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Abstract—The computing with Words (CW) is a well known
soft computing method to find the solutions of many decision
making problems in real life scenarios which consists of selective
information used in natural language. CW is characterized
by the human potentiality to do different types of physical
and mental works or jobs without making any calculations or
computations. Words are less accurate than numbers and words
are used if exact numbers are unknown. Same word means
different items to different person. There exists uncertainties
associated with any word. Fuzzy set is generally used to model
the words in the CW technique. The neutrosophic set is an
extended version of fuzzy set. Here, we introduce a new idea
of CW to model the words using neutrosophic set. In our
proposed method, computation are done by words and words
are translated to a mathematical model using neutrosophic
set. The main objective of this paper is on CW based on
neutrosophic set for taking subjective judgments. We call
it as perceptual neutrosophic computing. An architecture is
introduced for perceptual neutrosophic computing which we
call perceptual neutrosophic computer (PNC). PNC has three
components: encoder, CW engine for neutrosophic set and
decoder. We have introduced a modified Kruskal’s algorithm to
compute the minimum spanning tree (MST) of a neutrosophic
graph. Human being describe those edge weights in real world
problems using some terms, like, ’some’, ’small’, ’big’, ’large’,
etc terms which do not provide any numbers. Those English
terms are described here as words. A model of PNC is proposed
to employ in our proposed method for solving this problem.
The PNC model that is related with minimum spanning tree is
defined as minimum spanning tree advisor (MSTA) and we have
described the design of MSTA in detail in this study. We use
a numerical example to describe the efficiency of our proposed
algorithm.

Index Terms—Computing with Words, Kruskal’s algorithm,
neutrosophic set

Computing with Words (CW) is a soft computing tech-
nique where the main computation objects/items are gener-
ally natural words and those words are received from our
natural languages. We have several remarkable capacities.
Among those capacities, two are very significant. First,
human being can able to communicate, converse, reasoning
and take good decisions in an uncertainty scenarios. Second,
human being can perform many mental and physical jobs
without any computations and measurements. The idea of
CW is inspired by those two important capacities.

In our classical computing system, the real numbers and
symbols are used in computational purpose. But CW uses the
natural words for computation. CW introduces the idea to use
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the natural languages in many engineering systems. There,
CW can minimize the difference between the capability of
our brain and the artificial machine. The idea of CW helps
the computers to deal with uncertain real life problems.
The main reason of CW introduces based on the idea that
most of our knowledge comes from the natural language.
A natural language is a nothing but a way to describe the
perceptions of any scenarios. Shifting from computing with
real numbers/symbols to CW is a simple paradigm change for
computing industry. It has many purposes for this changes.
First, we generally describe and make out wide varieties of
information and knowledge based on our language, i.e., a
collection of words. Second, a word is naturally less exact
than a real number. We use words if the exact numbers
are unknown for us or words are used to summarize many
numbers. CW can be considered as a very powerful technique
for working in uncertain environment. And third, precision
is used to carry a cost. We can exploit through the usage
of natural words instate of real numbers if there is an
allowance for uncertainties. Same word can describe different
measurement/object/thing to different persons.

Uncertainties [1], [2] exist in almost every words in any
natural language. Uncertainty of any natural words in CW
paradigm can be deal by classical fuzzy set (CFS) or type 2
fuzzy set (T2FS) or interval T2FS (IT2FS). Many researchers
e.g., [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16] have used T1FS. The membership function
of any T1FS is crisp set and it does not able to handle for
various types of uncertainties that presents in the linguistic
description of any words. The idea of type-2 fuzzy set
(T2FS) has been introduced by L. A. Zadeh [17]. T2FS
is an extended version of a classical fuzzy set, i.e., T1FS.
Since the membership grade of any T1FS is totally real
number. However, the membership grade of a T2FSs is not
real number or crisp value. It is nothing but a CFS [18], [17].
So, the membership values of T2FS are between the interval
[0,1] instead of crisp or real value. The idea of T2FS extends
the degrees of freedom to mathematical representation of
uncertainties of any information and T2FSs have greater
capability than CFS to work with uncertainties in logically
proper way. But the T2FS needs high computational times,
several researches have considered the IT2FSs to handle
the uncertainties in real life situations [19], [20], [21],
[22]. IT2FSs are the especial type of T2FSs. Computations
in IT2FS are low compared to classical T2FS [23], [24].
A Perceptual Computer model (Per-CM) is used to take
decision of any decision making problem in CWW technique.
It is presented in Fig. 1. The Per-CM has 3 components:
encoder, CW engine and decoder. First, the encoder receives
the linguistic perceptions, i.e., single word, phase, granulated
term, collection of words, etc as an input and produces the
output as a single IT2FS or collection of IT2FSs. The output
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of the encoder actives the CWW engine. The CWW engine
takes IT2FSs as an input. The CWW engine can perform
several operations on any IT2FSs. The CWW engine converts
its input IT2FSs to its output IT2FS. This operation can
be performed in several different possible manners, e.g., the
average, addition, perceptual reasoning, linguistic weighted
mean, using by some rules, etc. Last, the decoder produces a
recommendation based on the outputs of the CWW engine.
The recommendation of a decoder may be a rank, word or
phase. In any decision making in real life scenarios, various
alternatives/situations are equated at a time to determine the
most beneficial one(s). To determine the exact situation(s),
the decoder needs to use the rank method.

However the fuzzy set has been developed and generally
used in CW, but it is unable to deal with many kinds of
uncertainties in the meaning of the words. There exists some
kinds of uncertainties e.g., indeterminate and inconsistent in
the information which can not be properly handled by fuzzy
set. For e.g., if a person wants to recognize the experience of
a decision maker regarding any specific word, decision maker
may give his opinion that the possibility of the truthfulness
of the word is 0.7, the degree of sure is 0.2 and the degree of
false is 0.5. We cannot handle this type problems using fuzzy
sets. We require new theories to deal with this problems.

In 1995, F. Smarandache [25], [26], [27] presented a new
idea of neutrosophic set (NS) and neutrosophic logic. In a
neutrosophic set, each element has 3 membership degree:
truth, indeterminacy, and falsity. Those 3 membership degree
are lied in the interval of 0−, 1+[ and it is an interval of
nonstandard unit. 0−, 1+[ is a modified version of standard
interval between 0 and 1. The uncertainty due to indeter-
minacy is not dependent of false and true degree. In this
study, we have modeled the words in the CW technique using
neutrosophic set. Recently, several researchers have studied
on graph theory in neutrosophic environment for instance,
Ye [28], Yang et al. [29], Naz et al.[30], Broumi[31], and
Arkam [32], [33], [34].

The finding MST of connected weighted graph [35], [36]
is a well known classical optimization problems [37], [1] in
the area of operation research. Several real life problems,
e.g., logistics, transportation, image processing, computer
networks, data storage, numerical cluster analysis, speech
recognition [38], etc can be model as MST problem. Many
researchers [39], [40], [41], [42], [43] have studied lots to
develop an efficient algorithm for classical MST problem. In
simple MST problem, we consider some fixed/crisp values
to describe the edge weights of a graph. Decision maker
assumes that we know the exact edge weight. However,
in our daily life, we get several imprecise and incomplete
information. It creates a very difficult scenarios to present
the proper edge weight by a specific real number. For
e.g., the edge weight of a graph can describe the travel
time between two villages. This edge weights [44], [45]
should not be defined exactly because travel time may
change due to the traffic frequency, weather condition and
any other unexpected reasons however the distance between
the two villages is same. In such real life situation, we
(decision makers) generally give some possible travel times
in approximate intervals. The arc length is evaluated by
human perception. CFS and IT2FS are unable to handle
the indeterminate and inconsistent uncertainties. It can be

tackled by NS. Numerous papers have been published to
determine the MST in fuzzy environment. In all those papers,
different CFSs are considered to describe the arc length of
the fuzzy graph. The paper by Itoh and Ishii [46] is one of
the first paper on this subject and studied the fuzzy MST
problem. They used the chance constrained program method
to solve the MST problem. Following that, 3 methods based
on the existence ranking index for the ranking the arcs of
the spanning tree. The ranking methods were presented by
Chang and Lee [47]. In [48], Almeida et al. formulated the
MST problem with fuzzy arc lengths and they introduced
an algorithm to solve this problem. They also proposed a
genetic algorithm to determine the MST problem with fuzzy
parameters. Janiak and Kasperski [49] have applied the idea
of possibility theory to sort the arcs of a fuzzy graph. They
used this idea to determine the MST whose edge weights are
described as interval of fuzzy set. Liu [50], [51] presented
the concept of credibility theory which consists of credibility
measurement, pessimistic value and expected value. Gao and
Lu [52] presented the fuzzy quadratic MST problem using
the credibility theory. They have modeled the spanning tree
as expected model, chance constrained programming model
and dependent chance programming model.

In this study, we introduce a new idea of CW to model
the words using neutrosophic set. In our proposed method,
computation are done by words and the words are represented
by neutrosophic set. The main objective of this paper is on
CW based neutrosophic set for taking subjective judgments.
We call it as perceptual neutrosophic computing. A com-
putational model is introduced for perceptual neutrosophic
computing which we call perceptual neutrosophic computer
(PNC). PNC has 3 components: encoder, CWW engine for
neutrosophic set and decoder. In this work, we present the
MST problem of a neutrosophic graph where arc costs are
represented by words, e.g., low, very high, Small, Medium,
etc. We call this MST problem as computing the minimum
spanning tree with word (CMSTW). We propose a PNC
model to solve this MST problem. The PNC that is related
with neutrosophic MST problem is called a minimum span-
ning tree advisor (MSTA). We have presented the design of
MSTA in this study. MSTA has of 3 components: encoder,
CW engine for MST and decoder. In a PNC, the encoder
takes one and all the arcs, i.e., words of the spanning tree
and transfer those words to NSs. The CW engine for MST is
used as adder. It adds all those NSs and produces a NS which
represents the cost of the spanning tree. The output of CWW
engine is the input of the decoder and decoder determines the
ranking value of the corresponding spanning tree. We use this
rank to find the MST. A linear programming model for this
CMSTW problem has been presented. Kruskal’s algorithm
is modified to find the solution this CMSTW problem. A
numerical example is described to illustrate the proposed
method. The primary objectives of this paper are as follows.

(i) A new idea of CW is proposed to model the words
using neutrosophic set. We introduce a computational
model to solve the problem. This computational model
is called PNC.

(ii) The MST problem with natural word as arc length
of a neutrosophic graph is described. We define this
problem as CMSTW.

(iii) A linear programming model for this CMSTW problem
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Fig. 1. The Perceptual computer model.

has been presented for the first time. The standard
optimization solver LINGO is used to obtain the MST
of the fuzzy graph.

(iv) The classical Kruskal’s algorithm is extended to solve
the CMSTW problem.

(v) The MSTW and its cost are the primary information
for the decision makers in a MST problem. This paper
aims at finding the MSTW and its corresponding cost.

(vi) We have presented a numerical example to illustrate
the performance of our algorithm.

I. PRELIMINARIES

We have described ideas of intuitionistic fuzzy set,
NS, SVN-number, SVTNN, SVTRN, addition operation of
SVTNs and ranking method of SVTN number concerned
with the paper. These concepts are very much needed to have
a good understanding of the proposed algorithms described
in the paper.

Definition 1: Let ξ represents an universe set and an
intuitionistic fuzzy set P over the ξ. Then, P is described
by

P = {< p, µP (p), γP (p) >: p ∈ ξ} (1)

Here, µP : ξ → [0, 1] and γP : ξ → [0, 1] such that
0 ≤ µP (p) + γP (p) ≤ 1, ∀x ∈ ξ. The µP (p) and γP (p)
are used to describe the membership and non membership
grades of an element p respectively.

Definition 2: Let ξ represents an universe set and a NS
[25] Q over the ξ. Then, the NS Q can be described as
follow.

Q = {< p, (TQ(p), IQ(p), QQ(p)) >: p ∈ ξ} (2)

Where TQ(p), IQ(p) and FQ(p) are represented three
membership functions: truth, indeterminacy and false of
element x respectively. Those membership functions are
respectively described by

TQ : ξ →]−0, 1+[, IQ : ξ →]−0, 1+[, FQ : ξ →]−0, 1+[

such that 0− ≤ TQ(p) + IQ(p) + FQ(p) ≤ 3+.
Definition 3: Any single valued NS [25] is a NS over ξ. It

has 3 membership functions: truth, indeterminacy and false.
Those are described as follows.

TQ : ξ → [0, 1], IQ : ξ → [0, 1], FQ : ξ → [0, 1]

Such that 0 ≤ TQ(p) + IQ(p) + FQ(p) ≤ 3.
Definition 4: Let wÃ, uÃ, yÃ ∈ [0, 1] represents the real

numbers, αj , βj , δj , γj ∈ R and αj , βj , δj , γj(j = 1, 2, 3).
Let Ã is a single valued neutrosophic number (SVNN). It
is a specific type of NS over R, whose truth membership

function µ
Ã, indeterminacy membership function vÃ and

falsity membership function λÃ are described by

µ
Ã : R→ [0, wÃ], µ

Ã(p) =


f lµ(p), α1 ≤ p < β1
wÃ, β1 ≤ p < δ1
frµ(p), δ1 ≤ p < γ1
0, otherwise

vÃ : R→ [uÃ, 1], vÃ(p) =


f lv(p), α2 ≤ p < β2
uÃ, β2 ≤ p < δ2
frv (p), δ2 ≤ p < γ2
1, otherwise

λÃ : R→ [yÃ, 1], λÃ(p) =


f lλ(p), α3 ≤ p < β3
uÃ, β3 ≤ p < δ3
frλ(p), δ3 ≤ p < γ3
1, otherwise

Where the function f lµ(p) : [α1, β1] → [0, wÃ], f
r
v (p) :

[δ2, γ2] → [uÃ, 1], f
r
λ(x) : [δ3, γ3] → [yÃ, 1]. Those

functions are non-decreasing and continuous. They will
satisfy the following conditions: f lµ (A1) = 0, f lµ (β1) =
wÃ, f

r
v (δ2) = uÃ, f

r
v (γ2) = 1, frv (δ3) = y

Ã, and
frλ (γ3) = 1; the functions frµ : [δ1, γ1] → [0, wÃ],
f lv : [α2, β2] → [uÃ, 1] and f lλ : [α3, β3] → [yÃ, 1]
are non-increasing and continuous function. Those function
will satisfy the following considerations: frµ (δ1) = wÃ,
frµ (γ1) = 0, f lv (α2) = 1, f lv (β2) = uα̃, f lλ (α3) = 1,
and f lλ (β3) = y

Ã. [β1, δ1], α1 and γ1 are used to represent
the average of interval, upper and lower limit values of the
function truth membership of a simple neutrosophic number
Ã. [β2, δ2] , α2 and γ2 are used to represent the average of
interval and the upper and lower limit values of the function
of indeterminacy-membership for the simple neutrosophic
number Ã, respectively. [β3, δ3] , α3 and γ3 are used to
represent the average of interval and the upper and lower
limit values of the function of the falsity membership of a
neutrosophic number Ã respectively. wÃ is said to be the
highest truth membership grade of Ã, uÃ is said to be the
lowest indeterminacy membership grade of Ã and y

Ã is is
said to be the lowest falsity-membership degree of Ã.

Definition 5: Let Ã represents any single valued trape-
zoidal neutrosophic number (SVTNN) [53] where Ã =
〈(α, β, δ, γ) ;wÃ, uÃ, yÃ〉. Single valued triangular neutro-
sophic number is special type of SVTNN. It consists of four
points. SVTNN is a special type of NS on the R, whose truth,
indeterminacy and false degree of membership are described
as follows:

µ
Ã (p) =


(p−α)wÃ

(β−α) (α ≤ p < β)

wÃ (β ≤ p ≤ δ)
(γ−p)wÃ

(γ−δ) (δ < p ≤ γ)
0 otherwise
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vÃ (p) =


(β−p+uÃ(p−α))

(β−α) (α ≤ x < β)

uÃ (β ≤ p ≤ δ)
(p−δ+uÃ(γ−p))

(γ−δ) (δ < x ≤ γ)
0 otherwise

and

λÃ (p) =


(β−p+yÃ(p−α))

(β−α) (α ≤ p < β)
y
Ã (β ≤ p ≤ δ)
(x−δ+yÃ(γ−p))

(γ−δ) (δ < p ≤ γ)
0 otherwise

respectively.

Definition 6: Let Ã is a single valued triangular neu-
trosophic number (SVTrN-number) [53] where Ã =
〈(α, β, δ, ) ;wÃ, uÃ, yÃ〉. It is a specific type of NS on the
R. The truth degree of membership, indeterminacy degree of
membership and falsity degree of membership are described
as follows.

µ
Ã (p) =


(p−α)wÃ

(β−α) , (α ≤ p < β)
(δ−p)wÃ

(δ−β) , (β ≤ p < δ)

0, otherwise

vÃ (p) =


(β−p+uÃ(p−α))

(β−α) , (α ≤ p < β)

(p−β+uÃ(δ−p))
(δ−β) , (β ≤ p ≤ δ)

0, otherwise

λÃ (p) =


(β−p+yÃ(p−α))

(β−α) , (α ≤ p < β)

(p−β+yÃ(δ−p))
(δ−β) , (β ≤ x ≤ δ)

0, otherwise

If α ≥ 0and at least c > 0 then Ã =
〈(α, β, δ, γ) ;wÃ, uÃ, yÃ〉 is said to be a positive SVTrN-
number, denoted by Ã > 0.

Definition 7: Let Ã = 〈(α1, β1, δ1, γ1) ;wÃ, uÃ, yÃ〉 and
B̃ = 〈(α2, β2, δ2, γ2) ;wÃ, uÃ, yÃ〉 be two SVTN-number
and γ 6= 0 be any real number. Then, the addition operation
between Ã and B̃

Ã+ B̃ = (α1 + α2, β1 + β2, δ1 + δ2, γ1 + γ2) ;

wÃ ∧ wB̃ , uÃ ∨ uB̃ , yÃ ∨ yB̃ (3)

Definition 8: Let Ã = 〈(α1, β1, δ1) ;wÃ, uÃ, yÃ〉 and
B̃ = 〈(α2, β2, δ2) ;wB̃ , uB̃ , yB̃〉 are two SVTN-numbers and
γ 6= 0 is a real number. The addition operation between Ã
and B̃ are described as follows.

Ã+ B̃ = (α1 + α2, β1 + β2, δ1 + δ2) ; (4)
wÃ ∧ wB̃ , uÃ ∨ uB̃ , yÃ ∨ yB̃

Definition 9: Let Ã = 〈(α, β, δ) ;wÃ, uÃ, yÃ〉 is a SVN-
number. The value of θ lies in ∈ [0, 1].

1. Let Xθ be the θ weighted value of Ã. Then, Xθ can be
described as follows.

Xθ

(
Ã
)
= θXµ

(
Ã
)
+ (1− θ)Xv

(
Ã
)
+ (1− θ)Xλ

(
Ã
)

(5)

2. Let Yθ be the θ weighted value of Ã. Then, Yθ can be

described as follows.

Yθ

(
Ã
)
= θYµ

(
Ã
)
+ (1− θ)Yv

(
Ã
)
+ (1− θ)Yλ

(
Ã
)
(6)

Corollary 3.11 Let Ã is an arbiter SVTN-number where
Ã = 〈(α, β, δ, γ) ;wÃ, uÃ, yÃ〉. Then,
1. The weighted value Xθ

(
Ã
)

is calculated as;

Vθ

(
Ã
)
=
α+ 2β + 2δ + γ

6
× (7)[

θ w2
Ã
+(1− θ) (1− uÃ)

2
+ (1− θ) (1− yÃ)

2
]

2. Let Yθ
(
Ã
)

be the weighted ambiguity of Ã and it is
computed as follows.

Yθ

(
Ã
)
=
γ − α+ 2δ − 2β

6
× (8)[

θ w2
Ã
+(1− θ) (1− uÃ)

2
+ (1− θ) (1− yÃ)

2
]

Definition 10: Let Ã is an arbiter SVTrN-number where
Ã = 〈(α, β, δ, γ) ;wÃ, uÃ, yÃ〉. Then,

1. The weighted value Xθ

(
Ã
)

is calculated as follows.

Xθ

(
Ã
)
=
α+ 4β + γ

6
× (9)[

θ w2
Ã
+(1− θ) (1− uÃ)

2
+ (1− θ) (1− yÃ)

2
]

2. Let Yθ
(
Ã
)

be the weighted ambiguity of Ã and it is
computed as follows.

Yθ

(
Ã
)
=
δ − α
6
× (10)[

θ w2
Ã
+(1− θ) (1− uÃ)

2
+ (1− θ) (1− yÃ)

2
]

Definition 11: Let Ã and B̃ are two SVN-numbers [53]
and θ ∈ [0, 1].
1. If Xθ

(
Ã
)
> Xθ

(
B̃
)

, then the value of Ã is bigger than

the value of B̃.
2. If Xθ

(
Ã
)
> Xθ

(
B̃
)

, then the value of Ã is smaller than

the value of B̃.
3. If Xθ

(
Ã
)
= Xθ

(
B̃
)

, then

(a) If Yθ
(
Ã
)
= Yθ

(
B̃
)

, then the value of Ã is equal to

the value of B̃.
(b) If Yθ

(
Ã
)
> Yθ

(
B̃
)

, then the value of Ã is bigger

than B̃.
(c) If Yθ

(
Ã
)
< Yθ

(
B̃
)

, then the value of Ã is smaller

than the value of B̃.

II. CW IN NEUTROSOPHIC ENVIRONMENT

L. A. Zadeh [17], [16] introduced the fuzzy set with CW.
CW technique is not that computers are computed based
single word, words or phase rather than boolean number. It is
method that activates the computers using the words. Word
in CW paradigm are converted to a numerical representation
based fuzzy set and that these fuzzy set are mapped some
other fuzzy set by using CW engine.

A single word can describe different items to different
persons, so it is very essential to deal word uncertainties
properly. To the best of our information, there exists two
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CW engine based on NSWords Words

Fig. 2. CW in neutrosophic environment

possible choices: T1FS and IT2FS. Fuzzy set is unable to
deal with many kinds of uncertainties in the meaning of
the words. There exists some kinds of uncertainties e.g.,
indeterminate and inconsistent in the information which can
not be properly handled by fuzzy set. In this study, we have
modeled the words in the CW technique using neutrosophic
set. Neutrosophic set can handle the uncertainties due to
indeterminate and inconsistent.

A. Perceptual neutrosophic computer

In this study, we have introduced a model of computer for
CW using neutrosophic set. This computer model is called
as Perceptual neutrosophic computer (PNC). It consists of
three part: encoder, CW engine based on NS and decoder.
The PNC is activated by words, phases or granulated terms
and the output of the PNC is also words. We can interact
with the PNC using a set of vocabulary.

First, we have to establish a set of vocabulary for a specific
application. This helps to us to interact with PNC in an user
friendly environment. The encoder converts the word into a
NS and construct to a codebook of words with corresponding
NS. The output of an encoder in PNC is a NS that activates
the CW engine. The output of CW engine is an other NS.
It is then converted in rank/similar word of a vocabulary by
the decoder. The figure of a PNC is Figure 3.

III. PROBLEM FORMULATION

Let G̃ = (V, Ẽ) is a connected undirected weighted
neutrosophic graph, where V represents a collection of nodes
of G and Ẽ is a collection of arcs. A neutrosophic tree
T̃ is called a neutrosophic spanning tree of a neutrosophic
graph G̃ if and only T̃ is a sub graph of G̃ and T̃ consists
of all the nodes of G̃. Any spanning tree of neutrosophic
graph G̃ has always just n − 1 edges, where n denotes the
total number of nodes in G̃. A neutrosophic graph may have
more than one spanning tree. Neutrosophic MST (NMST)
is a neutrosophic spanning tree whose cost is lowest among
all the spanning tree. In general, real numbers are used to
represent the arc length of the network. However, we are
unable to model many real life application using classical
graph. The arc lengths/edge costs are inexact because poor
evidence, incomplete information, imperfect statistical analy-
sis, etc. Neutrosophic network can handle those uncertainties.
We can describe the neutrosophic graph in five possible types
in which a simple graph can be neutrosophic graph.

1: A graph is a neutrosophic graph if it consists of
neutrosophic set of simple crisp graphs.

2: A graph is a neutrosophic graph if it consists of
neutrosophic arc set and crisp node set.

3: A graph is a neutrosophic graph if it consists of crisp
nodes and edges with neutrosophic connectivity.

4: A graph is a neutrosophic graph if it consists of crisp
graph with neutrosophic arc lengths.

5: A graph is a neutrosophic graph if it consists of
neutrosophic nodes and crisp edges.

In this work, we consider an undirected weighted con-
nected neutrosophic graph. This neutrosophic graph is be-
longed to Type 4 class. The neutrosophic arc lengths are
considered as words instead of real number or fuzzy num-
bers. This MST is defined as minimum spanning tree with
words (MSTW). The MSTW problem can be formulated as
the following linear programming form:

Min Z̃ =
∑
ẽ∈Ẽ

cwẽ xẽ (11)

Subject to ∑
ẽ∈Ẽ

xẽ = n− 1 (12)

∑
ẽ∈δ(s)

xẽ ≥ 1 ∀s ⊂ V, ∅ 6= s 6= V (13)

xẽ ∈ {0, 1} ∀ẽ ∈ Ẽ (14)

Here, each edge is represented by ẽ. The edge ẽ is nothing
but an order pair of (vi, vj), where the vertices vi, vj ∈ V
and vi 6= vj . If any edge ẽ is absent in the MSTW then xẽ
= 0, otherwise xẽ = 1. cwẽ denotes a word related to arc ẽ
which is arc length of the arc ẽ. The Equation (12) provides
that the total number of edges in the MSTW is n − 1. The
Equation (13) ensures that the cut set of a subset of the nodes
s, i.e., a edge that have one node in the set s and the other
outside s.

IV. PROPOSED ALGORITHM FOR THE MSTW AND ITS
COST

In this section, the NMST of a neutrosophic graph is
described where edge weights are represented by words, e.g.,
Low, Not low, Very low, High, Not high, Very high, Fairly
low etc. The PNC that is related with MSTW problem is
called a minimum spanning tree advisor (MSTA). The design
of MSTA is presented in Section IV-A. We introduce the
modified Kruskal’s algorithm for this in Section IV-B.

A. Minimum spanning tree Judgment Advisor

In any application of CW technique, first decision maker
establishes a list of vocabularies of specific application
related words. First, we have established a vocabulary for
minimum spanning tree problem. The user can interact with
the PNC easily using those vocabulary. It creates a user
friendly environment. The set of all those words, i.e., Wi,
in the vocabulary and their SVN-numbers, i.e., SV N(Wi),
creates a Codebook for NMST problem, i.e., Codebook =
{(Wi, SV N(Wi))}. Here, a spanning tree is a set of edges
and edge costs are expressed by the words. So, spanning
tree a is a collection of words. A PNC model is introduced
to determine the cost of a neutrosophic spanning tree of a
neutrosophic graph. The PNC that is related with NMST is
the minimum spanning tree advisor (MSTA). It is shown in
Fig. 4. It has of 3 components:

1: First, the encoder takes all the words as input which
present in a spanning tree and the encoder transforms
all those words into SVN-numbers. CW uses the
Codebook of words with their SVN-numbers.
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Encoder CW engine based on NS Decoder
Words NS NS Words

Fig. 3. An architecture for CW in neutrosophic environment the perceptual neutrosophic computer model.

2: : The output of encoder is a SVN-number that activates
the CW engine of NS. The output of CW is an another
SVN number. We propose a CW engine for NS. If there
exists a single arc/word in the spanning tree then it
provides the corresponding SVN-number. Otherwise, it
sums all SVN-numbers as described in (7) and returns
a SVN-number for the corresponding spanning tree.

3: Last, the decoder takes the SVN-number. This SVN
number is the output of CW engine. We determine the
corresponding Xθ

(
Ã
)

value as defined in Definition
8. The decoder produces the rank value of the spanning
tree. So, PNC receives a spanning tree in the collection
of words and produces the rank of the spanning tree.

B. Proposed Kruskal’s algorithm for MSTW problem

Our proposed algorithm is the extended version of classical
Kruskal’s algorithm for solving NMST problem. We have
integrated the idea of uncertainties in classical Kruskal’s
algorithmic method using natural word as an arc length.
The classical Kruskal’s algorithm is a popular algorithm for
minimum spanning tree problem which finds an edge with
lowest cost that joins any 2 trees in the graph. This Kruskal’s
algorithm is an example of greedy algorithm in operation re-
search as it finds MST of graph adding increasing arc length
at each and every step. There are 3 important subjects require
to consider to extend the Kruskal’s algorithmic approach to
figure out the MSTW. One is how determine the NS for
any word. Second issue is how to determine the cost of the
spanning tree. In this problem, it is nothing but a collection
of words. The third one is how to do the comparison between
the lengths of two different spanning trees. We use minimum
spanning tree advisor to solve those problem.

In our proposed algorithm, we use the notation Tw to
denote the MSTW of the graph. The variable A represents
the set of total unvisited arc that are needed to be taken out.
n denotes the number of nodes in the graph G̃. An another
notation list-word [Tw] is used to store the total words related
to the neutrosophic spanning tree, i.e., Tw. We construct a
basic function PNC(). This function takes the spanning tree
using list-word [T ] and it returns the rank of the spanning
tree. The main steps of the Kruskal’s algorithm with words
as arc lengths are as follows:

Step 1. All the edges ẽ ∈ Ẽ of the neutrosophic graph G̃ are
passed though the function PNC().

Step 2. The rank values are determined for all the edge of the
neutrosophic graph G̃.

Step 3. Sort all the edges of neutrosophic graph G̃ based on
the corresponding ranking value: least ranking value
first and heaviest ranking value last.

Step 3. Select the lightest not verified edge of the G̃. Then,
add this selected edge to the MSTW, only if doing so
will not create any cycle.

Step 4. Repeat the Step 2 until n - 1 edges have been consid-
ered in MSTW.

Algorithm 1 Pseudocode of the proposed algorithm for
designing MSTW
Input: The undirected connected weighted neutrosophic

graph G̃ with words as arc lengths

Output: MSTW, i.e., Tw

1: Begin

2: Tw ← {∅} . Tw describes a set of arcs, which

represents the MSTW.

3: for each edge ẽ ∈ G̃ do

4: rank[e]← PCN(list-word[e]) . The function

PCN(list-word[e]) returns the rank of arc e.

5: insert ẽ into A with its corresponding value rank[e]

6: end for

7: while |Tw| < n do

8: Find an edge ẽ form A with lowest value of rank.

9: if Tw∪ ẽ is not a cycle then

10: Tw ← Tw ∪ ẽ

11: list-word[T]← list-word[T]∪ list-word[ẽ]

12: end if

13: A = A \ ẽ

14: end while

15: cost[Tw]← PCN(list-word[Tw])

16: return Tw

17: End

We have presented the pseudocode of the proposed algo-
rithm in Algorithm 1.

V. NUMERICAL ILLUSTRATIONS

In this section, we have presented a numerical example
of the MSTW problem to describe our proposed algorithm.
This problem contains 6 vertices and 9 edges. Our algorithm
determines the MSTW of a graph, whose edge weights are
denoted by natural word. The eight words, presented in Table
I are considered as the codebook for the MSTW: low, not low,
very low, high, not high, very high, fairly high and fairly low.
The edge weights of the neutrosophic graph are represented
by those words. For the neutrosophic graph, shown in Fig.
5, those words are assigned to the edges as edge weight of
the graph randomly.
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Fig. 4. PNC model for NMST
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Fig. 5. A neutrosophic graph with natural words.

TABLE I
WORD CODEBOOK FOR MSTW PROBLEM

Index Word SVN number

1 Low 〈(4.6, 5.5, 8.6), (0.4, 0.7, 0.2)〉
2 Not low 〈(4.7, 6.9, 8.5), (0.7, 0.2, 0.6)〉
3 Very low 〈(6.2, 7.6, 8.2), (0.4, 0.1, 0.3)〉
4 High 〈(6.2, 8.9, 9.1), (0.6, 0.3, 0.5)〉
5 Not high 〈(4.4, 5.9, 7.2), (0.7, 0.2, 0.3)〉
6 Very high 〈(6.6, 8.8, 10), (0.6, 0.2, 0.2)〉
7 Fairly high 〈(6.3, 7.5, 8.9), (0.7, 0.4, 0.6)〉
8 Fairly low 〈(7.1, 7.7, 8.3), (0.5, 0.2, 0.4)〉

1. There exists 9 edges in the neutrosophic graph G̃. They
are respectively:
i. (1, 2) ii. (1, 3) iii. (2, 3) iv. (1, 5) v. (2, 6)
vi. (3, 4) vii. (4, 5) viii. (4, 6) ix. (5, 6)
The rank of the all the edges of graph G̃ are computed
by the passing corresponding word of the arc into the
PCN().

2. The edge (2, 3) is the smallest arc which has smallest
among all the values of ranks of all the arcs in A. The
edge (2, 3) is inserted in T and the (1, 2) is removed
from the A. Now, the MSTW Tw is {(2, 3)}.

3. The arc (1, 2) is the minimum arc which has lowest
among all the values of ranks of all the arcs in A. The
arc (1, 2) is inserted in T and the (1, 2) is removed
from the A. Now, the MSTW Tw is {(2, 3) , (1, 2)}.

4. The arc (5, 6) is the lowest edge cost among all the
values in A. The arc (5, 6) is inserted in T and the
(1, 5) is removed from the A. Now, the MSTW Tw is
{(2, 3) , (1, 3) , (5, 6)}.

5. The arc (1, 3) is the lowest among all the values of rank
of all the arcs in A. The arc (1, 3) is not inserted in
T because it creates a cycle. The arc (1, 3) is removed
from the A. The arc (1, 5) is the next smallest arc is
lowest among all the values of score of all the arcs
in A and the (1, 5) is removed from the A. Now, the
MSTW Tw is {(2, 3) , (1, 2) , (5, 6) (1, 5)}.

6. The arc (4, 5) is the arc with lowest value
of all the arcs in A. The MSTW Tw is
{(2, 3) , (1, 2) , (5, 6) (1, 5) (4, 5)}.

Jarnk’s (Prim’s) algorithm is a well known greedy algorithm
that designs a MST for an undirected weighted classical
graph. This algorithm selects a set of the arcs that constructs
a tree which admits each and every nodes. This algorithmic
approach finds by construing this MST one node at a time.
This algorithm starts from an arbitrary node and each and
every step includes the minimum possible arc from the tree to
another node. We have also modified the Jarnik’s algorithm
to determine the MSTW. The result is shown in Table 2.
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TABLE II
OPTIMAL RESULT OF MSTW

Sol using LINGO Sol using Kruskal’s algorithm Sol using Jarnik’s algorithm Sol using Boruvka’s algorithm
Min Z= 47.9 Cost of MSTW= 47.9 Cost of MSTW= 47.9 Cost of MSTW= 47.9

x23 = 1, x12 = 1, x56 = 1 MSTW=(23)(12)(51)(45)(56) MSTW=(23)(12)(51)(45)(56) MSTW=(23)(12)(51)(45)(56)
x15 = 1,x45 = 1

TABLE III
OPTIMAL RESULT OF MSTW

Sol using LINGO Sol using Kruskal’s algorithm Sol using Jarnik’s algorithm Sol using Boruvka’s algorithm
Min Z= 60.76 Cost of MSTW= 60.76 Cost of MSTW= 60.76 Cost of MSTW= 60.76

x13 = 1, x34 = 1, x24 = 1 MSTW=(1,3)(3,4)(2,4)(4,5) MSTW=(1,3)(3,4)(2,4)(4,5) MSTW=(1,3)(3,4)(2,4)(4,5)
x45 = 1,x56 = 1,x58 = 1, x57 = 1 (5,6)(5,8)(5,7) (5,6)(5,8)(5,7) (5,6)(5,8)(5,7)

1

2

3

4

5

6

7

8

HIgh

Fairly low

Very high

Low

Fairly high

Not low Not high

Not high

High

very low

Not low

Very high

Very high

Fig. 6. The neutrosophic graph for Example 2.

The Boruvka’s algorithm is an another greedy algorithm
to find the MST in an undirected weighted classical graph.
This algorithm can work for a graph whose all arc lengths
are distinct, or a MST in the case of a undirected weighted
classical graph that is disconnected. We have also modified
the Boruvka’s algorithm to determine the MSTW. The result
is shown in Table 2.

We have used a LPP model to solve this problem. The
solution is obtain using LINGO. Table 2 describes the result
which is calculated by LINGO. A decision variable xi,j=1,
if any arc i, j is in the minimum spanning tree. The result of
Kruskal’s algorithm is also shown in Table 2. The solutions
of LINGO and our proposed algorithm are identical.

A. Example 2

We have considered an another neutrosophic graph in
Figure 6 with 8 vertices and 14 edges having words as
edge weights. We have used those edge weights of the
neutrosophic graph in the form of word, as described in
Table I. The eight different triangular neutrosophic num-
bers are used to represent those eight words. We ap-
ply our proposed algorithm to explore its corresponding
NMST of the neutrosophic graph. The edges of NMST
is depicted as dashed lines in Fig. 6. The MST is
{(3, 4), (1, 3), (4, 2), (5, 6), (5, 7), (5, 4), (5, 8)} and the cost
of this spanning tree 60.76.

We have used a LPP model to solve this problem. The
solution is obtain using LINGO. Table 3 describes the result

which is calculated by LINGO. A decision variable xi,j=1,
if any arc i, j is in the minimum spanning tree. The result of
Kruskal’s algorithm is also shown in Table 3. The solutions
of LINGO and our proposed algorithm are identical.

VI. CONCLUSION

In this study, we propose a new idea of CW to model the
simple words using neutrosophic set. The main purpose of
this work is on CW based on neutrosophic set for taking
subjective judgments. We defined this computing as percep-
tual neutrosophic computing. We have introduced a new ar-
chitecture for perceptual neutrosophic computing. The MST
problem with natural word as arc length of a neutrosophic
graph is described. We define this problem as CMSTW. We
use minimum spanning tree advisor to solve the problem.
A linear programming model for this CMSTW problem has
been presented for the first time. The standard optimization
solver LINGO is used to obtain the minimum spanning tree
of the neutrosophic graph. The classical Kruskal’s algorithm
is extended to solve the CMSTW problem. The MSTW
and its corresponding cost are the main information for the
decision makers in a MST problem. This paper aims at
finding the MSTW and its corresponding cost. One numerical
example is given to show the performance of the proposed
algorithm. This proposed algorithm can be used in future
to solve some decision making problems, e.g., supply chain
management, telecommunication and assignment problem.
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