
A Code Completion Problem in Java Programming
Learning Assistant System

Htoo Htoo Sandi Kyaw, Su Sandy Wint, Nobuo Funabiki, and Wen-Chung Kao

Abstract—As an efficient object-oriented programming lan-
guage, Java has been extensively used in a variety of applications
around the world. To assist Java programming educations, we
have developed a Java Programming Learning Assistant System
(JPLAS), which provides a great number of programming
assignments to cover different levels of learning. For the first
learning stage, JPLAS offers the element fill-in-blank problem
(EFP) to study Java grammar through code reading. EFP asks
students to fill in the blank elements in a given source code.
However, EFP can be solved relatively easily, because the choice
of the correct answer is limited for each explicit blank. In this
paper, we propose a code completion problem (CCP) to overcome
this drawback in EFP. To be specific, CCP does not explicitly
show the locations of missing elements in the code. Instead, CCP
will ask students to complete every statement in the code by
filling in the correct elements at the correct locations. When the
whole statement becomes equal to the original one, it is regarded
as the correct answer. For evaluations, we generated CCP
instances in both online/offline JPLAS, and asked university
students from Myanmar, Japan, China, Indonesia, and Kenya
to solve them. The results confirmed that CCP is harder than
EFP, the two-level marking and the hint function are effective in
improving solution performances of students, and the difficulty
level for EFP is applicable in CCP.

Index Terms—Java programming, JPLAS, code completion
problem, blank element selection algorithm, hint function,
difficulty level

I. INTRODUCTION

Nowadays, Java has been widely applied in societies and
industries due to its reliability, portability, and scalability.
Moreover, Java was selected as the most popular program-
ming language in 2019 [1]. Therefore, strong demands have
appeared from IT industries in expanding Java programming
educations. Correspondingly, a plenty of universities and
professional schools are offering Java programming courses
to meet this challenge. Generally, a Java programming course
consists of grammar instructions and programming exercises.

To advance Java programming educations by assisting pro-
gramming exercises, we have developed a Java Programming
Learning Assistant System (JPLAS). That is, JPLAS provides
various programming exercise problems, such as the element
fill-in-blank problem (EFP) [2][3], the value trace problem
(VTP) [4], the statement fill-in-blank problem (SFP) [5], and
the code writing problem (CWP) [6], to support self-studies
of Java programming at different learning stages. For any
exercise problem in JPLAS, the answer from a student is
marked automatically using the program in the system.

Manuscript received August 21, 2019; revised April 17, 2020.
Htoo Htoo Sandi Kyaw, Su Sandy Wint, and Nobuo Funabiki

are with the Department of Electrical and Communication Engineering,
Okayama University, Okayama, Japan, e-mail:pxs93q36@s.okayama-u.ac.jp
and funabiki@okayama-u.ac.jp.

Wen-Chung Kao is with the Department of Electrical En-
gineering, National Taiwan Normal University, Taipei, Taiwan, e-
mail:jungkao@ntnu.edu.tw.

Originally, JPLAS has been implemented as an online
Web application system, so that a teacher can easily manage
the JPLAS studies while numerous students are using a
single database. In this online JPLAS, the JPLAS server
adopts Linux for the operating system, Tomcat for the Web
application server, JSP/Java for application programs, and
MySQL for the database [7]. A student may freely access
to any problem in JPLAS and answer the questions using a
Web browser. Figure 1 demonstrates the software platform
for JPLAS.

JPLAS
(JSP/Java)

Tomcat
(Web server)

MySQL
(Database)

Linux (OS)

Fig. 1: JPLAS server platform.

In addition, the offline answering function has been imple-
mented to allow students to answer the problems in JPLAS
even if the Internet is unavailable [12]. For solving in this
offline JPLAS, the problem assignment delivery and answer
submission can be accomplished with a USB. A student can
answer the questions in EFP and VTP using a Web browser,
and those in SFP and CWP using Eclipse.

For the first learning stage, JPLAS offers the element fill-
in-blank problem (EFP) to study Java grammar through code
reading. In EFP, a Java source code with blank elements
is given to students, where the blanks are shown explicitly
in the code. Then, the students are requested to fill in the
blanks by typing the correct elements. An element represents
a least unit in a code, which includes a reserved word, an
identifier, and a control symbol. The correctness of each
answer from a student is verified through string matching
with the corresponding original element in the code.

In EFP, the original element in the source code must be
the unique correct answer for each blank to avoid causing
novice students confusions. Thus, we proposed a graph-based
blank element selection algorithm to select such elements
most automatically.

Nevertheless, in EFP, students will know where the blank
elements exist in the code, because they are shown explicitly.
Besides, each blank usually has a limited choice of elements
for the correct answer. As a result, they may solve EFP
without reading the code carefully or entirely understanding
the grammar and code structure.

In this paper, we propose a code completion problem
(CCP) [9] to overcome the drawback of EFP. In contrast to
EFP, CCP does not show where the missing elements exist.

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_03

Volume 47, Issue 3: September 2020

__

Then, it will ask students to complete each statement by
filling in the correct elements at the ideal positions. When
the whole statement becomes equal to the original in string
matching, it is regarded as the correct answer.

For evaluations, we implemented the CCP instance gener-
ating program by modifying the program and the answering/-
marking interface for EFP in both online/offline JPLAS [10].
Then, we generated six CCP instances using highly readable
source codes [11] that were obtained by applying the coding
rule check function [12] to the original codes, and asked 20
university students from Myanmar, Japan, China, Indonesia,
and Kenya to solve them with the answer interface. The
results confirmed that CCP is harder than EFP, and the two-
level marking and the hint function are effective in improving
solution performances of students for CCP.

The rest of this paper is organized as follows: Section II
discusses related works in literature. Section III reviews
our preliminary works to CCP. Section IV proposes CCP.
Section V and VI present the implementation of CCP for
offline and online respectively. Section VII evaluates CCP.
Finally, Section VIII concludes this paper with future work.

II. RELATED WORKS IN LITERATURE

In this section, we discuss works in literature related to the
automatic marking of student answers and the programming
study through code reading.

In [13], Brusilovsky et al. developed the QuizPACK system
that can generate parameterized exercises for the C language
and automatically evaluate the correctness of student answers
by comparing them to the correct ones provided by the
teacher.

In [14], Ihantola et al. presented a systematic literature
review for automated assessments of programming assign-
ments, which includes major features and approaches from
the pedagogical and technical points of view.

In [15], Jin et al. described a new technique to represent,
classify, and use source codes written by novices as the base
for the automatic hint generation for programming tutors,
using the linkage graph representation. The linkage graph
representation is used to record and reuse a student work
as a domain model and use an overlay comparison between
the in-progress work and the complete solution in a twist on
the classic approach to the hint generation. The algorithm
mentioned in this paper could generate hints over 80% of
the problems that students will encounter.

In [16], Tung et al. developed a programming exercise
management system, namely Programming Learning Web
(PLWeb), which consists of two main components, the server
and the integrated development environment (IDE). The IDE
in PLWeb, which is a modified version of jEdit [17], is used
not only as the authoring tool for instructors to compose
exercises but also as the novice-friendly editor for students
to study programming and to submit their solutions. For
the automatic marking of student programs, the IDE calls
the pre-installed compiler in their computers to compile and
execute them in the editing area.

In [18] Ichinco et al. performed an exploratory study of
novices using examples to complete programming tasks. To
analyze programming behaviors, they defined the “realization
point” as the time when a participant discovered the crucial
concept in an example. It is observed that a participant may

take a long time to reach the realization point because the
time he/she spent on executing the example code was longer
than on reading the example code.

In [19], Staubitz et al. described how practical program-
ming exercises could be provided, and examined the land-
scape of potentially helpful tools for automated assessments
in massive open online courses. They discussed various
automated assessment methods including the coding style
assessment, which is similar to the coding rule learning
function in our study.

In [20], Griffin discussed several lines of research, in order
to support the premise that people learning programming
can do more effectively and efficiently if they spend as
much time on deconstructing codes as on writing codes.
The term deconstruction is referred to as reading, tracing,
and debugging a code.

In [21], Keuning et al. performed a systematic literature
review of a variety of automated feedback generation tools
to identify what kind of feedback is provided, what tech-
niques are used to generate the feedback, how adaptable the
feedback is, and how these tools are evaluated. This review
is useful in implementing new automatic marking and hint
functions.

In [22], Kakeshita et al. developed a programming educa-
tion support tool called Pgtracer. Pgtracer utilizes fill-in-the-
blank questions composed of a source code and a trace table.
The blanks in the code and the trace table must be filled by
the students to improve the code reading while solving the
questions.

In [33], Yokata et al. developed a web application of
an adaptive tutoring system with formative assessment. The
formative assessment is generated using Educator’s knowl-
edge structure map, Learner’s knowledge structure map and
the relative distance which measures the difference between
the machine generated solution and user’s solution evaluated
at some point. The system generates the mathematical ex-
pression as a problem and automatically check the learner’s
answer and give hint from the formative assessment to let
the learner notice his/her mistakes.

In [34], Satoh et al. described a technique to make
code/output correspondence in runtime of a given program
for program understanding. Program understanding is impor-
tant for novice programmers, because they need to read and
understand sample program code as a previous step of writing
codes. This technique is applied in program visualization tool
which has two panes, a code reviewer and an output text area.
The tool let the student to read the program code in a code
reviewer pane and when a student clicks a statement in the
program code, the tool highlights the output of that statement
in the output text area.

In [35], Fei et al. analyzed various VB programming
automatic scoring method. The method consists of dynamic
evaluations of the function of event codes of students’
programs and static evaluations of interfaces’ designs, re-
spectively. In a dynamic scoring, API Hook is applied to
record the messages which are triggered by any human
operators while the standard answer programs are being run;
meanwhile, the system uses VB 6.0 to compile and run
students’ programs, and it will send the recorded messages
to the running students’ programs to drive them to run auto-
matically, then sends out the results of students’ programs,

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_03

Volume 47, Issue 3: September 2020

__

which is at running, to the specified file with the output
code, and match the results with the standard answers. In
a static scoring, string matching algorithms are used to carry
on form information matching, control information in a form
matching, event keyword matching. The test results show
that automatic scoring method results are stable, and they
are consistent with the results of manual reviewers.

In [36], Yokota et al. developed a mathematic learning
software named JCALC as an adaptive tutoring system.
The educators’ knowledge structure is utilized to diagnose
a student’s knowledge structure. For students to encourage
continue studying by using JCALC, not only hint giving
function but also learning management function is provided.
Hint is first displayed by explaining what to do to solve the
problem. Still if students cannot solve although referring to
the first hint, second hint is provided by displaying the hint
for which the experienced educator give.

In [37], Jain et al. developed an educational tool for
understanding algorithm building and learning programming
language. The tool provides an innovative and a unified
graphical user interface for development of multimedia ob-
jects, educational games and applications. It also provides an
innovative method for code generation to enable students to
learn the basics of programming languages using drag-n-drop
methods for image objects.

In [38], Lun et al. studied component interaction testing
to examine quality of software architecture. Components are
used to composite the software architecture and communicate
with each other by their interfaces. The authors presented a
set of component path coverage criteria for the test, and two
algorithms to realize the automatic generation of the corre-
sponding component paths according to the criteria and an
experimental method to analyze the component interaction.
This component interaction testing should be considered to
obtain high quality source codes for CCP in future works.

In [39], Zaw et al. proposed the informative test code
approach to the code writing problem in JPLAS for study-
ing the three important object-oriented programming con-
cepts, namely, encapsulation, inheritance, and polymor-
phism, which should be mastered by every student. The test
code describes the necessary information including names,
access modifiers, data types of member variables and meth-
ods, to implement the source code using the concepts. By
writing a source code to pass the test code, a student can
learn how to use them.

III. PRELIMINARY WORKS

In this section, we review the element definition, the
blank element selection algorithm, and the coding rule check
function as our preliminary works to the code completion
problem in this paper.

A. Element Definition

An element is defined as the least unit of a source code,
which covers a reserved word, an identifier, a conditional
operator, and a control symbol. A reserved word signifies
a fixed sequence of characters that has been defined in the
Java grammar to represent a specific function. It is expected
that students should master the proper use of a reserved
word in learning programming. An identifier is a sequence

of characters defined in the code by the author to represent a
variable, a class, or a method. A conditional operator is used
in a conditional statement to determine the state. A control
symbol in this paper indicates other grammar elements such
as “.” (dot), “:” (colon), “;” (semicolon) , “ (,) ” (bracket),
“{, }” (curly bracket).

B. Blank Element Selection Algorithm

The blank element selection algorithm selects a maximal
number of feasible blank elements from a given source code
using a graph theory [2]. The first step of the algorithm
generates the compatibility graph by selecting a candidate
element for blank from the source code as a vertex and then,
by connecting a pair of vertices with an edge if they can be
blanked together. To fulfill this purpose, the conditions that
a pair of elements cannot be blanked simultaneously have
been defined.

The second step extracts a maximal clique [23] of the
compatibility graph, in order to locate a maximal set of
feasible blank elements. Empirically, it has been observed
that EFP becomes more difficult as a larger number of
elements are blanked [2]. By blanking a subset of the selected
elements, a variety of fill-in-blank problems can be generated
with different levels.

The details of the algorithm procedure are described as
follows:

1) Vertex generation for constraint graph: each possible
element for being blank is selected from the source
code and is regarded as a vertex of a constraint graph.

2) Edge generation for constraint graph: an edge is
generated between any pair of two vertices or elements
that should not be blanked at the same time to satisfy
the uniqueness.

3) Compatibility graph generation: by taking the comple-
ment of the constraint graph, the compatibility graph
is generated to represent the pairs of elements that can
be blanked simultaneously.

4) Clique extraction: a maximal clique of the compatibil-
ity graph is generated by a simple greedy algorithm
to detect the maximal number of blank elements with
unique answers from the given Java code. This greedy
algorithm repeats to: 1) select the vertex that has the
largest degree in the compatibility graph for the clique,
2) remove this vertex and its non-adjacent vertices of
the graph, until the graph becomes null.

5) Fill-in-blank problem generation: the ratio between the
number of blanks for control symbols and that for other
elements is controlled.

C. Coding Rule Check Function

The coding rules [12] represent a set of the rules or
conventions for producing source codes of high quality. By
following the coding rules, the uniformity of the code will be
maintained, which enhances the readability, maintainability,
and scalability. The coding rules consist of naming rules,
coding styles, and potential problems. We have implemented
the coding rule check function to automatically confirm
whether the source code follows the coding rules, and
suggest the code parts that do not follow them if available.

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_03

Volume 47, Issue 3: September 2020

__

1) Naming Rules : naming rules describe the rules for
identifying the naming errors in the source code. Here,
the Camel case [24] is adopted as the common Java
naming rule. For an identifier representing a variable,
a method, or a method argument, the top character
should be a lower case, where the delimiter character
between two words should be an upper case. For an
identifier representing a class, both of them should be
an upper case. For an identifier representing a constant,
any character should be an upper case. An English
word should be used as an identifier name, whereas
Japanese or Roman Japanese should not be used.

2) Coding Styles : coding styles indicate the rules for
detecting the layout errors in the source code. They
include the position of an indent or a bracket, and the
existence of a blank space. By following the coding
styles, the layout of a source code will become more
consistent and readable.

3) Potential Problems : potential problems illustrate the
rules for discovering the portions of the source code
that can pass the compilation but may induce functional
errors or bugs with high possibility. They include a
dead code and overlapping codes. A dead code repre-
sents the portion of the source code that is not executed
at all, and overlapping codes signify the multiple por-
tions in the source code that have similar structure and
functions to each other. By solving potential problems,
the code can not only improve the maintainability and
scalability but speed up the execution.

IV. PROPOSAL OF CODE COMPLETION PROBLEM

In this section, we propose the code completion problem
(CCP) in JPLAS.

A. Overview of CCP

In CCP, a source code with several missing elements is
shown to the students without specifying their existences.
Then, a student needs to locate the missing elements in the
code and fill in the correct ones there. The correctness of the
answer from a student is verified by applying string matching
to each statement in the answer to the corresponding orig-
inal statement in the code. Only if the whole statement is
matched, the answer for the statement will become correct.
Furthermore, merely one incorrect element will result in the
incorrect answer.

B. CCP Instance Generation Procedure

An instance of CCP can be generated through the follow-
ing five steps:

1) Select a source code from a Website or a textbook that
is worth of reading to study the current topic.

2) Apply the coding rule check function to the source code
and fix the errors in the code if found.

3) Register each statement in the source code as the
correct answer unit for string matching.

4) Apply the blank element selection algorithm to select
the blank elements from the source code.

5) Remove the selected blank elements from the source
code to generate the problem code in a new CCP
instance.

1 import java.math.BigInteger;
2 /**
3 * FibonacciCalculator
4 * @author student
5 */
6public class FibonacciCalculator {
7 private static final BigInteger TWO = BigInteger.valueOf(2);
8 /**
9 * recursive fibonacci method

10 * @param number : to calculate fibonacci
11 * @return BigInteger : returns the fibonacci result
12 */
13 public static BigInteger calculateFibonacci(BigInteger

number) {
14 if (number.equals(BigInteger.ZERO) || number.equals(

BigInteger.ONE))
15 return number;
16 else
17 return calculateFibonacci(number.subtract(BigInteger.

ONE))
18 .add(calculateFibonacci(number.subtract(TWO)));
19 }
20 /**
21 * displays the fibonacci values from 0−40
22 * @param args used
23 * @return Nothing
24 */
25 public static void main(final String[] args) {
26 for (int counter = 0; counter <= 40; counter++)
27 System.out.println("Fibonacci of " + counter +

" is: "
28 + calculateFibonacci(BigInteger.valueOf(counter)));
29 }
30}

Fig. 2: Code 1

By using the Java programs and the Bash script, this proce-
dure can be executed automatically.

C. Example of CCP Instance Generation

Next, we explain the details of each step for the CCP
instance generation using a sample code.

1) Source Code Selection: As a sample code, the class
FibonacciCalculator is selected here. This class generates Fi-
bonacci series, 0,1,1,2,3,5,8,13,21,. . . , recursively, such that
each subsequent number becomes the sum of the previous
two numbers [25]. There are two base cases: Fibonacci(0)
and Fibonacci(1).

2) Application of Coding Rule Check Function: The cod-
ing rule check function is applied to the source code for class
FibonacciCalculator. Figure 2 shows the corrected source
code after the application.

3) Application of Blank Element Selection and Removal:
Then, the blank element selection algorithm is applied to the
corrected source code to select the blank elements. Finally,
the selected blank elements are removed from the code as
shown in Figure 3.

D. Problem Solution by Student

A student can solve CCP instances using the answering
interface on a Web browser either offline or online, according
to the availability of the Internet connection. In the interface,
each input form corresponds to one statement in the source
code. Then, the student needs to complete each statement by
filling in all the missing elements at each input form.

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_03

Volume 47, Issue 3: September 2020

__

1 import java.math.BigInteger;
2 /**
3 * FibonacciCalculator
4 * @author student
5 */
6public FibonacciCalculator {
7 private BigInteger TWO = BigInteger.valueOf(2);
8 /**
9 * recursive fibonacci method

10 * @param number : to calculate fibonacci
11 * @return BigInteger : returns the fibonacci result
12 */
13 public BigInteger calculateFibonacci(BigInteger number) {
14 if (number.equals(BigInteger.ZERO) || .equals(.ONE))
15 return number;
16
17 calculateFibonacci(numbersubtract(BigInteger.ONE))
18 .add(calculateFibonacci(number.subtract()));
19 }
20 /**
21 * displays the fibonacci values from 0−40
22 * @param args used
23 * @return Nothing
24 */
25 public void main(final [] args) {
26 (int counter = 0; counter <= 40;++)
27 .out.("Fibonacci of " + + " is: "
28 + (BigInteger.valueOf(counter)));
29 }
30}

Fig. 3: Code 2

E. Two-Level Answer Marking

The answer is marked through string matching of the
whole statement on the JPLAS server using the Java program
for online, or at the student browser using the JavaScript
program for offline. The statement in the student answer
and the corresponding statement in the original code are
compared.

This marking is executed in two levels in our implemen-
tation. The first level marking is to compare the statements
after removing the spaces and tabs from them [26]. In Java
grammar, any number of spaces or tabs can be inserted in
the statement. Besides, it is difficult to distinguish between
multiple spaces and one tab. To avoid confusions of novice
students, the first level marking does not consider the spaces
and tabs in string matching.

However, to encourage a student to be aware of readable
code which follows the coding rules, the locations of tabs
and spaces are important. Thus, the second level marking is
to compare the statements including the spaces and tabs. If
the answer code contains a missing tab or space, or extra
one, the warning feedback will be returned to the student in
the answering interface.

V. IMPLEMENTATION FOR OFFLINE JPLAS

In this section, we present the implementation of the code
completion problem for offline JPLAS.

A. Operation Flow

Figure 4 illustrates the operation flow for CCP in offline
JPLAS.

1) CCP instance download: a teacher accesses to the
JPLAS server, selects the CCP instances for the as-
signment, and downloads the required files into the
own PC on online.

TABLE I: Files for distribution.

File name Outline
css CSS files for Web browser

index.html HTML file for Web browser
page.html HTML file for correct answers

jplas2015.js js file for reading the problem list
distinction.js js file for checking the correctness of answer

jquery.js js file for use of jQuery
sha256 js file for use of SHA256

storage.js js file for Web storage

2) Assignment distribution: the teacher distributes the
assignment files to the students by using a file server
or USB memories.

3) Assignment answering: the students receive and install
the files on their PCs, and answer the CCP instances in
the assignment using Web browsers on offline, where
the correctness of each answer is verified instantly at
the browsers using the JavaScript program.

4) Answering result submission: the students submit their
final answering results to the teacher by using a file
server or USB memories.

5) Answering result upload: the teacher uploads the an-
swering results from the students to the JPLAS server
to manage them.

B. File Generation

Table I shows the necessary files with their specifications
for CCP in offline JPLAS. These files are designed for view,
marking, and answer storage.

C. Cheating Prevention

In offline JPLAS, the correct answers need to be dis-
tributed to the students so that their answers can be verified
instantly on the browser. To prevent disclosing the correct
answers, they will be distributed after taking hash values
using SHA256 [27]. In addition, to avoid generating the same
hash values for the same correct answers, the assignment
ID and the problem ID are concatenated with each correct
answer before hashing. Then, the same correct answers for
different blanks are converted to different hash values, which
ensures the independence among blanks.

D. Problem Answer Interface

Figure 6 illustrates the answering interface for CCP on a
Web browser in offline JPLAS. “Problem Code” shows the
problem code of the CCP instance. “Answer Code” shows the
answer forms where each line corresponds to one statement
in the problem code that may involve missing elements.
Then, a student is requested to complete every statement by
filling in all the missing elements with each form.

With the default browser function, “tab” cannot be input
to insert a tab in the statement, since it is used to move
to another input form. However, the second-level marking
for CCP checks the correctness of the tabs. Thus, in our
implementation, the input of “tab” is made possible in the
answering interface by the adopting JavaScript function
shown in Figure 5 [26]:

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_03

Volume 47, Issue 3: September 2020

__

JPLAS server
Student PC

1) Assignments

download

Teacher PC

2) Assignments

distribution

3) Assignments answering

4) Answering
results

submission

5) Answering
results
upload

Online Offline

Fig. 4: Operation flow for CCP in offline JPLAS.

1 function enableTab(){
2 var textareas = document.getElementsByName(’intext’);
3 var count = textareas.length;
4 for (var i = 0; i < count; i++) {
5 textareas[i].onkeydown = function(e) {
6 if(e.keyCode == 9 || e.which == 9) {
7 e.preventDefault();
8 var s = this.selectionStart;
9 this.value = this.value.substring(0,this.selectionStart) + "

" + this.value.substring
10 (this.selectionEnd);
11 this.selectionEnd = s+1;
12 e.preventDefault();
13 return false;
14 }
15 }
16 }
17}

Fig. 5: Code 3

E. Answer Marking

When a student clicks the answer button in the interface,
the two-level marking is applied.

1) First-level Marking: First, the first-level marking ap-
plies to the answer. Here, after any space or tab is removed
from the answer code, each statement is compared with the
correct one without a space or tab. If they are different, the
corresponding input form of the statement is highlighted by
pink to suggest that at least one character in the answer
statement is different from the correct one, and the marking
is aborted. Otherwise, the following second-level marking is
applied.

2) Second-level Marking: In the second-level marking,
the whole statement, including spaces and tabs, will be
compared between the answer code and the original code.
If they are different, it is highlighted in yellow. Otherwise,
the form is not highlighted at all.

F. Hint Function

To help a student who submits the answer for a plenty of
times and still cannot solve a CCP instance, the hint function
will be implemented. This function can be initiated after
a certain number of incorrect submissions and be used by
requesting the incorrect statement number [28].

The bottom two rows in Figure 6 show the input and
output of the hint function. Here, the student inputs “3” as
the incorrect statement number to request the hint. Then,
the hints on the corresponding statement appear, such that

the location of the missing element, int, is highlighted with
blue, and the mistyped element, tmp, is highlighted with
purple. It is noted that tmp should be temp. By referring
to the highlighted elements, it is expected that the student
can solve them.

G. Answer Result Submission

All the answering results of a student are kept in the
browser using localStorage for Web Storage [29]. It can store
up to 5MB data and keep it even after the shutdown of the
PC. With this tool, students are allowed to keep an eye on
their progress of studies for the assignments.

When a student submits the results, all the answering re-
sults in the Web storage are written into a text file. Then, the
student submits this text file by using a USB memory or an E-
mail to the teacher. To prevent the student from falsifying or
plagiarizing the results of other students at submissions, the
message authentication technique is adopted. Using SHA256
[27], the hash value of the answering result with the student
ID is calculated before submission. Then, the coincidence
between this hash value and that of the submitted data is
evaluated.

VI. IMPLEMENTATION FOR ONLINE JPLAS

In this section, we present the implementation of the code
completion problem for online JPLAS.

A. Problem Data in Database

In online JPLAS, each instance in any problem type is
managed by a single text field in the corresponding table in
the MySQL database. This problem data field contains the
markers shown in Table II to manage various data that are
necessary for each problem type.

TABLE II: Markers in problem data field.

Marker description
//@JPLAS answer following paragraph contains correct

answers
//@JPLAS statement following paragraph contains problem

statement
//@JPLAS output following paragraph contains html format

data for interface
null problem code

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_03

Volume 47, Issue 3: September 2020

__

Fig. 6: Interface of problem answering in offline JPLAS.

B. Problem Answer Interface

The answer interface for offline JPLAS including the hint
function is used for online JPLAS. Thus, a student can use
both the offline and online JPLAS easily. The submitted
answer is stored in the database directly.

C. Answer Marking

The two-level marking for offline JPLAS is also applied
for online JPLAS. The implementation in the server adopts
the responsibility chain design pattern. Here, first, the string
matching test is performed at the two-level marking for
CCP. Then, if this test is passed, the compiling test will
be automatically initiated to examine the correctness of the
answer code, because the first-level test excludes the spaces
and tabs from it.

VII. EVALUATIONS

In this section, we evaluate the code completion problem
(CCP) for Java programing study in four steps. The first
step evaluates the difficulty of CCP if compared with EFP.
The second step evaluates the effectiveness of the two-level
marking and the hint function implemented in CCP. The third
step investigates the effect of CB for CCP instances. And
finally, the fourth step observes how the readability of the
source code affects the solution performance by students.

A. First-Step Evaluation

In the first-step evaluation, we excluded the first-level
marking and the hint function from the answer interface for
CCP in both offline/online JPLAS, because they were not
implemented for EFP.

1) Problem Instances: To compare the solution perfor-
mances by students between CCP and EFP, we generated six
pairs of CCP and EFP instances such that the two instances
in each pair appear to have the similar level of difficulty.
Table III shows their overviews. The generated instances are
divided into two groups by selecting one instance from each
of the six pairs, so that each group consists of three CCP
and EFP instances, respectively.

TABLE III: Instances for first-step evaluation.

pair grammar LOC #of missing elements
ID topic CCP EFP CCP EFP
1 variable 23 14 15 16
2 array 17 30 18 19
3 collection 30 17 19 18
4 recursive 14 23 16 15
5 method overloading 20 25 24 6
6 polymorphism 25 20 6 24

2) Solution Results by Students: Then, we asked 20
university students from Myanmar, Japan, China, Indonesia,
and Kenya who have studied Java programming for more
than one year to solve the generated instances in either group.
That is, each student is randomly assigned one group, such
that the equal number of students will solve one group.

Table IV demonstrates the average and the standard de-
viation (SD) of the correct solution rates (%) per student
for CCP and EFP. Clearly, CCP exhibits the worse result
than EFP, although the original source codes have similar
difficulties and the same number of blanks was generated
from the same source code. This result has confirmed that
CCP is more difficult than EFP, which requires more careful
code reading.

TABLE IV: Summary of correct solution rates for first-step
evaluation.

correct rate (%) CCP without improvements EFP
ave. 82.46 93.92
SD 16.95 9.36

3) T-test Verification: To confirm the above-mentioned
result statistically, T-test was applied here, which can de-
termine if the two sets of data are significantly different
from one another. T-test is one of the statistical tests used
for hypothesis testing.

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_03

Volume 47, Issue 3: September 2020

__

The null hypothesis is assumed to show no difference
between the solution results for CCP and those for EFP.
Then, it is decided to accept or reject this null hypothesis.
According to [30], there are two approaches to determine
whether the null hypothesis is accepted or rejected. In the
critical value approach, if test statistics is greater than
critical value, the null hypothesis will be rejected in favor
of the alternative hypothesis. In the P-value approach, if P-
value is less than or equal to Alpha-level, the null hypothesis
is rejected. In this paper, we adopt both approaches.

Table V indicates the T-test result. In Table V, test statistics
is greater than test critical, which means the rejection of the
null hypothesis. Also, P-value is smaller than Alpha-level,
which means the rejection of it. Therefore, it is concluded
that the solution result statistics of students are significantly
different between the two problems, and the code completion
problem is more challenging than the element fill-in-blank
problem.

TABLE V: T-test result for first-step evaluation.

observation 20
test statistics 2.645645529

test critical two-tail 2.042272456
Alpha-level 0.05

P(T≤t) two-tail 0.012854482

4) Problem Complexity Analysis: To mathematically ana-
lyze the solution difficulty difference between CCP and EFP,
the total number of possible answer selections for the same
blanks generated from the same source code is compared, as-
suming that the solution for any blank is selected completely
randomly. The following notations are used:

• NCCP : total number of answer selections for CCP
• NEFP : total number of answer selections for EFP
• s: number of statements in the code
• n: number of blank elements at one statement
• m: number of candidate elements to fill in each blank
In CCP, the answers for all the blanks at one statement

must be selected at the same time. Thus, all the possible
combinations of the candidates for each statement must be
considered, which is given by O(mn). Hence, NCCP is given
by O(mn × s).

In EFP, the answer for each blank can be selected inde-
pendently. Thus, the total number of selections to fill in all
the blanks is proportional to the total number of blanks. As
a result, NEFP is given by O(m× n× s).

In the above example code 2, five statements have one
blank, four statements have two blanks, and one statement
has three blanks. If m = 50 is assumed, NEFP is 800 (=
50×16), and NCCP is 135, 250 (= 50×5+502×4+503×1).

B. Second-Step Evaluation

In the second-step evaluation, we assessed the effects of
the first-level marking and the hint function in the answer
interface for CCP, which have been implemented to improve
the correct solution rate.

1) Improved Answer Interface: The first-level marking
compares the answer code with the original source code
without considering the tabs and spaces. The marking in
the first-step evaluation includes the tabs and spaces in the

code. Thus, students must fill in the tabs and spaces at the
same locations of the original code, which can make CCP
too difficult for them.

The hint function suggests the locations of errors in the
answer code when a student requests it. This function is
available after he/she fails to answer it correctly at certain
times. By referring to the hints, it is expected that a student
can solve the CCP instance even if he/she cannot come up
with a solution after submitting the answer several times.

2) Solution Results by Students: For the second-step eval-
uation, the same six CCP instances in the first-step evaluation
were applied to 20 students who are different from the first-
step evaluation. Table VI shows the average and the standard
deviation (SD) of the correct solutions rates (%). Clearly the
correct solution rate was improved here by adopting the first-
level marking and the hint function.

TABLE VI: Summary of correct solution rates for second-
step evaluation.

correct rate (%) CCP with improvements
ave. 99.55
SD 1.49

3) Difficult CCP Instance: The correct solution rate for
each student becomes close to 100% in the second-step
evaluation. However, two students did not reach 100% at ID
4. To analyze the reason, this instance will use the source
code in Figure 2 that generates Fibonacci series, 0, 1, 1,
2, 3, 5, 8, 13, 21, ..., recursively. In Fibonacci series, each
subsequent number becomes the sum of the previous two
numbers [25]. Besides, this source code uses BigInteger class
that can be used for mathematical operations that involve big
integers that can be outside of the range of a primitive data
type [31]. Due to the use of the recursive call and BigInteger
class, this problem becomes difficult for them. It will be
critical to prepare more materials to study these hard topics
using JPLAS including CCP, which will be in future works.

C. Third-Step Evaluation
In the third-step evaluation, we investigate how the contin-

uous blank number CB [3] affects the solution performance
of students. CB represents the maximum number of contin-
uously blanked elements in a problem code. It is introduced
to control the difficulty, because a problem code becomes
harder in general when more blanked elements continue. The
answer interface in the second step evaluation is used here.

1) Problem Assignment to Students: In this evaluation,
we selected six source codes that are different from the
previous evaluations but have similar difficulty, and generated
problem codes with CB = 3. Then, we asked 11 students
in Myanmar, Japan, Indonesia, and Kenya who have studied
Java programming for more than one year, to solve each
problem within five minutes. Table VII shows the problem ID
(PID), the grammar topic, LOC, and the number of missing
elements in each problem. When compared with Table III for
CB = 1, the number of missing elements is much increased
while LOC is similar.

2) Solution Performance by Students: Table VIII shows
the average and the standard deviation (SD) of the correct
solution rates (%) in the third-step evaluation. When com-
pared with Table VI, the average is decreased and the SD is

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_03

Volume 47, Issue 3: September 2020

__

TABLE VII: Instances for third-step evaluation.

problem ID grammar topic LOC #of missing elements
1 wrapper class 23 41
2 class: method 23 33
3 exception 26 24
4 recursive 17 30
5 class: method 29 65
6 class: method 17 29

TABLE VIII: Summary of correct solution rates for third-
step evaluation.

correct rate (%) CCP with CB = 3
ave. 88%
SD 6.02

increased, which implies that the larger CB can increase the
difficulty of CCP.

3) Correlation between Difficulty Level and Correct Rate:
Then, we analyze the correlation between the difficulty level
in [32] and the correct solution rate by the students in the
second and third-step evaluations. Difficulty level has been
introduced as the index to represent how difficult an element
fill-in-blank problem (EFP) is to students. Figure 7 indicates
that the strong correlation (r = −0.76) exists between the
difficulty level and the correct rate. Thus, it is concluded that
difficulty level is a proper index for CCP and a larger CB can
increase the difficulty for CCP.

Fig. 7: Correlation between difficulty level and correct rate.

D. Fourth-Step Evaluation

In the fourth-step evaluation, we observe how the read-
ability of the source code affects the solution performance
by students in CCP. Again, the improved answer interface is
adopted.

1) Problem Assignment to Students: As less-readable
source codes for students, we newly choose six codes that
may have an unfamiliar library class of “BigInteger”, a large
LOC, or very short identifier names such as “h”, “m”, or “s”,

TABLE IX: Instances for fourth-step evaluation.

problem ID grammar topic LOC #of missing elements
1 method overloading 20 10
2 recursive 13 13
3 looping 9 7
4 exception 51 27
5 exception 47 25
6 recursive 24 12

TABLE X: Summary of correct solution rates for fourth-step
evaluation.

correct rate (%) CCP
ave. 75.57%
SD 9.74

and generate CCP instances in Table IX. Then, we asked 14
students in Myanmar, Japan, China, Indonesia, and Kenya to
solve them.

2) Solution Performance by Students: Table X shows the
result summary in the fourth-step evaluation. When com-
pared with Tables VI and VIII, the solution performance by
students becomes worst. Thus, the readability of source codes
should be carefully examined at generating CCP instances for
novice students.

3) Correlation between Difficulty Level and Correct Rate:
Then, we analyze the correlation between the difficulty level
and the correct solution rate in the fourth-step evaluation.
Again, Figure 8 suggests the strong correlation (r = −0.96)
between them.

Fig. 8: Correlation between difficulty level and correct rate.

VIII. CONCLUSION

In this paper, we proposed the code completion problem
(CCP) for Java Programming Learning Assistant System
(JPLAS). CCP asks students to complete the given source
code by filling in the correct elements at the correct positions
without explicitly showing the locations of the blanks, unlike
the element fill-in-blank problem (EFP). For evaluations, we
generated CCP instances, and asked university students in
Myanmar, Japan, China, Indonesia, and Kenya to solve them.
The results confirmed the effectiveness of CCP with the two-
level marking and the hint function in Java programming
study, and the difficulty level for EFP in CCP. In future
works, we will prepare materials to study hard grammar and
programming topics using JPLAS, generate a variety of CCP
instances, and apply them in Java programming courses.

REFERENCES

[1] Interactive: The Top Programming Languages,
IEEE Spectrum, https://spectrum.ieee.org/static/
interactivethe-top-programming-languages-2019.

[2] Nobuo Funabiki, Tana, Khin Khin Zaw, Nobuya Ishihara, and Wen-
Chung Kao, “A Graph-based Blank Element Selection Algorithm for
Fill-in-blank Problems in Java Programming Learning Assistant Sys-
tem,” IAENG International Journal of Computer Science, vol. 44, no.
2, pp247-260, 2017.

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_03

Volume 47, Issue 3: September 2020

__

[3] Tana, Nobuo Funabiki, Khin Khin Zaw, Nobuya Ishihara, Shinpei
Matsumoto, and Wen-Chung Kao, “A Fill-in-blank Problem Workbook
for Java Programming Learning Assistant System,” Internal Journal of
Web Information Systems, vol. 13, no. 2, pp140-154, 2017.

[4] Khin Khin Zaw, Nobuo Funabiki, and Wen-Chung Kao, “A Proposal of
Value Trace Problem for Algorithm Code Reading in Java Programming
Learning Assistant System,” Information Engineering Express, vol. 1,
no. 3, pp9-18, 2015.

[5] Nobuya Ishihara, Nobuo Funabiki, and Wen-Chung Kao, “A Proposal
of Statement Fill-in-blank Problem using Program Dependence Graph
in Java Programming Learning Assistant System,” Information Engi-
neering Express, vol. 1, no. 3, pp19-28, 2015.

[6] Nobuo Funabiki, Yukiko Matsushima, Toru Nakanishi, Kan Watanabe
and Noriko Amano, “A Java Programming Learning Assistant System
using Test-driven Development Method, ” IAENG International Journal
of Computer Science, vol. 40, no.1, pp38-46, 2013.

[7] Nobuya Ishihara, Nobuo Funabiki, Minoru Kuribayashi, and Wen-
Chung Kao, “A Software Architecture for Java Programming Learning
Assistant System,” International Journal of Computer & Software
Engineering, vol. 2, no. 1, pp116-122, 2017.

[8] Nobuo Funabiki, Hiroki Masaoka, Nobuya Ishihara, I-Wei Lai, and
Wen-Chung Kao, “Offline Answering Function for Fill-in-blank Prob-
lems in Java Programming Learning Assistant System,” Proceedings of
IEEE International Conference on Consumer Electronics-Taiwan 2016,
27-29 May, Nantou, Taiwan, pp324-325.

[9] Htoo Htoo Sandi Kyaw, Shwe Thinzar Aung, Hnin Aye Thant, and
Nobuo Funabiki, “A Proposal of Code Completion Problem for Java
Programming Learning Assistant System,” Proceedings of The 10-th
International Workshop on Virtual Environment and Network-Oriented
Applications 2018, 4-6 July, 2018, Matsue, Japan, pp855-864.

[10] Htoo Htoo Sandi Kyaw, Nobuo Funabiki, Nobuya Ishihara, Minoru
Kuribayashi, and Khin Khin Zaw, “Implementation of Code Completion
Problem in Online Java Programming Learning Assistant System, ”
Proceedings of The Institute of Electronics, Information and Commu-
nication Engineering General Conference 2019, 19-22 March, Tokyo,
Japan, pp93-94.

[11] Dustin Boswell and Trevor Foucher, The art of readable code, O’Reilly,
2011.

[12] Nobuo Funabiki, Takuya Ogawa, Nobuya Ishihara, Minoru Kurib-
ayashi, and Wen-Chung Kao, “A Proposal of Coding Rule Learning
Function in Java Programming Learning Assistant System,” Proceed-
ings of The 8th International Workshop on Virtual Environment and
Network-Oriented Applications 2016, 6-8 July, Fukuoka, Japan, pp561-
566.

[13] Peter Brusilovsky and Sergey Sosnovsky, “Individualized Exercises
for Self-assessment of Programming Knowledge: An Evaluation of
QuizPACK,” Journal on Educational Resources in Computing, vol. 5,
no. 6, 2005.

[14] Petri Ihantola, Tuukaa Ahoniemi, Ville Karavirta, and Otto Seppala,
“Review of Recent Systems for Automatic Assessment of Programming
Assignments,” Proceedings of The 10th Koli Calling International
Conference on Computing Education Research 2010, October, Koli,
Finland, pp86-93.

[15] Wei Jin, Tiffany Barnes, John Stamper, Michael Eagle, Matthew W.
Johnson, and Lorrie Lehmann, “Program Representation for Automatic
Hint Generation for A Data-driven Novice Programming Tutor,” Lecture
Notes in Computer Science: Proceedings of International Conference
on Intelligent Tutoring Systems 2012, 14-18 June, Chania, Greece, vol
7315, pp304-309.

[16] Sho-Huan Tung, Tsung-Te Lin, and Yen-Hung Lin, “An Exercise
Management System for Teaching Programming,” Journal of Software,
vol. 8, no. 7, pp1718-1725, 2013.

[17] Slava Pestov, John Gellene, and Alan Ezust, “jEdit 4.5 user’s guide,”
Sep. 2012, http://www.jedit.org/users-guide/index.html.

[18] Michelle Ichinco and Caitlin Kelleher, “Exploring Novice Programmer
Example Use,” Proceedings of IEEE Symposium on Visual Languages
and Human-Centric Computing 2015, 18-22 October, Atlanta, USA,
pp63-71.

[19] Thomas Staubitz, Hauke Klement, Jan Renz, Ralf Teusner, and
Christoph Meinel, “Towards Practical Programming Exercises and
Automated Assessment in Massive Open Online Courses,” Proceedings
of IEEE International Conference on Teaching, Assessment, Learning
for Engineering 2015, 10-12 December, Zhuhai, China, pp23-30.

[20] Jean M. Griffin, “Learning by Taking Apart: Deconstructing Code by
Reading, Tracing, and Debugging,” Proceedings of The 17th Annual
Conference on Information Technology Education 2016, September,
Boston Massachusetts, USA, pp148-153.

[21] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren, “Towards a Sys-
tematic Review of Automated Feedback Generation for Programming
Exercises,” Proceedings of The 2016 ACM Conference on Innovation

and Technology in Computer Science Education 2016, 9-13 July,
Arequipa, Peru, pp41-46.

[22] Tetsuro Kakeshita and Miyuki Murata, “Application of Programming
Education Support Tool pgtracer for Homework Assignment,” Interna-
tional Journal of Learning Technologies and Learning Environments,
vol. 1, no. 1, pp41-60, 2018.

[23] Michael R. Garey and David S. Johnson, Computers and intractability:
A guide to the theory of NP-completeness, Freeman, New York, 1979.

[24] CamelCase definition, http://searchsoa.techtarget.com/definition/
CamelCase.

[25] Paul J. Deitel and Harvey M. Deitel, Java: how to program, 9th Edition,
Prentice Hall, 2011.

[26] Htoo Htoo Sandi Kyaw, Nobuo Funabiki, Minoru Kuribayashi, and
Khin Khin Zaw, “Three Improvements for Code Completion Problem
in Java Programming Learning Assistant System,” Proceedings of
Information Processing Society of Japan-Special Interest Group on
Programming 2019, 13-14 April, Okayama, Japan.

[27] SHA-256 Cryptographic Hash Algorithm, http://www.movable-type.
co.uk/scripts/sha256.html.

[28] Htoo Htoo Sandi Kyaw, Nobuo Funabiki, and Minoru Kuribayashi,
“An Implementation of Hint Function for Code Completion Problem in
Java Programming Learning Assistant System”, Proceedings of Forum
on Information Technology 2019, 3-5 September, Okayama, Japan,
pp307-308.

[29] HTML5 Web Storage, http://www.w3schools.com/html/html5
webstorage.asp.

[30] Hypothesis Testing, https://onlinecourses.science.psu.edu/statprogram/
node/137.

[31] BigInteger Class in Java,
https://www.geeksforgeeks.org/biginteger-class-in-java/.

[32] Nobuo Funabiki, Shinpei Matsumoto, Su Sandy Wint, Minoru Kurib-
ayashi, and Wen-Chung Kao, “A Proposal of Recommendation Func-
tion for Solving Element Fill-in-blank Problem in Java Programming
Learning Assistant System,” Proceedings of International Conference on
Network-Based Information System 2019, 5-7 September, Oita, Japan,
pp247-257.

[33] Hisashi Yokata, “On Developing an Adaptive Tutoring System with
Formative Assessment for Mobile Learning,” Proceedings of The World
Congress on Engineering and Computer Science 2013, 23-25 October,
San Francisco, USA, pp174-177.

[34] Miyu Satoh and Seikoh Nishita, “Correlating Program Code to Output
for Supporting Program Understanding,” Proceedings of The Interna-
tional MultiConference of Engineering and Computer Scientists 2019,
13-15 March, Hong Kong, pp180-183.

[35] Tan Peng Fei, Li Yan Heng and Zhang Chang Yun, “Research of VB
Programming Automatic Scoring Method Based on the Windows API,”
Proceedings of The International MultiConference of Engineering and
Computer Scientists 2012, 14-16 March, Hong Kong, pp235-239.

[36] Hisashi Yokota, “On Development of an Adaptive Tutoring System
Utilizing Educator’s knowledge Structure,” Proceedings of The World
Congress on Engineering and Computer Science 2011, 19-21 October,
San Francisco, USA, pp260-264.

[37] Anshul K. Jain, Manik Singhal, and Manu Sheel Gupta, “Educational
Tool for Understanding Algorithm Building and Learning Programming
Languages,” Proceedings of The World Congress on Engineering and
Computer Science 2010, 20-22 October, San Francisco, USA, pp292-
295.

[38] Lijun Lun, Xin Chi, and Hui Xu, “Testing Approach of Component
Interaction for Software Architecture,” IAENG International Journal of
Computer Science, vol. 45, no. 2, pp353-363, 2018.

[39] Khin Khin Zaw, Win Zaw, Nobuo Funabiki, and Wen-Chung Kao, “An
Informative Test Code Approach in Code Writing Problem for Three
Object-oriented Programming Concepts in Java Programming Learning
Assistant System,” IAENG International Journal of Computer Science,
vol.46, no. 3, pp445-453, 2019.

[40] Nobuo Funabiki, Tana, Khin Khin Zaw, Nobuya Ishihara, and Wen-
Chung Kao, “Analysis of fill-in-blank problem solutions and extensions
of blank element selection algorithm for Java programming learning
assistant system,” Proceedings of The World Congress on Engineering
and Computer Science 2016, 19-21 October, San Francisco, USA,
pp237-242.

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_03

Volume 47, Issue 3: September 2020

__

