



Abstract— Investors and traders need an accurate stock

prediction model to help them make decisions. They can use

deep learning models such as Long Short-Term Memory

Network (LSTM). However, a weakness of LSTM is that it tends

to overfit to the training data and have unstable results. To

overcome this weakness, this paper proposes using Averaged

Stochastic Gradient Descent and Weight-Dropping on an LSTM

network (AWD-LSTM). The proposed model regularizes the

network by weight-dropping with DropConnect and optimizes

the training process using a Non-Monotically Triggered

Averaged Stochastic Gradient Descent (NT-ASGD).

Additionally, this paper tested with integrating historical data

with textual data which was shown to be valuable by other

studies. This paper evaluated six variants of the model with

different regulizers, optimizers, and data. The results show that

(1) DropConnect regulizer performed better than DropOut or

No Drop; (2) Adam optimizer is better for stock prediction than

NT-ASGD; (3) Adding textual data slightly increases

performance; (4) The models were able to gain consistent profits

in a market simulation; (5) A variant of the model outperformed

a previous study in 4 out of 5 indexes.

Index Terms—LSTM, weight-dropping, regularization,

optimization, financial news, stock prediction

I. INTRODUCTION

HE stock market is a popular medium for investing and

trading because of its high potential profits [1]. However,

it requires a lot of time and expertise to make consistent

profits in the market. A stock price prediction model is

needed for a decision support system to help traders and

investors make decisions. The state-of-the-art techniques

uses deep learning models such as Long Short-Term Memory

[2] and Gated Recurrent Unit [3] as they are able to predict

non-linear patterns and scale with high amounts of data.

However, these models tend to be complex and unstable [4],

which are a problem because stock traders want fast and

precise predictions. To reduce overfitting and to optimize the

training process, a weight-dropped LSTM (AWD-LSTM)

was proposed [5]. The model was initially used for language

modeling, but the author stated that it can be applied to other

sequence tasks.

Manuscript received September 2, 2019; revised April 22, 2020.

Thayogo is with Computer Science Department, Binus Graduate
Program-Master of Computer Science, Bina Nusantara University, Indonesia

(e-mail: thayogo@binus.ac.id).

Antoni Wibowo is with Computer Science Department, Binus Graduate
Program-Master of Computer Science, Bina Nusantara University, Indonesia

(e-mail: anwibowo@binus.edu).

Many stock prediction models only uses numerical market

data such as historical price [6] and company ratios [7] as

features, however progress in textual analysis allows using

and mining additional features from textual data [8]. Using

these textual features has been shown to improve accuracy in

prediction [9].

 The purpose of this paper is to propose using AWD-LSTM

with additional features from financial news to predict stock

prices. The model uses DropConnect which reduces

overfitting by randomly dropping a subset of weights. The

training is also optimized using a non-monotically triggered

variant of averaged stochastic gradient descent (NT-ASGD)

which requires less tuning of parameters. A simple sentiment

dictionary is used to score the sentiment of daily financial

headlines to add as a feature.

 Six variants of the model was evaluated with different

regulizers (No Drop, DropOut, or DropConnect), optimizers

(Adam, NT-ASGD), and data (historical only, or historical +

textual data). The results of this paper show an LSTM with

DropConnect regulizer, Adam optimizer, and both historical

and textual data performed best. When tested in a market

simulation, the same model was able to get the highest profits.

Finally, a comparison with a previous study show that the

model outperformed in 4 out of 5 indexes even without using

textual data.

II. RELATED WORKS

This section discusses previous studies that are related to

building a prediction model for stock prices. The first part

discusses studies that focused on using historical data. The

second part discusses studies that focused on using textual

data. The third part discusses studies that integrated both

historical and textual data. The summary of the related works

are summarized in Table I , which compares the types of data

and methodology of each works.

A. Prediction with Historical Data

A study [6] used Genetic Algorithm (GA) optimized

technical indicator tree -SVM based system to create

intelligent stock recommender system with consistent profits.

Focusing on multiple technical indicators, the study analyzed

the underlying pattern of stock data to create ‘Trade’ or ‘No

Trade’ recommendations. Among the three variants, a GA

optimized technical indicator with feature selection

performed best. Another study [10] took a different approach

by recommending a group of stocks (a portfolio) based on

Weight-Dropped Long Short Term Memory

Network for Stock Prediction with Integrated

Historical and Textual Data

Thayogo, Antoni Wibowo, Member, IAENG

T

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_05

Volume 47, Issue 3: September 2020

__

their correlations. By recommending a portfolio of stocks by

with association rule mining and fuzzy logic, the results was

able to surpass mutual fund returns.

 Using financial ratios (book-to-market ratio, ROA, etc.)

with neural networks, SVM, and random forest, a study [7]

forecasts stock returns in the cross section in the Japanese

stock market. The study compared different algorithms and

showed that deep neural net performed best. Another research

used neural networks to predict stock market prices [11]. The

study proposed a combination of neural network and a

Nonlinear Autoregressive Exogenous (NARX) model. The

model was able to train quickly and effectively predict stock

prices.

Recent studies uses more complex variants of neural

networks such as Long Short Term Memory (LSTM)

networks. A study [2] used uses financial market data with

LSTM for stock predictions. The paper showed that LSTM

outperforms previous models such as random forest (RF) and

deep neural net (DNN). However, its accuracy still hovers

around 54%. This shows the limit of using only historical data

in predicting stock prices.

B. Prediction with Textual Data

While historical data is still essential in predicting stock

prices, many studies have found improvements in accuracy

by augmenting it with textual data. A review paper on text

mining for market prediction [8], showed that the most

popular feature selection technique is Bag-of-Words.

According to the paper, text mining can be improved by using

better semantic techniques such as WordNet or specially

customized dictionaries. For example, a study [3] created

Stock2Vec as a financially-trained word embedding for its

news analysis. SVM and Naive Bayes was the most popular

machine learning models, whereas neural networks were still

underused.

A review of the state-of-the-art models in sentiment

analysis using Twitter data [12] showed that using twitter data

is still unreliable at around 60% accuracy due to its

unstructured contents. A more formally-written source of text

such as financial news or documents should be more reliable.

According to a review on using deep learning for sentiment

analysis [13], a good approach on the document level is to use

word embedding based on neural networks and using SVM

for classification.

A paper [14] used deep learning for event-driven stock

prediction. It extracted events from news and train them with

a neural tensor network. Then, it used a deep convolutional

neural network, to model the influence of the events on stock

price. The results showed that event-embedded based

document are better than discrete-events based methods.

Another study [15] took a unique approach by using

recommendation data from online stock communities such as

ShareWise. By taking advantage of collective wisdom, the

system was able to outperform market benchmarks. While the

techniques used was relatively simple compared to other

papers above, it showed that there are other creative data

sources that can help predict stock prices.

C. Integrating Both Historical and Textual Data

To use both historical and textual data together, researchers

searched for ways to integrate them effectively. A paper

evaluated an intraday stock recommendation system using

market and textual data and integrated them to find joint

patterns [9]. The goal is to bring different data sources

together and create an “end-to-end” recommendation system.

As there are many predictors available, the paper used

GainSmarts to select the strongest features. Then, the data

were trained using neural network. The best results was

obtained when using market data, simple news item counts,

categorization into business events, and calibrated sentiment

scores as predictors.

To improve upon previous works, a paper used state-of-the

art deep learning models while both using historical S&P 500

prices and news articles from Reuters and Bloomberg [3]. It

also incorporated technical indicators such as Stochastic

oscillator (%K), William (%R), Relative Strength Index

(RSI). The paper contributed by proposing a two-stream

Gated Recurrent Unit Network (TGRU). It also proposed

Stock2Vec which is a sentiment dictionary that was specially

trained on stock news. The steps included processing the

articles, labeling them, embedding it with Stock2Vec, and

finally implementing TGRU network on the dataset.

A study [16] proposed a model using LSTM and emotional

analysis to predict stock prices. The emotional analysis

worked by collecting public opinion on forum posts related

to the Shanghai Composite Index and labeling their emotional

tendency through manual labeling and a sentiment dictionary.

A total of 15 input variables were used including technical

data such as highest and lowest trading price of the day. The

model was able to perform well by capturing the long-term

dependence of the stock data.

A study [17] used both market and news headline data in

an LSTM model to predict stock prices. The paper grouped

10 companies together to capture their correlations. Each

news articles were represented using Paragraph Vectors and

were concatenated for the 10 companies. If there were no

news in a single time step, the vectors were filled with zeros.

If there were multiple news in a single time step, the vectors

were averaged. The stock prices were normalized to be

between [-1,1]. When combining them together, the

dimensions were reduced so that both side has a more

balanced dimension. The results showed an improvement

when using Paragraph Vectors and LSTM model.

D. Trends and Conclusion

The trend in stock prediction is to incorporate more

relevant data sources as predictors. Starting from simply

using historical data, studies began using more sophisticated

technical indicators [10]. Eventually, as text processing

developed, news were used to augment the data resulting in

increased accuracy [9]. Then, deep learning models improved

prediction such as using LSTM for prices [2] and using better

word processing techniques such as Word2Vec and

Paragraph Vector.

 To conclude, there are fewer studies that has integrated

historical and textual data together, and these studies claimed

to have increased performance after adding textual data. More

studies need to combine both historical and textual data

together to improve results. Additionally, there are no studies

that have regularized and optimized LSTM with AWD-

LSTM stock prediction. Therefore, this study contributes by

improving LSTM with AWD-LSTM and integrating both

historical and textual data.

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_05

Volume 47, Issue 3: September 2020

__

TABLE I

RELATED WORKS

Reference Historical Data Textual Data Feature Extraction Model Measure Performance

[18]
Turkey ISE National 100

Index
- - ANN, SVM Directional Accuracy

[19] DJIA Index Tweets
Profile of Mood States

(POMS)

Self-Organizing Fuzzy

Neural Networks
Positive and Negative Recall

[20] US S&P 500 index - -
Fuzzy Clustering +

Fuzzy NN
RMSE

[10] Various indexes - -
Association Rule

Mining

ROI, Precision, Rebalancing

precision

[9] 72 individual stocks News

Bag-of-Words,

Business Events,

Sentiment

Neural Network,

Stepwise Logistic

Regression

Returns, Sharpe Ratio

[21]
3 Latin-American

indices
- - ANN + GARCH RMSE, MSE, MAE, MAPE

[22] China SSE - - PCA + SVM
Accuracy classified by return

rank

[14]
S&P 500 and 15

individual stocks
News Headline Event Embedding

Convolutional Neural

Network
Acc, MCC, Profit

[6] 4 individual stocks - -
GA-optimized

decision-tree-SVM

Precision, Recall, Accuracy,

F-Measure

[23] India BSE and CNX - - KNN + SVM MSE, RMSE, MAPE

[24] 18 individual Stocks Tweets Topic-sentiment SVM Acc, MCC

[25] China SSE and SZSE - - IG+SVM+KNN Directional Accuracy

[26]
Korea KOSPI 38 stock

returns
- - DNN NMSE, RMSE, MAE

[7] MSCI Japan Index - - SVR, RF, Ensemble MSE, Return, Risk

[27]
Korean Stock Price

Index
- - GA-optimized LSTM MSE,MAE,MAPE

[3] S&P 500 News Stock2Vec TGRU Accuracy, Precision, Recall

[11] DJI - -
Neural Network +

NARX
MSE

[16]
Shanghai Composite

Index

Public Opinion

from Memories
Sentiment Dictionary

LSTM with Emotional

Analysis
MSE

[2] S&P 500 - - LSTM
Return, STD, Sharpe Ratio,

Accuracy %

[28] Multiple indices - -
Rough set + Wavelet

Neural Network

RMSE, MAD, MAPE, CP,

CD

[15]
50 companies on Tokyo

Stock Exchange
News Headlines Paragraph Vector LSTM Trade Gains

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_05

Volume 47, Issue 3: September 2020

__

III. THEORY AND METHODS

A. Deep Learning

The term deep learning is usually used to describe neural

network with many hidden layers, hence a deep network.

Formally, deep learning is defined as a class of machine

learning algorithms that uses multiple layers of processing

units where the next units uses the previous units as inputs

[29]. These methods has been shown to give state-of-the art

results in many fields such as computer vision, audio

processing, and natural language processing.

Recurrent Neural Networks (RNN) are a type of neural

networks containing loops so that one node can pass

information into the other nodes. It is especially useful for

sequencing problems as it is able to retain information for

previous nodes. Long Short Term Memory (LSTM) is a class

of RNN that is able to capture long-term dependencies.

Fig. 1. LSTM Network, redrawn from [30]

Fig. 1 visualizes an LSTM network which was redrawn

from [30]. Each nodes (A) takes both the input (𝑥𝑡) and the

memory from previous node (𝑐𝑡) to calculate output (ℎ𝑡).

Information from previous sequences are recurrently used as

input for the next, therefore it is useful for a time series

problem. Within the node (A), LSTM calculates a hidden

state, 𝑠𝑡, as follows:

ocs

igfcc

WsUxg

WsUxo

WsUxf

WsUxi

tt

tt

g

t

g

t

o

t

o

t

f

t

f

t

i

t

i

t





)tanh(

)tanh(

)(

)(

)(

1

1

1

1

1































Where i is called the input gate, f is the forget gate, and o

is the output gate. These gates have a value between 0 and 1

because of the sigmoid function. They will then be multiplied

element-wise with a vector to define how much of that vector

will go through the gate. The input gate controls how much

of the newly computed state to let through. The forget gate

controls how much of the previous state to let through. Lastly,

the output gate controls how much of the internal state to

expose to the external network. The g is a candidate hidden

state computed from the current and previous unit state, and

𝑐𝑡 is the internal memory of the unit which combines how

much of the old and new state we want.

B. Regularization and Optimization

Recurrent neural networks are prone to overfitting,

therefore regularization techniques are formed to solve the

overfitting problem and improve performance. A method of

regularization involves weight-dropping such as Dropout and

DropConnect. Fig. 2 is a redrawn illustration from [32] which

shows the difference between No Drop, DropOut, and

DropConnect networks. No Drop means there is no changes

to the network. DropOut [31] reduces overfitting by

preventing complex co-adaptions in the data through

randomly dropping feature detectors on each training case.

DropConnect [32] generalizes the idea of DropOut. Whereas

Dropout sets randomly selected subset of activations to zero,

DropConnect sets a randomly selected subset of weights to

zero.

Fig. 2. Comparison of Weight Drop Networks, redrawn from [32]

 A deep learning network usually trains itself through the

use of backpropagation. However, there are several

techniques to optimize the training process. The most basic

training method for neural networks is the Stochastic

Gradient Descent (SGD). SGD minimizes an objective

function, which in this case is errors, iteratively in an

incremental gradient descent with the following steps:

𝑤𝑘+1 = 𝑤𝑘 − 𝛾k∇̂𝑓(𝑤𝑘) (2)

A possible improvement to SGD is the Averaged Stochastic

Gradient Descent (ASGD), which uses the average as a final

solution to reduce noise. ASGD returns the following as a

solution:

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_05

Volume 47, Issue 3: September 2020

__

𝑤 =
1

𝐾 − 𝑇 + 1
∑ 𝑤𝑖

𝐾

𝑖=𝑇
 (3)

Where K denotes the total number of operations and T<K

is a user-specified averaging trigger. The goal of ASGD is to

find the optimal point faster by averaging the final solution

because normal SGD tends to fluctuate around the optimal

solution.

C. Textual Feature Extraction

The art of representing text as vectors has grown

significantly these past few decades [8]. The traditional

method is the Bag-Of-Words representation. This method

represents each documents as a sparse vector with its

dimension equal to size of the vocabulary. Each position in

the vector represents a word as the number of times it occurr

in the document. For example, the word ‘brown’ in the

document ‘a brown dog’ would have a vector (0,0,1). Another

method using word counts is the TF-IDF. The model

improves upon Bag-of-words by giving weights to words

based on its importance to a document:

𝑤𝑖,𝑗 = 𝑡𝑓𝑖,𝑗 ∗ log (
𝑁

𝑑𝑓𝑖

) (4)

Where is the frequency of term i in document j, is

the number of documents with term i, and N is the total

number of documents. The higher the word frequency in the

entire corpus, the less valuable it is. The higher the word

frequency in a single document, the more valuable it is.

Therefore a word has high representational value of a

document when it only appears distinctively in that

document.

While traditional methods such as Bag-of-Words and TF-

IDF are fast and simple, they ignore the word’s position in the

document. It does not capture the word’s context, semantics,

and relationship with each other. While not the most

effective, bag-of-words and tf-idf representation is easy to

understand and still provides reasonable performance. They

are often the baseline method for many studies for word

representations.

Word embedding, or distributed representations, is a

method of representing words as vectors where each words

has some dependence on other words. Contrary to the

previous methods where each words’ vector are independent,

here each word’s vector are dependent on the words around

it. Word embedding can be compared to one another with

cosine similarity. A popular ideal example of word

embedding is where we can do: (“king”-“man”) +”woman” =

“queen”.

Word2Vec by [33] is a word embedding technique that

uses a shallow neural network. Word2Vec has two methods :

Continuous Bag of Words (CBOW) and Skip Gram. The

CBOW model accepts a context word as input and predicts a

target word. The Skip Gram Model is the inverse of CBOW.

It accepts a target word as input and predicts its context

words. Along this process, the vector representation of each

word is obtained.

IV. RESEARCH FRAMEWORK

The general process of the methodology of this study is

shown in Fig. 3. Historical stock prices and news articles

were collected.The news data were represented as numerical

vectors through feature extraction. The textual features were

then integrated with historical price and were matched in the

same time dimension. Then, a deep learning model (AWD-

LSTM) was used to learn the underlying patterns for

prediction. Finally, the model’s performance was evaluated.

The evaluation process included creating six variants of the

model and comparing them by cross-validation, market

simulation, and comparison with previous study.

Fig. 3. Research Framework

V. METHODOLOGY

A. Data

Historical data was obtained from daily S&P 500 index for

the year 2007-2018. The variables included date, opening

price, and closing, highest price, and lowest price. The data

excluded days where there are no stock trading activities

(Weekends and holidays). In total there were 3018 entries of

historical data. Text data were obtained from daily financial

news from Reuters also in the year 2007-2018. There were a

total of 8,551,440 news articles available. News data were

processed by removing stop words, symbols, numbers, and

punctuations. Furthermore the words were reduced to its base

form by stemming and lemmatization. This converts words

such as “helping” to “help” in order to reduce the amount of

possible vocabularies. The final results were individual word

tokens ready to be converted to vectors.

B. Feature Extraction

A pre-made sentiment dictionary was used to extract

features from each news headlines. Loughran and McDonald

is a financial sentiment dictionary that have mapped common

words found in financial news as Positive or Negative. For

example, the word ‘DECLINE’ is represented as a negative

word in the form of (0,1), whereas the word ‘SURPASSED’

is represented as a positive word in the form of (1,0). Words

that were not found in the dictionary were represented as

(0,0). Each news headline were represented as a sentiment

score calculated from calculating Positives minus Negatives.

C. Integration

To integrate the output text vectors with historical data,

their time dimension has to be aligned. Each time point is a

single day, excluding weekends and holidays where the stock

market is closed. Historical data is available in every time

point, however a single time point may have multiple or no

news at all. Furthermore, a news article’s effect may not be

limited to only a single day. Therefore the integration method

has to be carefully examined. Table II shows the integrated

data, where Predicted Price is a function of Historical Data

and Textual Data. The difference between Predicted Price

and Actual Price will then be used as the performance

measure of the model.

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_05

Volume 47, Issue 3: September 2020

__

TABLE II

DATA INTEGRATION METHOD

Time
Historical

Data

Textual

Data

Actual

Price

Predicted

Price

𝑡 𝑃𝑡 𝑆𝑡 𝑝𝑡+1 �̂�𝑡+1

𝑡 − 1 𝑃𝑡−1 𝑆𝑡−1 𝑝𝑡 �̂�𝑡

.

.

.

.

.

.

.

.

.

𝑡 − 𝑛 𝑃𝑡−1 𝑆𝑡−𝑛 𝑝𝑡−𝑛+1 �̂�𝑡−𝑛+1

Where t is today, and n is the amount of samples. 𝑃𝑡

represents a vector of historical prices, and St represents the

sentiment score. pt+1 is tomorrow’s actual price and p̂t+1 is the

tomorrow’s predicted stock price. Since pt+1 is still unknown,

the first row of the data will be excluded. Equation 4 and 5

shows how to obtain the vectors 𝑃𝑡 and 𝑆𝑡 respectively:

𝑃𝑡 = 𝑝𝑡 , 𝑝𝑡−1, … , 𝑝𝑡−60 (3)

Pt consists of a 60 days sliding window starting from price

pt to pt-60 .Where pt is the price of time t. All price values were

scaled to a value between 0 and 1 based on the minimum and

maximum values. The sentiment score vector is obtained

from the following:

𝑆𝑡 = 𝑠𝑡 , 𝑠𝑡−1, … , 𝑠𝑡−60 (4)

𝑠𝑡 = 𝑆𝑢𝑚(𝑛𝑡,1, 𝑛𝑡,2, … , 𝑛𝑡,𝑚) (5)

St calculates the total score of sentiment 𝑛𝑡,1 to 𝑠𝑡,𝑚. Where

𝑛 is the sentiment score of time t and news m. The m indexes

the number of news in a day. A problem is that each data point

only has information of the news published during that day.

Furthermore, the method is forced to only include news data

on days where the stock market opens, therefore ignoring

news on weekdays and holidays. To solve this, news for days

with no stock prices are averaged to the next day with stock

price data. For example, the news score for Monday is the

average of Saturday, Sunday, and Monday. With this method,

news data on weekdays and holidays are also captured.

D. Proposed Method (AWD-LSTM)

The implementation of AWD-LSTM is a combination of

regularization through DropConnect, and optimization

through NT-ASGD (a variant of ASGD). DropConnect

regularizes a network by randomly setting a subset of weights

to zero. Applying this to an LSTM network, the hidden-to-

hidden weights at the input (Wi) , forget (Wf), output (Wo)

gates and cell state (Wg) are randomly dropped. Therefore, the

DropConnect Layer (r) is calculated as follows:

𝑟 = 𝑎((𝑀 ∗ 𝑊)𝑣) (5)

 Where a is a non-linear activation function, M is a binary

weight mask, W is the fully-connected layer weights for (Wi ,

Wf , Wo , Wg) and v is each cell inputs. The operation is

performed only once during the forward and backward

propagation, thus making minimal impact on training speed.

The result encourages smaller weights which simplifies the

model and reduces overfitting. Fig. 4. shows how

DropConnect is applied to an LSTM network. Each input

features are processed through an LSTM network which is

followed by a DropConnect layer. Some information are

passed for the next recurrent LSTM network, while the result

continues to the next set of layers. At the end of the layers, a

dense layer combines the nodes to produce a single output.

Fig. 4. Weight-Dropped LSTM Network

 Other than reducing overfitting through weight-dropping,

AWD-LSTM also uses a variant of Average SGD called NT-

ASGD to optimize the training process. A weakness of

Average SGD is that it has unclear tuning guidelines for T

and for the parameter K. To solve this problem, the variant

NT-ASGD is non-monotonically triggered as shown in the

following algorithm by [5]:

 When the validation metric does not improve after multiple

cycles, the algorithm triggers the averaging. The non-

monotone interval hyperparameter, n, controls this. The

hyperparameter n will be set to 5 as recommended by Stephen

et al. (2018). Therefore, after 5 failed attempts to improve the

metric, the algorithm will switch back to ASGD. As a

constant learning rate γ is used, there is no need for further

tuning.

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_05

Volume 47, Issue 3: September 2020

__

E. Evaluation

The evaluation process had three sets of experiments:

Cross-Validation, Market Simulation, and Comparison with

Previous Study. The first experiment compared six variants

of the proposed model on a single data with cross-validation

to find the best performing model. The second experiment

tested the models on an automated trading system to simulate

the profits gained in real-life conditions. Finally, the final

experiment compared the models to a previous study [28]

using the same data. The main metric for accuracy will be

evaluated by Root Mean Square Error (RMSE). RMSE is

calculated following [34]’s notation as:

𝑅𝑀𝑆𝐸𝑓𝑖 = √
1

𝐹𝑁𝑖

∑(𝑝𝑡+1,𝑗 − �̂�𝑡+1,𝑗)2

𝐹𝑁𝑖

𝑗=1

 (6)

 Where RMSEfi is the RMSE for fold i, FNi is the sample

size of the testing data in fold i, pt+1,j is tomorrow’s actual

price, and p̂t+1,j is tomorrow’s predicted price. For cross-

validation, the folds were averaged using Prediction Error

Sum of Squares (PRESS), which is shown in Equation 6:

𝑃𝑅𝐸𝑆𝑆𝑚𝑖 =
1

4
∑ (𝑅𝑀𝑆𝐸𝑓𝑖)24

𝑓𝑖=1 (7)

 Where 𝑃𝑅𝐸𝑆𝑆𝑚𝑖 is the PRESS for model i and 𝑅𝑀𝑆𝐸𝑓𝑖 is

the RMSE for fold i. Therefore, the best model will have the

lowest PRESS value. Additionally, the training time of each

models were evaluated as the number of seconds it takes to

finish training the model.

VI. EXPERIMENT RESULTS

A. Cross-Validation

Six variants of the proposed model were tested to find the

model with the best performance. The first model followed a

standard LSTM network. The second model added DropOut

as a regulizer. The third model changed DropOut into

DropConnect. The fourth model adds news data to Model 3.

The fifth model used the NT-ASGD optimizer. Finally, the 6th

model added news data to Model 5. The regulizers were set

with a probability of 0.5. All experiments uses 4 LSTM layers

+ 1 Dense layer and 50 nodes. The training is repeated on 100

epochs with a batch size of 32.

All models were cross-validated with different amounts of

training and testing data on the the S&P 500 index. The

evaluation used k-fold cross-validation method that retains the

time consistency by forward-chaining. Each fold will calculate

its own RMSE, which will then be averaged into PRESS as

the final score of each model. The folds are structured as

follows:

• Fold 1: Training (2007-2010), Testing (2011-2012)

• Fold 2: Training (2007-2012), Testing (2013-2014)

• Fold 3: Training (2007-2014), Testing (2015-2016)

• Fold 4: Training (2007-2015), Testing (2016-2018)

Table III show the average result of each models. Table IV

shows the individual results for each folds. Fig. 5 illustrates

each model’s loss per epochs during the training process. The

results shows that an LSTM model with DropConnect (Model

3) performed better than with no regulizer (Model 1) and

DropOut (Model 2). This shows that regularizing our LSTM

model with DropConnect can successfully improve

performance. However, regularizing with DropOut decreased

the performance instead (Model 2). This shows that

DropOut’s method of setting subsets of activations randomly

to zero causes too much loss of information compared to

DropConnect’s method of setting subsets of weights randomly

to zero. Model 4 shows that adding news feature was able to

increase performance slightly.

Using NT-ASGD as optimizer (Model 5 and 6) did not

improve performance. The training time is also significantly

longer when using NT-ASGD. This shows that Adam

optimizer is still better suited for stock prediction and that NT-

ASGD is more useful its original purpose in language

modeling [5]. Adding news feature (Model 6) was still able to

increase the performance slightly similar to Model 4.

TABLE III

MODEL COMPARISON

No Input Model Regulizer Optimizer

Training

PRESS

Testing

PRESS

Training

Time

1 Price LSTM No Drop Adam 11.7943 19.4588 493.9174

2 Price LSTM DropOut Adam 17.9533 29.1330 616.8222

3 Price LSTM DropConnect Adam 9.8852 17.0913 575.7456

4 Price + News LSTM DropConnect Adam 8.8377 16.4755 1088.4994

5 Price LSTM DropConnect NT-ASGD 30.1706 52.6467 702.1594

6 Price + News LSTM DropConnect NT-ASGD 24.3464 50.5623 1301.1703

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_05

Volume 47, Issue 3: September 2020

__

TABLE IV

CROSS VALIDATION RESULTS FOR EACH FOLDS

Model 1 Model 2

Fold Training Testing Time Fold Training Testing Time

1 8.0118 16.3939 240.3699 1 17.1768 27.0394 294.6913

2 13.3908 14.9683 429.5659 2 18.6632 20.1073 519.6491

3 6.3158 19.8980 554.4083 3 12.6905 33.5112 727.0733

4 19.4588 26.5747 751.3255 4 23.2827 35.8742 925.8752

Average 11.7943 19.4588 493.9174 Average 17.9533 29.1330 616.8222

Model 3 Model 4

Fold Training Testing Time Fold Training Testing Time

1 7.9628 16.2877 280.5763 1 8.4319 15.1404 537.8242

2 13.4884 14.4246 485.2615 2 9.1548 11.2653 881.1681

3 5.2980 19.3778 655.8619 3 6.3398 19.0319 1303.0805

4 12.7915 18.2750 881.2829 4 11.4243 20.4647 1631.9249

Average 9.8852 17.0913 575.7456 Average 8.8377 16.4755 1088.4994

Model 5 Model 6

Fold Training Testing Time Fold Training Testing Time

1 24.8512 46.5905 366.6784 1 23.2352 47.5598 676.1469

2 38.5754 43.6641 589.7876 2 25.3609 34.7261 1089.3147

3 16.9829 59.8609 834.8687 3 17.2101 58.2368 1505.5307

4 40.2729 60.4713 1017.3030 4 31.5794 61.7265 1933.6887

Average 30.1706 52.6467 702.1594 Average 24.3464 50.5623 1301.1703

Fig. 5. Training Loss per Epochs

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_05

Volume 47, Issue 3: September 2020

__

B. Market Simulation

In this section, the models were tested on an automated

trading system that imitates real-life trading scenario. The

setup was inspired by the simulation done by [3]. The

simulation used data from Fold 4 (training data from 2007-

2015, and testing data from 2016-2018). A difference from

[3]’s simulation is that instead of a binary buy/sell

recommendation, our model outputs the next day’s predicted

stock price. To decide on a buy/sell recommendation, a cutoff

value of 1% is used. If the predicted price is +1% or higher

than today’s price, the system recommends to buy. If it is -1%

or lower, it recommends to sell. Otherwise, it recommends to

hold. Each transaction was charged with a transaction cost of

0.25% of the trading amount. Each day was limited to a single

buy or sell transaction to minimize transaction costs. The

starting capital is set to USD 10,000. The trading rules are

similar to [35] as follows:

 If you are not holding stocks and the system

recommends to buy, then buy with all of your current

money.

 If you are not holding stocks and the system

recommends to sell, then do nothing.

 If you are holding stocks and the system recommends

to buy, then do nothing.

 If you are holding stocks and the system recommends

to sell, then sell all of your stocks.

Table V shows the Net Capital, Profits, and Return of each

Models by the end of the simulation. Net Capital is the final

capital after selling all stocks by the end of the simulation.

Profits is the amount of money that the model gained starting

from the original capital of 10,000. Return is the amount of

profits expressed as a percentage of the original capital. Fig.

6 illustrates the growth of net capital for each models. While

the results might seem impressive, note that any strategy

would most likely yield a positive return as the data is already

trending upwards. For reference, if an investor were to buy at

the beginning of the simulation and hold until the end without

any trading, they would already get a return of 39.61%.

Therefore, it is more important to compare among models.

The comparison showed that Model 4 has the highest return

out of the 6 Models.

TABLE V

MARKET SIMULATION RESULT

Model Net Capital Profits Return

Model 1 24059 14059 140.59%

Model 2 19277 9277 92.77%

Model 3 24162 14162 141.62%

Model 4 24738 14738 147.38%

Model 5 16887 6887 68.87%

Model 6 16805 6805 68.05%

A. Comparison with Previous Study

The final set of experiments was done to compare this

study with the results of a previous study [28]. The study was

chosen because it also evaluated using RMSE and has results

on several different indexes. The study used a Wavelet

Artificial Neural Network on 5 different indexes: SSE

Composite Index (SSE) from 04/10/2009 to 06/04/2004,

Shanghai Shenzhen CSI 300 Index (CSI 300) from

02/03/2009 to 04/02/2014, All Ordinaries Index (AORD)

from 04/01/2009 to 03/26/2014, Nikkei 225 Index (NIKKEI

225) from 03/15/2009– 05/25/2014, and Dow Jones

Industrial Index (DJI) from 10.22.2009 to 07/18/2014.

Table IV compares this study’s models with the previous

study [26]. The models were compared on their RMSE on 5

different indexes. Model 4 and 6 was excluded from

comparison as this study was not able to obtain news data

which are relevant to these specific stock indexes. Since

Reuters is mainly based on U.S. financial news, it would be

out of context to apply it to the other indexes. The results

show that Model 3 outperformed all models in 4 out of 5

indexes. It shows that our model was able to perform better

than a previous study pretty consistently under the same

conditions.

Fig. 6. Net Capital Growth for each Models

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_05

Volume 47, Issue 3: September 2020

__

A possible reason our model was not able to perform well

on the Nikkei 225 index is that it has the highest variance of

returns compared to the other indexes. Table VII compares the

standard deviation of each indexes. According to [36] , one

advantage of Wavelet Neural Network is that it requires less

training amount. With the limited amounts of training data in

these 5 indexes, the Wavelet Neural Network was able to

predict the stock’s variance better than our model.

TABLE VI

RMSE ON DIFFERENT INDEXES

Model

Stock Index

SSE CSI AORD Nikkei DJI

Model 1 29.78 34.59 41.64 187.46 104.10

Model 2 39.44 47.47 54.93 209.48 162.83

Model 3 27.80 35.46 38.93 150.23 101.10

Model 5 86.90 115.77 147.77 342.12 321.99

[28] 98.50 84.30 97.60 114.60 105.33

TABLE VII

STANDARD DEVIATION OF STOCK INDEXES

Stock Index Standard Deviation

SSE 1.12%

CSI 300 1.34%

AORD 0.72%

Nikkei 225 1.63%

DJI 1.04%

VII. CONCLUSION

This paper proposed using DropConnect and a variant of

Averaged Stochastic Gradient Descent on an LSTM model to

reduce overfitting and increase accuracy. Additionally, the

study also experimented with integrating both historical and

textual data as input. This study experimented with 6 variants

of the proposed model with different inputs, regulizers, and

optimizer. The results show that the Model 4 performed better

than the other models. Model 4 is an LSTM model with

historical price and news input, DropConnect regulizer, and

Adam optimizer. The model has the lowest RMSE and gained

the highest profits in the market simulation.

DropConnect performed better than DropOut as a regulizer

as it preserved more information while still simplifying the

model. Adam optimizer is still more suitable for stock

prediction than the NT-ASGD optimizer which was

originally designed for language modeling. Adding news

features was able to slightly increase performance. It is not as

large as expected probably due to data and method

limitations. When compared with a previous study using

Wavelet Artificial Neural Network, Model 3 outperformed in

4 out of 5 indexes.

This paper has limitations namely the feature extraction

technique for news is very simple due to time constraints in

our experiments. In addition, the news headline was only used

in text processing instead of the complete news. Further

studies can also improve the model by tuning the

hyperparameters of the training model automatically with

evolutionary algorithms such as Genetic Algorithm.

ACKNOWLEDGMENT

 The authors would like to express a sincere gratitude to the

anonymous reviewers for their valuable comments and

suggestions to improve the quality of this manuscript. In

addition, the authors would also like to thank Bina Nusantara

University for supporting this research project.

REFERENCES

[1] Damodaran, A. (2012). Investment valuation: Tools and

techniques for determining the value of any asset (Vol. 666):

John Wiley & Sons.

[2] Fischer, T., & Krauss, C. (2018). Deep learning with long

short-term memory networks for financial market

predictions. European Journal of Operational

Research, 270(2), 654-669.

[3] Minh, D. L., Sadeghi-Niaraki, A., Huy, H. D., Min, K., &

Moon, H. (2018). Deep learning approach for short-term stock

trends prediction based on two-stream gated recurrent unit

network. IEEE Access, 6, 55392-55404.

[4] Marcus, G. (2018). Deep learning: A critical appraisal. arXiv

preprint arXiv:1801.00631.

[5] Merity, S., Keskar, N. S., & Socher, R. (2017). Regularizing

and optimizing LSTM language models. arXiv preprint

arXiv:1708.02182.

[6] Nair, B. B., & Mohandas, V. (2015). An intelligent

recommender system for stock trading. Intelligent Decision

Technologies, 9(3), 243-269.

[7] Abe, M., & Nakayama, H. (2018). Deep Learning for

Forecasting Stock Returns in the Cross-Section. Paper

presented at the Pacific-Asia Conference on Knowledge

Discovery and Data Mining.

[8] Nassirtoussi, A. K., Aghabozorgi, S., Wah, T. Y., & Ngo, D. C.

L. (2014). Text mining for market prediction: A systematic

review. Expert Systems with Applications, 41(16), 7653-7670.

[9] Geva, T., & Zahavi, J. (2014). Empirical evaluation of an

automated intraday stock recommendation system

incorporating both market data and textual news. Decision

support systems, 57, 212-223.

[10] Paranjape-Voditel, P., & Deshpande, U. (2013). A stock market

portfolio recommender system based on association rule

mining. Applied Soft Computing, 13(2), 1055-1063.

[11] Qeethara K. Al-Shayea, "Neural Networks to Predict Stock

Market Price," Lecture Notes in Engineering and Computer

Science: Proceedings of The World Congress on Engineering

and Computer Science 2017, 25-27 October, 2017, San

Francisco, USA, pp371-377

[12] Zimbra, D., Abbasi, A., Zeng, D., & Chen, H. (2018). The state-

of-the-art in Twitter sentiment analysis: a review and

benchmark evaluation. ACM Transactions on Management

Information Systems (TMIS), 9(2), 5.

[13] Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for

sentiment analysis: A survey. Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery, e1253.

[14] Ding, X., Zhang, Y., Liu, T., & Duan, J. (2015). Deep learning

for event-driven stock prediction. Paper presented at the Ijcai.

[15] Gottschlich, J., & Hinz, O. (2014). A decision support system

for stock investment recommendations using collective

wisdom. Decision support systems, 59, 52-62.

[16] Qun Zhuge, Lingyu Xu, and Gaowei Zhang, "LSTM Neural

Network with Emotional Analysis for Prediction of Stock

Price," Engineering Letters, vol. 25, no.2, pp167-175, 2017

[17] Akita, R., Yoshihara, A., Matsubara, T., & Uehara, K.

(2016). Deep learning for stock prediction using numerical and

textual information. Paper presented at the Computer and

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_05

Volume 47, Issue 3: September 2020

__

Information Science (ICIS), 2016 IEEE/ACIS 15th

International Conference.

[18] Kara, Y., Boyacioglu, M. A., & Baykan, Ö. K. (2011).

Predicting direction of stock price index movement using

artificial neural networks and support vector machines: The

sample of the Istanbul Stock Exchange. Expert systems with

Applications, 38(5), 5311-5319.

[19] Mittal, A., & Goel, A. (2012). Stock prediction using twitter

sentiment analysis. Standford University, CS229

(2011 http://cs229. stanford. edu/proj2011/GoelMittal-

StockMarketPredictionUsingTwitterSentimentAnalysis. pdf),

15.

[20] Enke, D., & Mehdiyev, N. (2013). Stock market prediction

using a combination of stepwise regression analysis,

differential evolution-based fuzzy clustering, and a fuzzy

inference neural network. Intelligent Automation & Soft

Computing, 19(4), 636-648.

[21] Kristjanpoller, W., Fadic, A., & Minutolo, M. C. (2014).

Volatility forecast using hybrid neural network models. Expert

Systems with Applications, 41(5), 2437-2442.

[22] Yu, H., Chen, R., & Zhang, G. (2014). A SVM stock selection

model within PCA. Procedia computer science, 31, 406-412.

[23] Nayak, R. K., Mishra, D., & Rath, A. K. (2015). A Naïve SVM-

KNN based stock market trend reversal analysis for Indian

benchmark indices. Applied Soft Computing, 35, 670-680.

[24] Nguyen, T. H., Shirai, K., & Velcin, J. (2015). Sentiment

analysis on social media for stock movement prediction. Expert

Systems with Applications, 42(24), 9603-9611.

[25] Chen, Y., & Hao, Y. (2017). A feature weighted support vector

machine and K-nearest neighbor algorithm for stock market

indices prediction. Expert Systems with Applications, 80, 340-

355.

[26] Chong, E., Han, C., & Park, F. C. (2017). Deep learning

networks for stock market analysis and prediction:

Methodology, data representations, and case studies. Expert

Systems with Applications, 83, 187-205.

[27] Chung, H., & Shin, K.-s. (2018). Genetic algorithm-optimized

long short-term memory network for stock market

prediction. Sustainability, 10(10), 3765.

[28] Lei, L. (2018). Wavelet neural network prediction method of

stock price trend based on rough set attribute reduction. Applied

Soft Computing, 62, 923-932.

[29] Deng, L., & Yu, D. (2014). Deep learning: methods and

applications. Foundations and Trends® in Signal Processing,

7(3–4), 197-387.

[30] Olah, C. (2015, August 27). Understanding LSTM Networks.

Retrieved From http://colah.github.io/posts/

2015-08-Understanding-LSTMs/

[31] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., &

Salakhutdinov, R. R. (2012). Improving neural networks by

preventing co-adaptation of feature detectors. arXiv preprint

arXiv:1207.0580.

[32] Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., & Fergus, R. (2013,

February). Regularization of neural networks using

dropconnect. In International conference on machine

learning (pp. 1058-1066).

[33] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean,

J. (2013). Distributed representations of words and phrases and

their compositionality. In Advances in neural information

processing systems (pp. 3111-3119).

[34] Barnston, A. G. (1992). Correspondence among the correlation,

RMSE, and Heidke forecast verification measures; refinement

of the Heidke score. Weather and Forecasting, 7(4), 699-709.

[35] Weng, Bin, Mohamed A. Ahmed, and Fadel M. Megahed.

"Stock market one-day ahead movement prediction using

disparate data sources." Expert Systems with Applications 79

(2017): 153-163.

[36] Wang, G., Guo, L., & Duan, H. (2013). Wavelet neural network

using multiple wavelet functions in target threat assessment.

The Scientific World Journal, 2013.

Thayogo was born in Jakarta, Indonesia on June 7, 1997. He has received

his first degree of Economics with Finance concentration from University
Pelita Harapan on 2014. He is currently pursuing a masters degree in

Computer Science from Bina Nusantara University since 2018. Thayogo is

currently working as a Programmer and Trainer for Data Science tools such
as SAS, Python, and R at PT. Ganesha Cipta Informatika, Jakarta.

Antoni Wibowo (M’12) is a Member (M) of IAENG since 2012. He has
received my first degree of Applied Mathematics in 1995 and master degree

of Computer Science in 2000. In 2003, He awarded a Japanese Government

Scholarship (Monbukagakusho) to attend Master and PhD programs at
Systems and Information Engineering in University of Tsukuba-Japan. He

completed the second master degree in 2006 and PhD degree in 2009,

respectively. His PhD research focused on machine learning, operations
research, multivariate statistical analysis and mathematical programming,

especially in developing nonlinear robust regressions using statistical

learning theory. He has worked from 1997 to 2010 as a researcher in the
Agency for the Assessment and Application of Technology – Indonesia.

From April 2010 – September 2014, he worked as a senior lecturer in the

Department of Computer Science - Faculty of Computing, and a researcher
in the Operation Business Intelligence (OBI) Research Group, Universiti

Teknologi Malaysia (UTM) – Malaysia. From October 2014 – October

2016, he was an Associate Professor at Department of Decision Sciences,
School of Quantitative Sciences in Universiti Utara Malaysia (UUM). Dr.

Eng. Wibowo is currently working at Binus Graduate Program (Master in

Computer Science) in Bina Nusantara University-Indonesia as a Specialist
Lecturer and continues his research activities in machine learning,

optimization, operations research, multivariate data analysis, data mining,
computational intelligence and artificial intelligence.

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_05

Volume 47, Issue 3: September 2020

__

