, 2a, 2b, and 2c, are
demonstrated through computer simulations. The Figure 4
and Figure 5 show the simulation results of using the three
controller and compared to the controller 1b performance.
The Figure 4 shows the trajectories of TWR A and TWR
B. The three new controllers were able to make the TWR A
track the TWR B trajectory without overshoot. The controller
2c resulted in the fastest tracking followed by the controllers
2b and 2a, respectively. The Figure 5 shows time response
of the posture errors during the simulations. The controller
2a resulted in 4 seconds for the xe, 2.8 seconds for the ye,
and 2.8 seconds for the ψe to converge zero. The controller
2b resulted in the faster response than the controller 2a.
Using the controller 2b, the xe was converging to zero at
0.7 seconds, the ye was converging zero at 0.6 seconds, and
the ψe was converging zero at 1 second. The controller 2c
resulted in the fastest time response among the three new
controllers. Using the controller 2c, it needs 0.8 seconds for
the xe, 0.6 seconds for the ye, and 0.9 seconds for the ψe
to converge zero. Comparing the performance of the three
new controllers, the controller 2c shows the best trajectory
tracking performance.

Based on the simulation results, the controllers 1b and
2c resulted in the best tracking performance. Performance
comparison of both controllers is given as follows. The
Figure 4 shows that the TWR A trajectory was approaching
the the TWR B trajectory almost at the same time by using
the controllers 1b and 2c. The Figure 5 shows that the posture
error of using the controller 2c was decreasing faster than
using the controller 1b, but the posture error was converging
to zero almost at the same time.

The simulation results using the six controllers show that
domination of the second order system part of trajectory
tracking control system results in better tracking performance
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Fig. 4. Tracking control performance of using high-damping trajectory
tracking control system.
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Fig. 5. Posture errors of using high-damping trajectory tracking control
system.

than the domination of the first order system.

V. DISCUSSION

It was presented a trajectory tracking control system
(TTCS) design method based on poles domination approach
in the previous section. The method is quite simple as
a control gain of the TTCS is obtained directly through
determining a desired closed loop system characteristic. The
simulation results showed that the TTCS designed using
the method were able to tracked the desired trajectories.
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However, since the method was derived based on a linearized
system, it results in locally asymptotic stable TTCS (LAS-
TTCS). The LAS-TTCS works for a limited region of
attraction such that the TTCS works in certain operating area
of the robot.

A global asymptotically stable TTCS (GAS-TTCS) of
mobile robot was presented in [1]. The GAS-TTCS has
unbounded region of attraction such that it works for whole
operating area of the robot. Control law of the GAS-TTCS
was derived by applying the Lyapunov’s stability theorem
and rewritten as follows:

a. For the posture error dynamics (10), define the follow-
ing positive definite function as a Lyapunov function
candidate:

V =
1

2

(
x2eA + y2eA

)
+

1

c0
(1− cosψeA) (34)

where c0 is a positive constant.
b. Differentiating the Lyapunov function candidate (34)

with respect to time along trajectory of the posture error
dynamics (10) results in:

V̇ = ẋeAxeA + ẏeAyeA +
1

c0
ψ̇eA sinψeA

= raxeAyeA + ubxeA cosψeA − uaxeA
−raxeAyeA + ubyeA sinψeA

+
1

c0
(rb − ra) sinψeA

= ubxeA cosψeA − uaxeA + ubyeA sinψeA

+
1

c0
(rb − ra) sinψeA

= (ub cosψeA − ua)xeA

+

[
ubyeA +

1

c0
(rb − ra)

]
sinψeA . (35)

c. The posture error dynamics (10) is globally asymptoti-
cally stable (GAS) if the V̇ in (35) is negative definite,
V̇ < 0. The negative definiteness of V̇ can achieved by
the two following conditions:

ua = ub cosψeA + c1xeA (36)

and
ra = rb + c0ubyeA + c2 sinψeA , (37)

where c1 and c2 are positive constants. The (36) and
(37) are the states feedback control law of the GAS-
TTCS. The control law has three unknown positive
constants (c0, c1, and c2) that are known as the GAS-
TTCS control gains. The control gains are obtained
through a trial and error process. The (37) is correcting
the Kanayama’s control law presented by the second
part of equation (8) in [1].

Three controllers of the GAS-TTCS are designed as named
by the controller 3a, the controller 3b, and the controller 3c,
and listed in the Table II. Performances of the three GAS-
TTCS controllers are evaluated through computer simula-
tions. Performance of the three GAS-TTCS controllers are
compared to the controller 2c and shown in the Figure 6
and Figure 7. The Figure 6 shows trajectory of the TWR
A and the TWR B. It is shown that the controller 3c has
the best tracking performance among the three GAS-TTCS
controllers. The Figure 6 shows that the fastest tracking was

TABLE II
CONTROL GAIN OF GLOBAL ASYMPTOTICALLY STABLE TRAJECTORY

TRACKING CONTROL SYSTEM (GAS-TTCS)

Controller Control gain

3a c0 = 10, c1 = 5, c2 = 5,

3b c0 = 30, c1 = 15, c2 = 10,

3c c0 = 50, c1 = 20, c2 = 10
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Fig. 6. Tracking control performance global asymptotically stable trajectory
tracking control systems (3a, 3b, and 3c) versus high-damping locally
asymptotically stable trajectory tracking control system (2c).

achieved by the controller 3c while the controller 3a resulted
in the slowest tracking. It is confirmed by settling time of
the posture error dynamics as shown in the Figure 7, in
particularly for the ye and ψe.

A further evaluation is done by comparing the perfor-
mance of GAS-TTCS and LAS-TTCS. Performance of the
controller 3c are compared to the performance of controller
2c. The controllers 3c and 2c are the designed controllers
of the GAS-TTCS and LAS-TTCS, respectively, that have
the best performance in this study. Performance comparison
shows that both controllers has similar tracking performance
as shown in the Figure 7 and the Figure 6. However, the
controller 2c has better transient response than the controller
3c as shown in the Figure 7. The controller 2c resulted in
less overshoot than the controller 3c for the xe. Moreover,
the controller 2c showed faster response than the controller
3c for the ψe. The GAS-TTCS assures the global tracking
system but finding the proper control gain is not simple as it
was done by trial and error. The LAS-TTCS achieves local
tracking system only but the control gain is obtained in a
simple and systematic using the pole domination approach.
The simulation shows the LAS-TTCS has better performance
than the GAS-TTCS. Applying the LAS-TTCS or GAS-
TTCS depends on the application.

VI. CONCLUSION

A trajectory tracking control system (TTCS) of two-
wheeled robot (TWR) has been designed using a control
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Fig. 7. Posture errors of using global asymptotically stable trajectory
tracking control systems (3a, 3b, and 3c) versus high-damping locally
asymptotically stable trajectory tracking control system (2c).

design method based pole domination approach. The method
was derived by approximating the trajectory tracking control
problem as a stabilization problem of third order linear
system. A state feedback control was applied to stabilize
the system. The state feedback control gain matrix was
designed to have structure such that the closed loop system
characteristic is fraction-able into a first order system part
and the second order system part. The control gain matrix
was designed by determining the desired characteristic of
the first order and the second order system parts of the
closed loop system. The method was applied in designing
TTCS. Performance of the designed TTCS was evaluated
through computer simulations. The simulation results show
that the designed TTCS was able to track a desired trajectory.
Moreover, domination of the second order system part in the
closed loop system resulted in better performance than the
domination of the first order system part. The control design
method based pole domination approach provides a system-
atic method for designing a TTCS of TWR. The method
resulted in a simple controller which is implementable in a
low cost microcontroller.

VII. FUTURE WORKS

The presented method is offering a simple way in design-
ing a trajectory tracking control system of mobile robots.
Since the method was derived based on the linearized system,
region of attraction should be analyzed. Furthermore, this
study will be continued to implement the designed trajectory
tracking control system on a real two-wheeled robot system.
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