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Abstract—Supergrid (or called strong grid) graphs contain
grid graphs and triangular grid graphs as their subgraphs.
The Hamiltonian (s, t)-path of a graph is a Hamiltonian path
between any two distinct verticess and t in the graph, and
the longest (s, t)-path is a simple path with the maximum
number of vertices from s to t in the graph. A graph is called
Hamiltonian if it contains a Hamiltonian cycle, and is said to be
Hamiltonian connected if there exists a Hamiltonian (s, t)-path
in it. These problems are known to be NP-complete for general
supergrid graphs. As far as we know, their complexities are still
unknown for solid supergrid graphs which are supergrid graphs
without any hole. In this paper, we will study these problems
on L-shaped supergrid graphs which form a subclass of solid
supergrid graphs. First, we proveL-shaped supergrid graphs to
be Hamiltonian except one trivial condition. We then verify the
Hamiltonian connectivity of L-shaped supergrid graphs except
few conditions. The Hamiltonicity and Hamiltonian connectivity
of L-shaped supergrid graphs can be applied to compute the
minimum trace of computerized embroidery machine and 3D
printer when a L-like object is printed. Finally, we present a
linear-time algorithm to compute the longest (s, t)-paths of L-
shaped supergrid graphs. This study can be regarded as the
first attempt for solving the Hamiltonian and longest (s, t)-path
problems on solid supergrid graphs.

Index Terms—Hamiltonicity, Hamiltonian connectivity,
longest (s, t)-path, solid supergrid graphs, L-shaped supergrid
graphs, computer embroidery machines, 3D printers.

I. I NTRODUCTION

T he studied graphs, namelysupergrid (or calledstrong
grid) graphs, derive from our industry-university coop-

erative research project. They can be applied to computerized
sewing machines. The process flow of a computerized sewing
machine is as follows: The computerized sewing software is
given by a colour image. First, it uses the image processing
technique to produce some blocks of different colors. Then,
the software computes the stitching trace for each block of
colors. Finally, the software transmits its computed stitching
trace to computerized sewing machine, and the machine then
performs the sewing action along the received stitching trace.
Since each stitch position of a sewing machine can be moved
to its eight neighbor positions (left, right, up, down, up-left,
up-right, down-left, and down-right), we definesupergrid
graphsin [13] as follows: Each lattice of a block of color will
be represented by a vertex and each vertexv is coordinated
as (vx, vy), denoted byv = (vx, vy), wherevx and vy are
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Fig. 1. (a) A grid graph, (b) a triangular grid graph, and (c) a supergrid
graph, where circles represent the vertices and solid lines indicate the edges
in the graphs.
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Fig. 2. (a) A set of lattices, (b) the neighbors of one lattice ina grid
graph, and (c) the neighbors of one lattice in a supergrid graph, where each
lattice is denoted by a vertex in a graph and arrow lines indicate the adjacent
neighbors of one lattice.

integers, andvx and vy represent thex and y coordinates
of nodev, respectively. Two verticesu and v are adjacent
if and only if |ux − vx| 6 1 and |uy − vy| 6 1. Thus,
the possible adjacent vertices of a vertexv = (vx, vy)
in a supergrid graph contain(vx, vy − 1), (vx − 1, vy),
(vx +1, vy), (vx, vy +1), (vx − 1, vy − 1), (vx +1, vy +1),
(vx+1, vy−1), and(vx−1, vy+1). Supergrid graphs contain
grid [19] and triangular grid [32] graphs as their subgraphs.
For instance, Figs. 1(a)–(c) depict a grid, a triangular grid,
and a supergrid graph, respectively. Notice that grid and
triangular grid graphs are not subclasses of supergrid graphs,
and the converse is also true: these classes of graphs have
common elements (nodes) but in general they are distinct
since the edge sets of these graphs are different. Obviously,
all grid graphs are bipartite [19] but triangular grid graphs
and supergrid graphs are not bipartite.

Another intuitive motivation of proposing supergrid graphs
is given below. Consider a set of lattices, shown in Fig. 2(a),
where each lattice is denoted as a vertex in a graph. For a
grid graph, the neighbors of a lattice include its up, down,
left, and right lattices, see Fig. 2(b). However, in the real
word and other applications, the neighbors of a lattice may
also contain its up-left, up-right, down-left, and down-right
adjacent lattices. Thus, supergrid graphs can be used in these
applications.

A Hamiltonian path(resp.,cycle) in a graph is a spanning
path (resp., cycle) of the graph. TheHamiltonian path
(resp.,cycle) probleminvolves determining whether a graph
contains a Hamiltonian path (resp., cycle). A graph is called
Hamiltonianif it contains a Hamiltonian cycle. A simple path
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from vertexs to t is denoted by(s, t)-path. A graphG is
said to beHamiltonian connectedif it contains a Hamiltonian
(s, t)-path for any two verticess and t of G. The longest
(s, t)-path of a graph is a simple path with the maximum
number of vertices froms to t in the graph. The longest
(s, t)-path problem is to compute the longest(s, t)-path of a
graph given any two distinct verticess andt. It is well known
that the Hamiltonian and longest(s, t)-path problems are NP-
complete for general graphs [7], [20]. The same holds true
for bipartite graphs [28], split graphs [8], circle graphs [6],
undirected path graphs [1], grid graphs [19], triangular grid
graphs [9], supergrid graphs [13], and so on. In the literature,
there are many studies for the Hamiltonian connectivity of
interconnection networks, see [3], [5], [10]–[12], [30], [31].

In [13], we proved the Hamiltonian problems on general
supergrid graphs to be NP-complete. A solid supergrid graph
is a supergrid graph without any hole. For example, the graph
in Fig. 1(c) is a supergrid graph but it is not a solid supergrid
graph. The Hamiltonian problems on solid supergrid graphs
are still open. In this paper, we will solve the Hamilto-
nian and longest(s, t)-path problems onL-shaped supergrid
graphs, which form a subclass of solid supergrid graphs, in
linear time. LetR(m,n) be a supergrid graph such that its
vertex setV (R(m,n)) = {v = (vx, vy)|1 6 vx 6 m and
1 6 vy 6 n}. A rectangular supergrid graphis a supergrid
graph which is isomorphic toR(m,n). LetL(m,n; k, l) be a
supergrid graph obtained from a rectangular supergrid graph
R(m,n) by removing its subgraphR(k, l) from the upper-
right corner. AL-shaped supergrid graph is isomorphic to
L(m,n; k, l). In this paper, we only considerL(m,n; k, l).
Note that the number of vertices inL(m,n; k, l) equals to
mn − kl. In the figures, we will assume that(1, 1) are
coordinates of the vertex located at the upper-left corner of a
supergrid graph. For example, Fig. 3(a) indicates the structure
of L(m,n; k, l), and Figs. 3(b)–(d) indicateL(10, 11; 6, 8),
L(10, 11; 7, 9), and L(7, 10; 3, 7), respectively. The width
and height ofL-shaped supergrid graphL(m,n; k, l) can
be adjusted according to the parametersm, n, k, and l.
The main idea of our strategy is presented as follows. It
first separates the input graph into many parts. Then, we
verify whether there exists a Hamiltonian(s, t)-path in the
input graph by checking these separated parts. When there
exists no Hamiltonian(s, t)-path in the input graph, we then
combine the longest paths of these separated parts to get a
longest(s, t)-path of the input graph. Although this idea does
seem to be simple, there are still many issues to be solved.
That is, the precise partitions is important. If the separation
is done in a wrong way then the result may be wrong. In this
paper, we will verify our partition can separate the graph in
a correct way.

The possible application of the Hamiltonian connectivity
of L-shaped supergrid graphs is given below. Consider a
computerized embroidery machine for sewing a varied-sized
letterL into the object, e.g. clothes. First, we produce a set of
lattices to represent the letter. Then, a path is computed to
visit the lattices of the set such that each lattice is visited
exactly once. Finally, the software transmits the stitching
trace of the computed path to the computerized embroidery
machine, and the machine then performs the sewing work
along the trace on the object. Since each stitch position of an
embroidery machine can be moved to its eight neighboring
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Fig. 3. (a) The structure ofL-shaped supergrid graphL(m,n; k, l), (b)
L(10, 11; 6, 8), (c) L(10, 11; 7, 9), (d) L(7, 10; 3, 7), and (e) a minimum
sewing trace for the sets of lattices in (b)–(d), where each lattice is
represented by a node, solid arrow lines indicate the computed trace and
dashed arrow lines indicate the jump lines connecting two continuous letters.

positions, one set of neighboring lattices forms aL-shaped
supergrid graph. In this case, each lattice will be represented
by a vertex of a supergrid graph. The desired sewing trace
of the set of adjacent lattices is the Hamiltonian path of the
correspondingL-shaped supergrid graph. Given a string with
varied-sizedL letters. By the Hamiltonian connectivity ofL-
shaped supergrid graphs, we can compute the end nodes of
Hamiltonian paths in the correspondingL-shaped supergrid
graphs so that the total length of jump lines connecting two
L-shaped supergrid graphs is minimum. For instance, given
threeL-shaped supergrid graphs in Figs. 3(b)–(d), in which
eachL-shaped supergrid graph represents a set of lattices,
Fig. 3(e) shows such a minimum sewing trace for the sets of
lattices.

Another possible application of Hamiltonian connectivity
of L-shaped supergrid graphs is to compute the minimum
printing trace of 3D printers. Consider a 3D printer with a
L-type object being printed. The software produces a series
of thin layers, designs a path for each layer, combines these
paths of produced layers, and transmits the above paths
to 3D printer. Because 3D printing is performed layer by
layer (see Fig. 4(a)), each layer can be considered as a
L-shaped supergrid graph. Suppose that there arek layers
under the above 3D printing. If the Hamiltonian connectivity
of L-shaped supergrid graphs holds, then we can find a
Hamiltonian(si, ti)-path of anL-shaped supergrid graphLi,
whereLi, 1 6 i 6 k, represents a layer under 3D printing.
Thus, we can design an optimal trace for the above 3D
printing, whereti is adjacent tosi+1 for 1 6 i 6 k − 1.
In this application, we restrict the 3D printer nozzle to be
located at integer coordinates. For example, Fig. 4(a) shows
4 layersL1–L4 of a 3D printing for aL-type object, Fig. 4(b)
depicts the Hamiltonian(si, ti)-paths ofLi for 1 6 i 6 4,
and the result of this 3D printing is shown in Fig. 4(c).

Previous related works on supergrid graphs are summa-
rized as follows. The supergrid graphs were first introduced
in [13], in which we proved that the Hamiltonian cycle and
path problems on supergrid graphs are NP-complete, and
every rectangular supergrid graph is Hamiltonian. Since the
Hamiltonian problems on general supergrid graphs are NP-
complete, an important investgated direction is to discover
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Fig. 4. (a) The four layersL1–L4 of a 3D printing model while printing a
L-type object, (b) the computing Hamiltonian(si, ti)-path of each layerLi

in (a), and (c) the final result while performing the 4-layered 3D printing.

the complexities of special subclasses of supergrid graphs.
In [14], we proved that linear-convex supergrid graphs al-
ways contain Hamiltonian cycles. In [15], we proved that
rectangular supergrid graphs (with one trivial exception) are
always Hamiltonian connected. Recently, we verified the
Hamiltonicity and Hamiltonian connectivity of some shaped
supergrid graphs, including triangular, parallelogram, and
trapezoid [16]. Very recently, we verified the Hamiltonicity
and Hamiltonian connectivity of alphabet supergrid graphs
[18]. A preliminary version of this paper has appeared in
[17]. For the related works about grid and triangular grid
graphs, we refer the readers to [4], [9], [19], [21]–[27], [29],
[32]–[34].

The rest of the paper is organized as follows. In Section II,
some notations and observations are given. Previous results
are also introduced. In Section III, we prove two Hamiltonian
connected properties of rectangular supergrid graphs. These
two properties will be used in proving the Hamiltonian
connectivity ofL-shaped supergrid graphs. Section IV shows
thatL-shaped supergrid graphs are Hamiltonian and Hamil-
tonian connected except one or three conditions. In Section
V, we propose a linear-time algorithm to solve the longest
(s, t)-path problem onL-shaped supergrid graphs. Finally,
we make some concluding remarks in Section VI.

II. N OTATIONS AND PREVIOUS RESULTS

In this section, we will introduce some notations and pre-
viously established results. For graph-theoretic terminology
not defined here, the reader is referred to [2].

Let G be a graph. We denote byV (G) and E(G) the
vertex set and edge set ofG, respectively. LetS ⊆ V (G)
and letu, v ∈ V (G). The subgraph ofG inducedby S is
represented asG[S], andG−S is used to denoteG[V −S] for
convenience. In general, we writeG− v instead ofG−{v}.
We denote by(u, v) an edge inG, whereu is adjacentto v,

andu is called a neighbor ofv. The notationu ∼ v (resp.,
u ≁ v) means that verticesu andv are adjacent (resp., non-
adjacent). Two edgese1 = (u1, v1) and e2 = (u2, v2) are
said to beparallel if u1 ∼ v1 andu2 ∼ v2, denote this by
e1 ≈ e2. We useNG(v) to denote the set of neighbors ofv
in G, and letNG[v] = NG(v)∪{v}. The number of vertices
adjacent to vertexv in G is called thedegreeof v in G and
is denoted bydeg(v).

A path P = v1 → v2 → · · · → v|P |−1 → v|P | in
G is a sequence(v1, v2, · · · , v|P |−1, v|P |) of vertices such
that (vi, vi+1) ∈ E(G) for 1 6 i < |P |, and all vertices
except v1, v|P | are distinct. If v1 = v|P | and |P | > 4,
then P is called a cycle ofG. The verticesv1 and v|P |

are called thepath-start and path-endof P , denoted by
start(P ) and end(P ), respectively. We will usevi ∈ P

to denote “P visits vertexvi” and use(vi, vi+1) ∈ P to
denote “P visits edge(vi, vi+1)”. A path from v1 to vk is
denoted by(v1, vk)-path. For convenience, we will useP to
refer toV (P ) if no ambiguity occurs. LetP1 andP2 be two
paths (or cycles) inG. If V (P1)∩ V (P2) = ∅, then they are
called vertex-disjoint. When P1 and P2 are vertex-disjoint
and end(P1) ∼ start(P2), then they can be concatenated
into a path, denoted byP1 ⇒ P2.

Rectangular supergrid graphs first appeared in [13], in
which we solved the Hamiltonian cycle problem in linear
time. A rectangular supergrid graphR(m,n) is a supergrid
graph withV (R(m,n)) = {v = (vx, vy)|1 6 vx 6 m and
1 6 vy 6 n}, and it is calledn-rectangle. In this paper,
without loss of generality we will assume thatm > n. Let
v = (vx, vy) be a vertex inR(m,n). The vertexv is called
theupper-left(resp.,upper-right, down-left, down-right) cor-
ner of R(m,n) if for any vertexw = (wx, wy) ∈ R(m,n),
wx > vx and wy > vy (resp.,wx 6 vx and wy > vy ,
wx > vx and wy 6 vy, wx 6 vx and wy 6 vy). Notice
that in the figures we will assume that(1, 1) are coordinates
of the upper-left corner ofR(m,n), except we explicitly
change this assumption. The edge(u, v) is calledhorizontal
(resp.,vertical) if uy = vy (resp.,ux = vx), and is said
to be crossed if it is neither a horizontal nor a vertical
edge. There are four boundaries in a rectangular supergrid
graphR(m,n) with m,n > 2. The edge in the boundary of
R(m,n) is calledboundary edge. A path is calledboundary
of R(m,n) if it visits all vertices of the same boundary in
R(m,n) and its length equals to the number of vertices in
the visited boundary. For example, Fig. 5 shows a rectangular
supergrid graphR(10, 8) which is called 8-rectangle and
contains2 × (9 + 7) = 32 boundary edges. Fig. 5 also
indicates the types of edges and corners.

A L-shaped supergrid graph, denoted byL(m,n; k, l), is a
supergrid graph obtained from a rectangular supergrid graph
R(m,n) by removing its subgraphR(k, l) from the upper-
right corner, wherem,n > 1 andk, l > 1. Then,m−k > 1,
n− l > 1, and |V (L(m,n; k, l))| = mn− kl. The structure
of L(m,n; k, l) is depicted in Fig. 3(a).

In proving our results, we need to partition a rectangular
or L-shaped supergrid graph into two disjoint parts. The
partition is defined as follows:

Definition 1. Let G be a L-shaped supergrid graph
L(m,n; k, l) or a rectangular supergrid graphR(m,n). A
separation operationof G is a partition of G into two
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Fig. 5. A rectangular supergrid graphR(m, n), wherem = 10, n = 8,
and bold dashed lines indicate vertical and horizontal separations.

vertex-disjoint supergrid subgraphsG1 andG2, i.e.,V (G) =
V (G1) ∪ V (G2) andV (G1) ∩ V (G2) = ∅. A separation is
calledvertical if it consists of a set of horizontal edges, and
is calledhorizontal if it contains a set of vertical edges. For
instance, the bold dashed vertical (resp., horizontal) line in
Fig. 5 indicates a vertical (resp., horizontal) separation of
R(10, 8) which is partitioned intoR(3, 8) andR(7, 8) (resp.,
R(10, 3) andR(10, 5)).

Let R(m,n) with m > n be a rectangular supergrid graph.
In [13], we provedR(m,n) to be Hamiltonian exceptn = 1.
Let C be a cycle ofR(m,n), and letB be a boundary of
R(m,n). The restriction ofC to B is denoted byC|B. If
|C|B| = 1, i.e., C|B is a boundary path onB, then C|B is
calledflat faceon B. If |C|B| > 1 andC|B contains at least
one boundary edge ofB, thenC|B is calledconcave faceon
B. A Hamiltonian cycleHC of R(m,n) with m > n > 2 is
calledcanonicalif
(1) n = 3, HC contains three flat faces on two shorter
boundaries and one longer boundary, andHC contains one
concave face on the other boundary; or
(2) n = 2 or n > 4, HC contains three flat faces on three
boundaries, andHC contains one concave face on the other
boundary.
The following lemma shows the Hamiltonicity of rectangular
supergrid graphs and appears in [13].

Lemma 1. (See [13].) LetR(m,n) be a rectangular su-
pergrid graph withm > n > 2. Then,R(m,n) contains
a canonical Hamiltonian cycle. Moreover,R(m,n) contains
four canonical Hamiltonian cycles with concave faces being
located on different boundaries whenn 6= 3.

Fig. 6 shows canonical Hamiltonian cycles for rectangular
supergrid graphs found in Lemma 1. Each Hamiltonian cycle
found by this lemma contains all the boundary edges on
any three sides of the rectangular supergrid graph. This
shows that for any rectangular supergrid graphR(m,n)
with m > n > 4, we can always construct four canonical
Hamiltonian cycles such that their concave faces are placed
on different boundaries. For an example, the four distinct
canonical Hamiltonian cycles ofR(7, 5) are depicted in Figs.
6(b)–(e).

Let (G, s, t) denote the supergrid graphG with two
distinct verticess and t. We will assume, without loss of
generality, thatsx 6 tx except we explicitly change this
assumption. A Hamiltonian path betweens and t in G is
denoted byHP (G, s, t). From Lemma 1,HP (R(m,n), s, t)

(b)(a)

flat face

concave face

(c) (d) (e)

Fig. 6. A canonical Hamiltonian cycle containing three flat faces and one
concave face for (a)R(8, 6) and (b)–(e)R(7, 5), where solid arrow lines
indicate the edges in the cycles andR(7, 5) includes four distinct canonical
Hamiltonian cycles in (b)–(e) such that their concave faces are located on
different boundaries.

(a)

s t

(b)

s

t

Fig. 7. Rectangular supergrid graphs in which Hamiltonian(s, t)-path does
not exist for (a) 1-rectangleR(m, 1), and (b) 2-rectangleR(m, 2), where
solid lines indicate the longest(s, t)-path.

does exist ifm,n > 2 and(s, t) is an edge in the constructed
Hamiltonian cycle ofR(m,n). In addition, we will use
L̂(G, s, t) to denote the length of longest(s, t)-path in
(G, s, t). Note that we denote the length of a path by the
number of vertices in the path.

Recently, the Hamiltonian connectivity of rectangular su-
pergrid graphs except one condition has been verified in [15].
The forbidden condition forHP (R(m,n), s, t) is satisfied
only for 1-rectangle or 2-rectangle. To describe the exception
condition, we define thecut vertexandvertex cutof a graph
as follows:

Definition 2. Let G be a connected graph and letV1 ⊆
V (G). The set V1 is a vertex cut of G if G − V1 is
disconnected. A vertexv of G is a cut vertexof G if {v} is
a vertex cut ofG. For instance, in Fig. 7(a)s or t is a cut
vertex and in Fig. 7(b){s, t} is a vertex cut.

Then, the following condition impliesHP (R(m, 1), s, t)
andHP (R(m, 2), s, t) do not exist.

(F1) s or t is a cut vertex ofR(m, 1), or {s, t} is a
vertex cut ofR(m, 2) (see Figs. 7(a)–(b)).

The following lemma can be easily verified by the same
arguments in [24].

Lemma 2. Let R(m,n) be a rectangular supergrid graph,
and lets and t be its two vertices. If(R(m,n), s, t) satisfies
condition (F1), thenHP (R(m,n), s, t) does not exist.

In [15], we obtained the following lemma to show the
Hamiltonian connectivity of rectangular supergrid graphs.

Lemma 3. (See [15].) Let R(m,n) be a rectangular
supergrid graph, and lets and t be its two vertices.
If (R(m,n), s, t) does not satisfy condition(F1), then
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Fig. 8. A schematic diagram for (a) Statement (1), (b) Statement (2) , (c)
Statement (3), and (d) Statement (4) of Proposition 5, where⊗ represents
the destruction of an edge while constructing a merged cycle or path.

HP (R(m,n), s, t) does exist.

Combining with the above two lemmas, we have the
following theorem.

Theorem 4. Let R(m,n) be a rectangular supergrid graph,
and lets and t be its two vertices. Then,HP (R(m,n), s, t)
does exist if and only if(R(m,n), s, t) does not satisfy
condition (F1).

The Hamiltonian(s, t)-path of R(m,n) constructed in
[15] is to contain at least one boundary edge of each
boundary, and is calledcanonical.

We next give some propositions on the relations among
cycle, path, and vertex. These observations will be used in
proving our results and are given in [13], [14], [15].

Proposition 5. (See [13], [14], [15].) LetG be a connected
graph, C1 and C2 be two vertex-disjoint cycles ofG, C1

and P1 be a cycle and a path, respectively, ofG such that
V (C1)∩V (P1) = ∅, and letx be a vertex inG−V (C1) or
G− V (P1). Then, the following statements hold:
(1) If there exist two edgese1 ∈ C1 and e2 ∈ C2 such that
e1 ≈ e2, thenC1 and C2 can be merged into a cycle ofG
(see Fig. 8(a)).
(2) If there exist two edgese1 ∈ C1 and e2 ∈ P1 such that
e1 ≈ e2, thenC1 and P1 can be merged into a path ofG
(see Fig. 8(b)).
(3) If vertexx adjoins one edge(u1, v1) of C1 (resp.,P1),
thenx andC1 (resp.,P1) can be combined into a cycle (resp.,
path) ofG (see Fig. 8(c)).
(4) If there exists one edge(u1, v1) ∈ C1 such that
u1 ∼ start(P1) and v1 ∼ end(P1), thenC1 and P1 can
be combined into a cycleC of G (see Fig. 8(d)).

In [15], Hunget al.gave the following formula to compute
the length of a longest(s, t)-path inR(m,n):

L̂(R(m,n), s, t) =















tx − sx + 1 , if n = 1;
max{2sx,
2(m− sx + 1)} or 2m , if n = 2;
mn , if n > 3.

Theorem 6. (See [15].) Given a rectangular supergrid graph
R(m,n) with mn > 2, and two distinct verticess and t in
R(m,n), a longest(s, t)-path can be computed inO(mn)-
linear time.

In this paper, we will show that a longest(s, t)-path of
(L(m,n; k, l), s, t) can be computed inO(mn − kl)-linear
time.

III. T WO HAMILTONIAN CONNECTED PROPERTIES OF

RECTANGULAR SUPERGRID GRAPHS

By Theorem 4, rectangular supergrid graphR(m,n)
contains a Hamiltonian (s, t)-path if and only if
(R(m,n), s, t) does not satisfy condition (F1). The
Hamiltonian (s, t)-path of R(m,n) constructed in [15]
contains at least one boundary edge of each boundary.
In this section, we will prove two additional Hamiltonian
connected properties of rectangular supergrid graphs under
some conditions. These two properties will be used to
prove the Hamiltonian connectivity ofL-shaped supergrid
graphs. LetR(m,n) be a rectangular supergrid graph with
m > 3 and n > 2, and letw = (1, 1), z = (2, 1), and
f = (3, 1) be three vertices inR(m,n). We will prove the
following two Hamiltonian connected properties ofR(m,n):

(P1) If s = w = (1, 1) and t = z = (2, 1), then there
exists a Hamiltonian(s, t)-pathP of R(m,n) such
that edge(z, f) ∈ P .

(P2) If (n = 2 and {s, t} 6∈ {{w, z}, {(1, 1), (2, 2)},
{(2, 1), (1, 2)}}) or (n > 3 and {s, t} 6= {w, z}),
then there exists a Hamiltonian(s, t)-path Q

of R(m,n) such that edge(w, z) ∈ Q, where
(R(m,n), s, t) does not satisfy condition (F1).

First, we verify the first property (P1) as follows:

Lemma 7. Let R(m,n) be a rectangular supergrid graph
with m > 3 and n > 2, and let s = w = (1, 1), t =
z = (2, 1), andf = (3, 1). Then, there exists a Hamiltonian
(s, t)-pathP of R(m,n) such that edge(z, f) ∈ P .

Proof: Depending on whetherm = 3, we consider the
following two cases:

Case1: m = 3. In this case, we claim that
there exists a Hamiltonian(s, t)-pathP of R(m,n) such that
(z, f) ∈ P and a boundary path connecting down-left corner
and down-right corner is a subpath ofP .

We will prove the above claim by induction onn. Initially,
let n = 2. The desired Hamiltonian(s, t)-pathP of R(3, 2)
can be easily constructed and is depicted in Fig. 9(a). Assume
that the claim holds true whenn = k > 2. Let u1 = (1, k),
u2 = (2, k), and u3 = (3, k). By induction hypothesis,
there exists a Hamiltonian(s, t)-path Pk of R(m, k) such
that (z, f) ∈ Pk andPk contains the boundary pathP ′ =
u1 → u2 → u3 as a subpath. LetPk = P1 ⇒ P ′ ⇒ P2.
Considern = k + 1. Let v1 = (1, k + 1), v2 = (2, k + 1),
v3 = (3, k + 1), and let P̃ = v1 → v2 → v3. Then,
P1 ⇒ u1 ⇒ P̃ ⇒ u2 → u3 ⇒ P2 is the desired Hamiltonian
(s, t)-path ofR(3, k+1). The constructed Hamiltonian(s, t)-
path ofR(3, k+ 1) is shown in Fig. 9(b). By induction, the
claim holds and hence, the lemma holds true in the case of
m = 3.

Case2: m > 3. In this case, we first make a vertical sepa-
ration onR(m,n) to partition it into two disjoint rectangular
supergrid subgraphsRα = R(2, n) andRβ = R(m− 2, n),
as depicted in Fig. 9(c). We can easily construct a Hamilto-
nian (s, t)-pathPα of Rα such thatPα contains a boundary
path placed to faceRβ , as shown in Fig. 9(c). By Lemma 1,
Rβ contains a canonical Hamiltonian cycleCβ . We can place
one flat face ofCβ to faceRα. Then, there exist two edges
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Fig. 9. The Hamiltonian(s, t)-path of rectangular supergrid graphR(m, n)
containing edge(z, f), where s = w = (1, 1), t = z = (2, 1), and
f = (3, 1), for (a) m = 3 andn = 2, (b) m = 3 andn = k + 1 > 3,
and (c) m > 4 and n > 2, where solid lines indicate the Hamiltonian
path betweens and t and ⊗ represents the destruction of an edge while
constructing such a Hamiltonian path.

e1 ∈ Pα ande2 ∈ Cβ such thatt(= z) is a vertex ofe1, f is
a vertex ofe2, ande1 ≈ e2. By Statement (2) of Proposition
5,Pα andCβ can be combined into a Hamiltonian(s, t)-path
P of R(m,n) such that edge(z, f) ∈ P . The constructed
Hamiltonian(s, t)-path ofR(m,n) is depicted in Fig. 9(c).
Thus, the lemma holds true whenm > 4.

It immediately follows from the above cases that the
lemma holds true.

Next, we will verify the second Hamiltonian connected
property (P2) ofR(m,n), wherem > 3 andn > 2. We first
consider the following forbidden condition such that there
exists no Hamiltonian(s, t)-path Q of R(m,n) with edge
(w, z) ∈ Q:

(F2) n = 2 and {s, t} ∈ {{w, z}, {(1, 1), (2, 2)},
{(2, 1), (1, 2)}}, or n > 3 and{s, t} = {w, z}.

The above condition states thatR(m,n) has no Hamil-
tonian (s, t)-path containing edge(w, z) if (R(m,n), s, t)
satisfies condition (F2). We will prove property (P2) by
constructing a Hamiltonian(s, t)-path of R(m,n) visiting
edge(w, z) when(R(m,n), s, t) does not satisfy conditions
(F1) and (F2). To verify property (P2), we first consider the
special case, in Lemma 8, thatm = 3, n > 2, and either
s = z or t = z. This lemma can be proved by similar
arguments in proving Case 1 of Lemma 7.

Lemma 8. Let R(m,n) be a rectangular supergrid graph
with m = 3 and n > 2, s and t be its two distinct vertices,
and letw = (1, 1) andz = (2, 1). If (R(m,n), s, t) does not
satisfy conditions(F1) and (F2), and eithers = z or t = z,
then there exists a Hamiltonian(s, t)-path Q of R(m,n)
such that edge(w, z) ∈ Q.

Proof: Without loss of generality, assume thats = z.
Then,tx 6 sx or tx > sx. That is,t may be to the left ofs.
Let x = (1, n), y = (2, n), andr = (3, n) be three vertices
of R(m,n). We claim that
there exists a Hamiltonian(s, t)-pathQ of R(m,n) such that
edge(w, z) ∈ Q, and (x, y) ∈ Q if t = r; and (y, r) ∈ Q

otherwise.
We will prove the above claim by induction onn. Ini-

tially, let n = 2. Since (R(m,n), s, t) does not satisfy
conditions (F1) and (F2),t 6∈ {(1, 1), (1, 2), (2, 2)}. Thus,
t ∈ {(3, 1), (3, 2)}. Then, the desired Hamiltonian(s, t)-path
Q of R(3, 2) can be easily constructed and is depicted in Fig.

10(a). Assume that the claim holds true whenn = k > 2.
Let x1 = (1, k), y1 = (2, k), and r1 = (3, k). By
induction hypothesis, there exists Hamiltonian(s, p)-pathQk

of R(3, k) such that edge(w, z) ∈ Qk, and(x1, y1) ∈ Qk or
(y1, r1) ∈ Qk depending on whether or notp = r1. Consider
that n = k + 1. We first make a horizontal separation on
R(3, k + 1) to obtain two disjoint partsR1 = R(3, k) and
R2 = R(3, 1), as shown in Fig. 10(b). Letx2 = (1, k + 1),
y2 = (2, k + 1), and r2 = (3, k + 1) be the three vertices
of R2. We will construct a Hamiltonian(s, t)-pathQk+1 of
R(3, k + 1) such that(w, z) ∈ Qk+1, and(x2, y2) ∈ Qk+1

or (y2, r2) ∈ Qk+1 as follows. Depending on the location of
t, there are the following two cases:

Case 1: t ∈ R1. Let P2 = x2 → y2 → r2. By
induction hypothesis, there exists Hamiltonian(s, t)-pathQk

of R(m, k) such that edge(w, z) ∈ Qk, and(x1, y1) ∈ Qk

if t = r1; and (y1, r1) ∈ Qk otherwise. Thus, there exists
an edge(uk, vk) in Qk such thatstart(P2) ∼ uk and
end(P2) ∼ vk, where (uk, vk) = (x1, y1) or (y1, r1). By
Statement (4) of Proposition 5,Qk andP2 can be combined
into a Hamiltonian(s, t)-pathQk+1 of R(3, k+1) such that
edges(w, z), (x2, y2), (y2, r2) ∈ Qk+1. The construction of
such a Hamiltonian path is depicted in Fig. 10(b).

Case2: t ∈ R2. In this case,t ∈ {x2, y2, r2}. Then, there
are the following three subcases:

Case2.1: t = x2. Let p = r1 ∈ R1 andq = r2 ∈ R2.
Then, p ∼ q. Let P2 = r2(= q) → y2 → x2(= t). By
induction hypothesis, there exists Hamiltonian(s, p)-pathQk

of R(m, k) such that edges(w, z), (x1, y1) ∈ Qk. Then,
Qk+1 = Qk ⇒ P2 forms a Hamiltonian(s, t)-path of
R(m, k+1) with (w, z), (x2, y2), (y2, r2) ∈ Qk+1. Fig. 10(c)
shows the construction of such a Hamiltonian(s, t)-path.

Case 2.2: t = r2. Let p = x1 ∈ R1 and q =
x2 ∈ R2. Let P2 = x2(= q) → y2 → r2(= t). By
induction hypothesis, there exists Hamiltonian(s, p)-pathQk

of R(m, k) such that edges(w, z), (y1, r1) ∈ Qk. Then,
Qk+1 = Qk ⇒ P2 forms a Hamiltonian(s, t)-path of
R(m, k+1) with (w, z), (x2, y2), (y2, r2) ∈ Qk+1. Fig. 10(d)
shows the construction of such a Hamiltonian (s, t)-path.

Case2.3: t = y2. Let p = r1 ∈ R1. Let P2 = r2 →
y2(= t). By induction hypothesis, there exists Hamiltonian
(s, p)-pathQk of R(m, k) such that edges(w, z), (x1, y1) ∈
Qk. Then,Q′

k = Qk ⇒ P2 is a Hamiltonian(s, t)-path of
R(m, k+1)− x2 such that edges(w, z), (x1, y1), (y2, r2) ∈
Q′

k. Sincex2 ∼ x1, x2 ∼ y1, and edge(x1, y1) ∈ Q′
k, by

Statement (3) of Proposition 5Q′
k andx2 can be combined

into a Hamiltonian(s, t)-path Qk+1 of R(3, k + 1) such
that edges(w, z), (y2, r2) ∈ Qk+1. Fig. 10(e) depicts such a
construction of Hamiltonian(s, t)-path.

It immediately follows from the above cases that the claim
holds true whenn = k + 1. By induction, the claim holds
true and, hence, the lemma is true.

We next verify property (P2) in the following lemma.

Lemma 9. Let R(m,n) be a rectangular supergrid graph
with m > 3 and n > 2, s and t be its two distinct
vertices, and letw = (1, 1) andz = (2, 1). If (R(m,n), s, t)
does not satisfy conditions(F1) and (F2), then there exists
a Hamiltonian (s, t)-path Q of R(m,n) such that edge
(w, z) ∈ Q.
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Fig. 10. The Hamiltonian(s, t)-path of 3-rectangleR(3, n) containing
edge(w, z), wheres = z = (1, 2) andw = (1, 1), for (a) n = 2, (b)
n = k + 1 > 3 and t ∈ R1(= R(3, k)), and (c)–(e)n = k + 1 > 3 and
t ∈ R2(= R(3, 1)), where solid lines indicate the constructed Hamiltonian
(s, t)-path and⊗ represents the destruction of an edge while constructing
such a Hamiltonian path.

Proof: We will provide a constructive method to prove
this lemma. By assumption of this lemma,{s, t} 6= {w, z}
and, hence,0 6 |{s, t} ∩ {w, z}| 6 1. Then, there are three
cases:

Case1: {s, t} ∩ {w, z} = ∅. In this case,s, t 6∈ {w, z}.
By Lemma 3,R(m,n) contains a Hamiltonian(s, t)-path
Q̃. If edge (w, z) ∈ Q̃, then Q̃ is the desired Hamiltonian
(s, t)-path ofR(m,n). Suppose that edge(w, z) 6∈ Q̃. Let
x = (1, 2) and y = (2, 2). Then,N(w) − {z} = {x, y}.
Let Q̃ = Qw

1 ⇒ w ⇒ Qw
2 . SinceN(w) − {z} = {x, y},

{end(Qw
1 ), start(Q

w
2 )} = {x, y} and, hence,end(Qw

1 ) ∼

start(Qw
2 ). Then,Q̃′ = Qw

1 ⇒ Qw
2 is a Hamiltonian(s, t)-

path ofR(m,n)−w, where edge(end(Qw
1 ), start(Q

w
2 )) =

(x, y) is visited by Q̃′. Let Q̃′ = Qz
1 ⇒ z ⇒ Qz

2.
Depending on whetherend(Qz

1) ∼ start(Qz
2), we consider

the following two subcases:
Case 1.1: end(Qz

1) ∼ start(Qz
2). In this subcase,

Qz = Qz
1 ⇒ Qz

2 is a Hamiltonian(s, t)-path ofR(m,n) −
{w, z}, where edge(x, y) is visited byQz. LetP ′ = w → z.
Then, there exist one edge(x, y) ∈ Qz such thatstart(P ′) ∼
x andend(P ′) ∼ y. By Statement (4) of Proposition 5,Qz

and P ′ can be combined into a Hamiltonian(s, t)-path Q

of R(m,n) such that edge(w, z) ∈ Q. The construction of
such a Hamiltonian(s, t)-path is depicted in Fig. 11(a).

Case1.2:end(Qz
1) ≁ start(Qz

2). SinceN(z)−{w, x}
forms a clique,x ∈ {end(Qz

1), start(Q
z
2)}. Then,z → x →

y is a subpath ofQ̃′. Let Q̃′ = Qx
1 ⇒ x ⇒ Qx

2 . Then,
{end(Qx

1), start(Q
x
2)} = {y, z}. Thus,Qx = Qx

1 ⇒ Qx
2 is

a Hamiltonian(s, t)-path ofR(m,n)− {w, x}, where edge
(y, z) is visited by Qx. Let P ′ = w → x. Then, there
exist one edge(y, z) ∈ Qx such thatstart(P ′) ∼ z and
end(P ′) ∼ y. By Statement (4) of Proposition 5,Qx and
P ′ can be combined into a Hamiltonian(s, t)-path Q of
R(m,n) such that edge(w, z) ∈ Q. The construction of
such a Hamiltonian(s, t)-path is shown in Fig. 11(b).

Case 2: s = w or t = w. Without loss of generality,
assume thats = w. First, consider thatn = 2. Then,
R(m,n) is a 2-rectangle. By assumption of the lemma,
(R(m,n), s, t) does not satisfy condition (F2), and, hence,
t 6∈ {(2, 1), (2, 2)}. If t = (1, 2), then a Hamiltonian(s, t)-
pathQ of R(m,n) can be easily constructed by visiting each
boundary edge ofR(m,n) except boundary edge(s, t), and,
hence,(w, z) ∈ Q. Let t = (tx, ty) satisfy thattx > 3.
We first make a vertical separation onR(m,n) to obtain
two disjoint partsRα andRβ , as depicted in Fig. 11(c). Let
p = (tx − 1, 2) ∈ Rα andq = (tx, ty − 1) or (tx, ty + 1) in
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Fig. 11. The construction of Hamiltonian(s, t)-pathQ in R(m,n) with
edge(w, z) ∈ Q for (a)–(b) s, t 6∈ {w, z}, (c) s = w andn = 2, (d)–(f)
s = w and n > 3, and (g)–(i)s = z, m > 4, andn > 3, where bold
dashed lines indicate the subpaths of the constructed Hamiltonian(s, t)-
path, solid (arrow) lines indicate the edges in the constructed Hamiltonian
path, and⊗ represents the destruction of an edge while constructing such
a Hamiltonian path.

Rβ , whereq 6= t andqx = tx. Then,p ∼ q and we can easily
construct Hamiltonian(s, p)-pathQα and (q, t)-pathQβ of
Rα andRβ, respectively, such that edge(w, z) ∈ Qα. Thus,
Q = Qα ⇒ Qβ is a Hamiltonian(s, t)-path ofR(m,n) with
(w, z) ∈ Q. The construction of such a Hamiltonian(s, t)-
path is depicted in Fig. 11(c). Next, consider thatn > 3. Let
t = (tx, ty). Depending on the location oft, we consider the
following three subcases:

Case2.1: ty = 1 and tx = m. In this subcase,t is
located at the up-right corner ofR(m,n). We first make
a horizontal separation onR(m,n) to obtain two disjoint
partsR1 = R(m, 1) andR2 = R(m,n − 1), as shown in
Fig. 11(d). Note thatm > 3 andn− 1 > 2. By visiting all
boundary edges ofR1 from s to t, we get a Hamiltonian
(s, t)-path Q1 of R1 with edge(w, z) ∈ Q1. By Lemma
1, we can construct a canonical Hamiltonian cycleC2 of
R2 such that its one flat face is placed to faceR1. Then,
there exist two edgese1(= (z, f)) ∈ Q1 and e2 ∈ C2

such thate1 ≈ e2, wherez = (2, 1) and f = (3, 1). By
Statement (2) of Proposition 5,P1 andC2 can be merged
into a Hamiltonian(s, t)-pathQ of R(m,n) such that edge
(w, z) ∈ Q. The construction of such a Hamiltonian(s, t)-
path is shown in Fig. 11(d).

Case 2.2: ty = 1 and tx < m. Let r = (m, 1)
be the up-right corner ofR(m,n). Then, zx < tx < rx,
i.e., 2 < tx < m, and, hence,m > 4. We first make
a vertical separation onR(m,n) to get two disjoint parts
Rα = R(2, n) andRβ = R(m − 2, n), as depicted in Fig.
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11(e), wheren > 3 and m − 2 > 2. Let p = (2, n) be the
down-right corner ofRα and letq = (3, n) be the down-left
corner ofRβ . Then,p ∼ q and,(Rα, s, p) and(Rβ , q, t) do
not satisfy condition (F1). SinceRα is a 2-rectangle, we can
easily construct a a Hamiltonian(s, p)-pathQα of Rα such
that edge(w, z) ∈ Qα, as shown in Fig. 11(e). By Lemma
3, there exists a Hamiltonian(q, t)-path Qβ of Rβ . Then,
Q = Qα ⇒ Qβ forms a Hamiltonian(s, t)-path ofR(m,n)
such that edge(w, z) ∈ Q. Such a Hamiltonian(s, t)-path is
depicted in Fig. 11(e).

Case 2.3: ty > 1. In this subcase, we first make a
horizontal separation onR(m,n) to obtain two disjoint parts
R1 = R(m, 1) andR2 = R(m,n−1), as shown in Fig. 11(f),
wherem > 3 andn− 1 > 2. Let r = (m, 1), thenr ∈ R1.
Let q = (m, 2) if t 6= (m, 2); otherwiseq = (m − 1, 2). A
simple check shows that(R2, q, t) does not satisfy condition
(F1). By visiting every vertex ofR1 from s to r, we get a
Hamiltonian(s, t)-pathQ1 of R1 with edge(w, z) ∈ Q1. By
Lemma 3, there exists a Hamiltonian(q, t)-pathQ2 of R2.
Then,Q = Q1 ⇒ Q2 is a Hamiltonian(s, t)-path ofR(m,n)
with (w, z) ∈ Q. The constructed Hamiltonian(s, t)-path in
this subcase can be found in Fig. 11(f).

Case3: s = z or t = z. By symmetry, assume thats = z.
Then,t may be to the left ofs, i.e., tx < sx. Whenn = 2,
a Hamiltonian(s, t)-path Q of R(m,n) with (w, z) ∈ Q

can be constructed by similar arguments in Fig. 11(c). By
Lemma 8, the desired Hamiltonian(s, t)-path of R(m,n)
can be constructed whenm = 3. In the following, suppose
thatm > 4 andn > 3. We then make a horizontal separation
on R(m,n) to obtain two disjoint partsR1 = R(m, 1) and
R2 = R(m,n − 1), as shown in Fig. 11(g), wherem > 4
andn−1 > 2. Then,s ∈ R1. Depending on whethert ∈ R1,
we consider the following two subcases:

Case 3.1: t ∈ R1. A Hamiltonian (s, t)-path Q of
R(m,n) with (w, z) ∈ Q can be constructed by similar
arguments in proving Case 2.1 and Case 2.2. Figs. 11(g)–(h)
show such constructions of the desired Hamiltonian(s, t)-
paths ofR(m,n).

Case3.2: t ∈ R2. In this subcase, we make a vertical
separation onR(m,n) to obtain two disjoint partsRα =
R(2, n) andRβ = R(m−2, n), wherem−2 > 2 andn > 3,
as shown in Fig. 11(i). Suppose thatt ∈ Rα. By similar
technique in Fig. 11(c) and Lemma 3, we can easily construct
a Hamiltonian(s, t)-pathQα of Rα such that(w, z) ∈ Qα

and Qα contains one boundary edgeeα that is placed to
faceRβ , as depicted in Fig. 11(i). By Lemma 1, there exists
a canonical Hamiltonian cycleCβ of Rβ such that its one
flat face is placed to faceRα. Then, there exist two edges
eα ∈ Qα and eβ ∈ Cβ such thateα ≈ eβ . By Statement
(2) of Proposition 5,Qα and Cβ can be combined into a
Hamiltonian(s, t)-pathQ of R(m,n) with edge(w, z) ∈ Q.
The construction of such a Hamiltonian(s, t)-path is shown
in Fig. 11(i). On the other hand, suppose thatt ∈ Rβ . Let
p ∈ Rα and q ∈ Rβ such thatp ∼ q and, (Rα, s, p) and
(Rβ , q, t) do not satisfy condition (F1). By Lemma 3, there
exist Hamiltonian(s, p)-pathQα and Hamiltonian(q, t)-path
Qβ of Rα andRβ, respectively. SinceRα is a 2-rectangle,
we can easily constructQα to satisfy (w, z) ∈ Qα. Then,
Q = Qα ⇒ Qβ is a Hamiltonian(s, t)-path of R(m,n)
with edge(w, z) ∈ Q.
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Fig. 12. (a) Separations onL(10, 11; 7, 9), (b) a vertical separation on
L(m,n; k, l) to obtain Lα = R(m − k, n) and Lβ = R(k, l), (c) a
Hamiltonian cycle ofL(m,n; k, l) when m − k = 1 and n − l > 2,
and (d) a Hamiltonian cycle ofL(m,n; k, l) whenm − k > 2, n − l >
2, and k > 2, where bold dashed vertical (resp., horizontal) line in (a)
indicates a vertical (resp., horizontal) separation onL(10, 11; 7, 9), and⊗
represents the destruction of an edge while constructing a Hamiltonian cycle
of L(m,n; k, l).

We have considered any case to construct a Hamiltonian
(s, t)-path Q of R(m,n) with edge (w, z) ∈ Q. This
completes the proof of the lemma.

IV. T HE HAMILTONIAN AND HAMILTONIAN CONNECTED

PROPERTIES OFL-SHAPED SUPERGRID GRAPHS

In this section, we will verify the Hamiltonicity and
Hamiltonian connectivity ofL-shaped supergrid graphs. Let
L(m,n; k, l) be aL-shaped supergrid graph. We will make
a vertical or horizontal separation onL(m,n; k, l) to obtain
two disjoint rectangular supergrid graphs. For an example,
the bold dashed vertical (resp., horizontal) line in Fig.
12(a) indicates a vertical (resp., horizontal) separation on
L(10, 11; 7, 9) that is to partition it intoR(3, 11) andR(7, 2)
(resp.,R(3, 9) andR(10, 2)). The following two subsections
will prove the Hamiltonicity and Hamiltonian connectivity
of L(m,n; k, l) respectively.

A. The Hamiltonian property ofL-shaped supergrid graphs

In this subsection, we will prove the Hamiltonicity
of L-shaped supergrid graphs. Obviously,L(m,n; k, l)
contains no Hamiltonian cycle if there exists a vertexw in
L(m,n; k, l) such thatdeg(w) = 1. Thus,L(m,n; k, l) is
not Hamiltonian when the following condition is satisfied.

(F3) there exists a vertexw in L(m,n; k, l) such that
deg(w) = 1.

When the above condition is satisfied, we get that (m−k =
1 and l > 1) or (n − l = 1 andk > 1). We then show the
Hamiltonicity of L-shaped supergrid graphs as follows:
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Theorem 10. Let L(m,n; k, l) be a L-shaped supergrid
graph. Then,L(m,n; k, l) contains a Hamiltonian cycle if
and only if it does not satisfy condition(F3).

Proof: Obviously,L(m,n; k, l) contains no Hamiltonian
cycle if it satisfies condition (F3). In the following, we will
prove thatL(m,n; k, l) contains a Hamiltonian cycle if it
does not satisfy condition (F3). Assume thatL(m,n; k, l)
does not satisfy condition (F3). We prove it by constructing a
Hamiltonian cycle ofL(m,n; k, l). First, we make a vertical
separation onL(m,n; k, l) to obtain two disjoint rectangular
supergrid subgraphsLα = R(m−k, n) andLβ = R(k, n−l),
as depicted in Fig. 12(b). Depending on the sizes ofLα and
Lβ, there are the following two cases:

Case 1: m − k = 1 or n − l = 1. By symmetry, we
assume thatm − k = 1. Since there exists no vertexw in
L(m,n; k, l) such thatdeg(w) = 1, we get thatl = 1 (see
Fig. 12(c)). Consider thatn − l = 1. Then,k = 1. Thus,
L(m,n; k, l) consists of only three vertices which forms a
cycle. On the other hand, consider thatn− l > 2. Let w be
a vertex ofLα with deg(w) = 2, L∗

α = Lα − {w}, and let
L∗ = L∗

α ∪Lβ. Then,L∗ = R(k+1, n− l) = R(m,n− 1),
wherek+1 > 2 andn− l > 2. By Lemma 1,L∗ contains a
canonical Hamiltonian cycleHC∗. We can place one flat face
of HC∗ to facew. Thus, there exists an edge(u, v) in HC∗

such thatw ∼ u andw ∼ v. By Statement (3) of Proposition
5, w andHC∗ can be combined into a Hamiltonian cycle
of L(m,n; k, l). For example, Fig. 12(c) depicts a such
construction of Hamiltonian cycle ofL(m,n; k, l) when
m−k = 1 andn− l > 2. Thus,L(m,n; k, l) is Hamiltonian
if m− k = 1 or n− l = 1.

Case2: m − k > 2 and n − l > 2. In this case,Lα =
R(m − k, n) andLβ = R(k, n− l) satisfy thatm − k > 2
and n − l > 2. Sincen − l > 2 and l > 1, we get that
n > l + 2 > 3. Thus,Lα = R(m − k, n) satisfies that
m−k > 2 andn > 3. By Lemma 1,Lα contains a canonical
Hamiltonian cycleHCα whose one flat face is placed to
face Lβ. Consider thatk = 1. Then,Lβ = R(k, n − l)
is a 1-rectangle. LetV (Lβ) = {v1, v2, · · · , vn−l}, where
vi+1y

= viy + 1 for 1 6 i 6 n− l− 1. SinceHCα contains
a flat face that is placed to faceLβ, there exists an edge
(u, v) in HCα such thatu ∼ v1 andv ∼ v1. By Statement
(3) of Proposition 5,v1 andHCα can be combined into a
cycle HC1

α. By the same argument,v2, v3, · · · , vn−l can
be merged into the cycle to form a Hamiltonian cycle of
L(m,n; k, l). On the other hand, consider thatk > 2. Then,
Lβ = R(k, n − l) satisfies thatk > 2 andn − l > 2. By
Lemma 1,Lβ contains a canonical Hamiltonian cycleHCβ

such that its one flat face is placed to faceLα. Then, there
exist two edgese1 = (u1, v1) ∈ HCα and e2 = (u2, v2) ∈
HCβ such thate1 ≈ e2. By Statement (1) of Proposition 5,
HCα andHCβ can be combined into a Hamiltonian cycle of
L(m,n; k, l). For instance, Fig. 12(d) shows a Hamiltonian
cycle ofL(m,n; k, l) whenm−k > 2, n−l > 2, andk > 2.
Thus,L(m,n; k, l) contains a Hamiltonian cycle in this case.

It immediately follows from the above cases that
L(m,n; k, l) contains a Hamiltonian cycle if it does not
satisfy condition (F3). Thus, the theorem holds true.
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Fig. 13. L-shaped supergrid graph in which there exists no Hamiltonian
(s, t)-path for (a)s is a cut vertex, (b){s, t} is a vertex cut, (c) there exists
a vertexw such thatdeg(w) = 1, w 6= s, andw 6= t, and (d)m− k = 1,
n− l = 2, l = 1, k > 2, s = (1, 2), andt = (2, 3).

B. The Hamiltonian connected property ofL-shaped super-
grid graphs

In this subsection, we will verify the Hamiltonian
connectivity of L-shaped supergrid graphs. Besides
condition (F1) (as depicted in Fig. 13(a) and Fig. 13(b)),
whenever one of the following conditions is satisfied then
HP (L(m,n; k, l), s, t) does not exist.

(F4) there exists a vertexw in L(m,n; k, l) such that
deg(w) = 1, w 6= s, andw 6= t (see Fig. 13(c)).

(F5) m − k = 1, n − l = 2, l = 1, k > 2, and
{s, t} = {(1, 2), (2, 3)} or {(1, 3), (2, 2)} (see Fig.
13(d)).

The following lemma shows the necessary condition for
thatHP (L(m,n; k, l), s, t) does exist.

Lemma 11. LetL(m,n; k, l) be aL-shaped supergrid graph
with two verticess and t. If HP (L(m,n; k, l), s, t) does
exist, then(L(m,n; k, l), s, t) does not satisfy conditions
(F1), (F4), and (F5).

Proof: Assume that(L(m,n; k, l), s, t) satisfies one of
conditions (F1), F(4), and (F5). For condition (F1), the proof
is the same as that of Lemma 2. For condition (F4), it is
easy to see thatHP (L(m,n; k, l), s, t) does not exist (see
Fig. 13(c)). For (F5), we make a horizontal separation on it
to obtain two disjoint rectangular supergrid subgraphsRα =
R(m−k, l) andRβ = R(m,n−l), as depicted in Fig. 13(d).
Suppose thatm− k = 1, n− l = 2, l = 1, andk > 2. Then,
Rα contains only one vertexw. Let s = (1, 2), t = (2, 3),
andz = (2, 2). Then, there exists no Hamiltonian(s, t)-path
of Rα such that it contains edge(s, z). Thus,w can not be
combined into the Hamiltonian(s, t)-path ofRα and hence
HP (L(m,n; k, l), s, t) does not exist.

We then prove thatHP (L(m,n; k, l), s, t) does exist when
(L(m,n; k, l), s, t) does not satisfy conditions (F1), (F4), and
(F5). First, we consider the case thatm−k = 1 or n− l = 1
in the following lemma.

Lemma 12. Let L(m,n; k, l) be a L-shaped supergrid
graph, and lets and t be its two distinct vertices such
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Fig. 14. (a) The horizontal separation onL(m,n; k, l) to obtainRα =
R(m − k, l) and Rβ = R(m, n − l) under thatm − k = 1, and (b)–
(e) a Hamiltonian(s, t)-path ofL(m, n; k, l) for m − k = 1, s ∈ Rα,
and t ∈ Rβ , where bold solid lines indicate the constructed Hamiltonian
(s, t)-path.

that (L(m,n; k, l), s, t) does not satisfy conditions(F1),
(F4), and (F5). Assume thatm − k = 1 or n − l = 1.
Then,L(m,n; k, l) contains a Hamiltonian(s, t)-path, i.e.,
HP (L(m,n; k, l), s, t) does exist ifm−k = 1 or n− l = 1.

Proof: We prove this lemma by showing how to con-
struct a Hamiltonian(s, t)-path ofL(m,n; k, l) whenm −
k = 1 or n−l = 1. By symmetry, we assume thatm−k = 1.
We make a horizontal separation onL(m,n; k, l) to obtain
two disjoint rectangular supergrid graphsRα = R(m− k, l)
andRβ = R(m,n−l) (see Fig 14(a)). Consider the following
cases:

Case1: sy(resp., ty) 6 l and ty(resp., sy) > l. Without
loss of generality, assume thatsy 6 l and ty > l. Let p ∈
V (Rα) and q ∈ V (Rβ) such thatp ∼ q, p = (1, l), and
q = (1, l + 1) if t 6= (1, l + 1); otherwiseq = (2, l + 1).
Notice that, in this case, if|V (Rα)| = 1, thenp = s. Clearly,
s = (1, 1). If l > 1 and sy > 1, then (L(m,n; k, l), s, t)
satisfies condition (F1), a contradiction. Consider(Rα, s, p).
Sinces = (1, 1) andp = (1, l), (Rα, s, p) does not condition
(F1). Consider(Rβ , q, t). Condition (F1) holds, if

(i) k > 1, n − l = 1, and t 6= (m,n). If this case holds,
then (L(m,n; k, l), s, t) satisfies (F1), a contradiction.

(ii) n − l = 2 and qx = tx > m − k(= 1). Since(qx = 1
and tx > 1) or (qx = 2 and t = (1, l + 1)), clearly
qx 6= tx or tx = qx = 1.

Therefore,(Rβ , q, t) does not satisfy condition (F1). Since
(Rα, s, p) and (Rβ , q, t) do not satisfy condition (F1), by
Lemma 3 there exist Hamiltonian(s, p)-pathPα and Hamil-
tonian (q, t)-path Pβ of Rα and Rβ , respectively. Then,
Pα ⇒ Pβ is a Hamiltonian(s, t)-path ofL(m,n; k, l). The
construction of a such Hamiltonian(s, t)-path is depicted in
Figs. 14(b)–(e).

Case2: sy, ty > l. In this case,l = 1 and |V (Rα)| = 1.
Otherwise, it satisfies condition (F4). Letr ∈ V (Rα),
w = (1, l + 1), and z = (2, l + 1). Consider(Rβ , s, t).
If (Rβ , s, t) satisfies condition (F1), then(L(m,n; k, l), s, t)
satisfies (F1), a contradiction. Also,(Rβ , s, t) does not sat-
isfy condition (F2). Otherwise,(L(m,n; k, l), s, t) satisfies
(F1) or (F5), a contradiction. Since(Rβ , s, t) does not satisfy
conditions (F1) and (F2), by Lemma 3, wheren− l = 1, or
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Fig. 15. (a) and (c) The Hamiltonian(s, t)-path ofRβ containing edge
(w, z) under thatm−k = 1 ands, t ∈ Rβ , and (b) and (d) the Hamiltonian
(s, t)-path of L(m,n; k, l) for (a) and (c) respectively, where bold solid
lines indicate the constructed Hamiltonian(s, t)-path and⊗ represents
the destruction of an edge while constructing a Hamiltonian(s, t)-path of
L(m,n; k, l).

Lemma 9, wheren− l > 2, there exists a Hamiltonian(s, t)-
pathPβ of Rβ such that(w, z) ∈ Pβ . By Statement (3) of
Proposition 5, vertexr can be combined into pathPβ to form
a Hamiltonian(s, t)-path ofL(m,n; k, l). The construction
of a such Hamiltonian(s, t)-path ofL(m,n; k, l) is depicted
in Fig. 15. Notice that, in this subcase, we have constructed
a Hamiltonian(s, t)-pathP such that an edge(r, w) ∈ P .

Next, we consider the case thatm− k > 2 and n− l > 2.
Notice that in this case(L(m,n; k, l), s, t) does not satisfy
conditions (F4) and (F5).

Lemma 13. LetL(m,n; k, l) be aL-shaped supergrid graph
with m − k > 2 and n − l > 2, and lets and t be its two
distinct vertices such that(L(m,n; k, l), s, t) does not satisfy
condition (F1). Then,L(m,n; k, l) contains a Hamiltonian
(s, t)-path, i.e.,HP (L(m,n; k, l), s, t) does exist.

Proof: We will provide a constructive method to prove
this lemma. That is, a Hamiltonian(s, t)-path ofL(m,n; k, l)
will be constructed. Sincem−k > 2, n−l > 2, andk, l > 1,
we get thatm > 3 and n > 3. Note thatL(m,n; k, l) is
obtained fromR(m,n) by removingR(k, l) from its upper-
right corner. Based on the sizes ofk and l, there are the
following two cases:

Case1: k = 1 and l = 1. Let z be the only vertex in
V (R(m,n)− L(m,n; k, l)). Then,z = (m, 1) is the upper-
right corner ofR(m,n). By Lemma 3, there exists a Hamil-
tonian (s, t)-pathP of R(m,n). Let P = P1 ⇒ z ⇒ P2.
SinceN(z) forms a clique,end(P1) ∼ start(P2). Thus,
P1 ⇒ P2 forms a Hamiltonian(s, t)-path ofL(m,n; k, l).
The construction of a such Hamiltonian(s, t)-path is de-
picted in Fig. 16(a).

Case 2: k > 2 or l > 2. By symmetry, we can only
consider thatk > 2. Depending on the locations ofs and t,
we consider the following three subcases:

Case2.1: sx, tx 6 m − k. Let R̃ be the graph with
V (R̃) = {v ∈ V (L(m,n; k, l))|vx 6 m − k}. Then, R̃ =
R(m − k, n) and s, t ∈ R̃. Depending on whether{s, t} is
a vertex cut ofR̃, there are the following two subcases:

Case 2.1.1: (m − k > 3) or (m − k = 2 and
[(sy 6= ty), (sy = ty = 1), or (sy = ty = n)]). In this
subcase,{s, t} is not a vertex cut of̃R. We make a vertical
separation onL(m,n; k, l) to obtain two disjoint rectangular
supergrid graphsRα = R(m− k, n) andRβ = R(k, n− l).
Consider(Rα, s, t). Condition (F1) holds only ifm− k = 2
and 2 6 sy = ty 6 n − 1. Sincesy 6= ty, sy = ty = 1,
or sy = ty = n, it is clear that(Rα, s, t) does not satisfy
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Fig. 16. The construction of Hamiltonian(s, t)-path ofL(m,n; k, l) under
that m − k > 2 and n − l > 2 for (a) k = 1 and l = 1, (b)–(c) k >

2, sx, tx 6 m − k and {s, t} is not a vertex cut ofR̃ with vertex set
{v ∈ V (L(m, n; k, l))|vx 6 m− k}, and (d)–(e)k > 2, sx, tx 6 m− k

and {s, t} is a vertex cut ofR̃, where bold lines indicate the constructed
Hamiltonian(s, t)-path and⊗ represents the destruction of an edge while
constructing a Hamiltonian(s, t)-path ofL(m, n; k, l).

condition (F1). Letw = (m − k, n), z = (m − k, n − 1),
and f = (m − k, n − 2). Also, assume(1, 1) is the down-
right corner ofRα. Since(Rα, s, t) does not satisfy condition
(F1), by Lemma 3 (when(Rα, s, t) satisfies condition (F2)),
Lemma 7, and Lemma 9, we can construct a Hamiltonian
(s, t)-pathPα of Rα such that edge(w, z) or (z, f) is in Pα.
By Lemma 1, there exists a Hamiltonian cycleCβ of Rβ such
that its one flat face is placed to faceRα. Then, there exist
two edgese1 ∈ Cβ and (w, z) (or (z, f)) ∈ Pα such that
e1 ≈ (w, z) or e1 ≈ (z, f). By Statement (2) of Proposition
5,Pα andCβ can be combined into a Hamiltonian(s, t)-path
of L(m,n; k, l). The construction of a such Hamiltonian path
is shown in Figs. 16(b)–(c).

Case2.1.2:m−k = 2 and2 6 sy = ty 6 n−1. In
this subcase,{s, t} is a vertex cut ofR̃. If sy = ty 6 l, then
(L(m,n; k, l), s, t) satisfies condition (F1), a contradiction.
Thus, sy = ty > l. Let w = (1, l + 1), z = (2, l + 1),
and f = (3, l + 1). We make a horizontal separation on
L(m,n; k, l) to obtain two disjoint rectangular supergrid
graphsRβ = R(m− k, l) andRα = R(m,n− l). A simple
check shows that(Rα, s, t) does not satisfy condition (F1).
Since(Rα, s, t) does not satisfy conditions (F1), by Lemma
7 and Lemma 9, we can construct a Hamiltonian(s, t)-path
Pα of Rα such that edge(w, z) or (z, f) is in Pα depending
on whether{s, t} = {(1, l+1), (2, l+1)}. First, letl > 1. By
Lemma 1, there exists a Hamiltonian cycleCβ of Rβ such
that its one flat face is placed to faceRα. Then, there exist
two edgese1 ∈ Cβ and (w, z) (or (z, f)) ∈ Pα such that
e1 ≈ (w, z) or e1 ≈ (z, f). By Statement (2) of Proposition
5,Pα andCβ can be combined into a Hamiltonian(s, t)-path
of L(m,n; k, l). The construction of a such Hamiltonian path
is depicted in Fig. 16(d). Next, letl = 1. Then,|V (Rβ)| = 2
andRβ consists of only two verticesp andq with px < qx.
Since(p, q) ≈ (w, z) or (p, q) ≈ (z, f). By Statement (4) of
Proposition 5, edge(p, q) in Rβ can be combined into path
Pα to form a Hamiltonian(s, t)-path ofL(m,n; k, l). The
construction of a such Hamiltonian(s, t)-path is shown in
Fig. 16(e).

Case2.2: sx, tx > m− k. Based on the size ofl, we
consider the following two subcases:

Case2.2.1: (l > 1) or (l = 1 andm − k = 2). A
Hamiltonian (s, t)-path of L(m,n; k, l) can be constructed
by similar arguments in proving Case 2.1.2. Figs. 17(a)–(b)
depict the construction of a such Hamiltonian(s, t)-path of
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Fig. 17. The construction of Hamiltonian(s, t)-path ofL(m,n; k, l) under
that m − k > 2, n − l > 2, k > 2, and sx, tx > m − k for (a)–(b)
(l > 1) or (l = 1 andm− k = 2)), and (c)l = 1 andm− k > 2, where
bold lines indicate the constructed Hamiltonian(s, t)-path and⊗ represents
the destruction of an edge while constructing a Hamiltonian(s, t)-path of
L(m,n; k, l).

L(m,n; k, l) in this subcase.
Case2.2.2:l = 1 andm−k > 2. Let r = (m−k, 1)

and w = (m − k, 2) be two vertices inL(m,n; k, l). We
make a vertical separation onL(m,n; k, l) to obtain two
disjoint supergrid subgraphsRβ = R(m′, n) and Lα =
L(m−m′, n; k, l), wherem′ = m−k−1; as depicted in Fig.
17(c). Clearly,m−m′ = 1 and (Lα, s, t) lies on Case 2 of
Lemma 12. By Lemma 12, we can construct a Hamiltonian
(s, t)-pathPα of Lα such that edge(r, w) ∈ Pα. By Lemma
1, there exists a Hamiltonian cycleCβ of Rβ such that its
one flat face is placed to faceLα. Then, there exist two
edgese1 ∈ Cβ and (r, w) ∈ Pα such thate1 ≈ (r, w).
By Statement (2) of Proposition 5,Pα and Cβ can be
combined into a Hamiltonian(s, t)-path ofL(m,n; k, l). The
construction of a such Hamiltonian path is shown in Fig.
17(c).

Case2.3: sx 6 m − k and tx > m − k. We make
a vertical separation onL(m,n; k, l) to obtain two disjoint
rectanglesRα = R(m′, n) and Rβ = R(k, n − l), where
m′ = m− k. Let p ∈ V (Rα), q ∈ V (Rβ), p ∼ q, and


























































p = (m′, n) and

q = (m′ + 1, n), if s 6= (m′, n) and t 6= (m′ + 1, n);

p = (m′, n− 1) and

q = (m′ + 1, n− 1), if s = (m′, n) and t = (m′ + 1, n);

p = (m′, n) and

q = (m′ + 1, n− 1), if s 6= (m′, n) and t = (m′ + 1, n);

p = (m′, n− 1) and

q = (m′ + 1, n), if s = (m′, n) and t 6= (m′ + 1, n).

Consider(Rα, s, p) and (Rβ , q, t). Condition (F1) holds, if
(m − k = 2 and sy = py = n − 1) or (k = 2 and qy =
ty = n − 1). This is impossible, because ifpy = qy =
n − 1, then sy = n and ty = n. Therefore,(Rα, s, p) and
(Rβ , q, t) do not satisfy condition (F1). By Lemma 3, there
exist Hamiltonian(s, p)-pathPα and Hamiltonian(q, t)-path
Pβ of Rα and Rβ, respectively. Then,Pα ⇒ Pβ forms a
Hamiltonian(s, t)-path ofL(m,n; k, l).

We have considered any case to construct a Hamiltonian
(s, t)-path ofL(m,n; k, l) whenm− k > 2, n− l > 2, and
(L(m,n; k, l), s, t) does not satisfy condition (F1). Thus, the
lemma holds true.

It immediately follows from Lemmas 11–13 that we get
the following theorem.

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_06

Volume 47, Issue 3: September 2020

 
______________________________________________________________________________________ 



(a)

t

s

(b)

t

s

(c)

t

s

t

s

(d)

G’

t

s

(e)

G’
t

s

(f)

G’

w

w w

Fig. 18. The longest(s, t)-path for (a) (UB1), (b) (UB2), (c) (UB3), and
(d)–(f) (UB4), where bold lines indicate the constructed longest(s, t)-path.

Theorem 14. Let L(m,n; k, l) be a L-shaped supergrid
graph with verticess and t. Then,L(m,n; k, l) contains
a Hamiltonian(s, t)-path if and only if(L(m,n; k, l), s, t)
does not satisfy conditions(F1), (F4), and (F5).

V. THE LONGEST(s, t)-PATH ALGORITHM

It follows from Theorem 14 that if(L(m,n; k, l), s, t)
satisfies one of conditions (F1), (F4), and (F5), then
(L(m,n; k, l), s, t) contains no Hamiltonian(s, t)-path. So
in this section, first for these cases we give upper bounds
on the lengths of longest paths betweens and t. Then, we
show that these upper bounds equal to the lengths of longest
paths betweens and t. Recall thatL̂(G, s, t) denotes the
length of longest(s, t)-path inG, and the length of a path
is the number of vertices in the path. In the following, we
will use Û(G, s, t) to indicate the upper bound on the length
of longest (s, t)-paths inG, whereG is a rectangular or
L-shaped supergrid graph. Notice that the isomorphic cases
are omitted. Depending on the sizes ofm − k and n − l,
we provide the following two lemmas to compute the upper
bounds when(L(m,n; k, l), s, t) satisfies either condition
(F1) or (F4).

Lemma 15. Let m − k = n − l = 1 and l > 1. Then, the
following implications (conditions) hold:

(UB1)If sy, ty 6 l, then the length of any path betweens
and t cannot exceed|ty − sy|+ 1 (see Fig. 18(a)).

(UB2)If sy < l and tx > 1, then the length of any path
betweens and t cannot exceedn − sy + tx (see
Fig. 18(b)).

(UB3)If sx = tx = 1, max{sy, ty} = n, and [(k > 1) or
(k = 1 and min{sy, ty} > 1)], then the length of
any path betweens andt cannot exceed|ty−sy|+2
(see Fig. 18(c)).

Proof: Sincen−l = m−k = 1, there is only one single
path betweens and t that has the specified.

Lemma 16. Let n− l > 1. Then, the following implications
(conditions) hold:

(UB4)If m− k = 1, l > 1, and [(sy, ty > l and {s, t} is
not a vertex cut), (sy 6 l and ty > l), or (ty 6 l

and sy > l)], then the length of any path between
s and t cannot exceed̂L(G′, s, t); where G′ =
L(m,n− n′; k, l′) and l′ = l − n′, andn′ = l − 1
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Fig. 19. The longest(s, t)-path for (a) (UB5), and (b)–(g) (UB6), where
bold lines indicate the constructed longest(s, t)-path.

if sy, ty > l; otherwisen′ = min{sy, ty} − 1 (see
Figs. 18(d)–(f)).

(UB5)If m − k = 1, k > 1 (m > 2), s = (1, l + 1),
and t = (2, l + 1), then the length of any path
betweens and t cannot exceed̂L(G′, s, t), where
G′ = R(m,n− l) (see Fig. 19(a)).

(UB6)If (m− k = 2, l > 1, and 2 6 sy = ty 6 n − 1),
(m = 2, n− l > 2, and l+ 1 6 sy = ty 6 n− 1),
or (n − l = 2, k > 1, and m − k + 1 6 sx =
tx 6 m−1), then the length of any path betweens

andt cannot exceedmax{L̂(G1, s, t), L̂(G2, s, t)},
whereG1 andG2 are defined in Figs. 19(b)–(g).

Proof: For (UB4), letw = (1, l) if sy, ty > l; otherwise
w = min{sy, ty}. Sincew is a cut vertex, hence removing
w clearly disconnectsL(m,n; k, l) into two components,
and a simple path betweens and t can only go through
a component that containss and t, let this component
be G′. Therefore, its length cannot exceedL̂(G′, s, t). For
(UB5), consider Fig. 19(a). Since{s, t} is a vertex cut of
L(m,n; k, l), the length of any path betweens andt cannot
exceedmax{3, L̂(G′, s, t)}. Sincen− l > 1 andm > 2, it
follows that |V (G′)| > 3. Moreover, sinceL̂(G′, s, t)| 6

|V (G′)|, its length cannot exceed̂L(G′, s, t). For (UB6),
removings and t clearly disconnectsL(m,n; k, l) into two
componentsG1 andG2. Thus, a simple path betweens and
t can only go through one of these components. Therefore,
its length cannot exceed the size of the largest component.

We have computed the upper bounds of the longest(s, t)-
paths when(L(m,n; k, l), s, t) satisfies condition (F1) or
(F4). The following lemma shows the upper bound when
(L(m,n; k, l), s, t) satisfies condition (F5).

Lemma 17. If (L(m,n; k, l), s, t) satisfies condition(F5),
then the length of any path betweens and t cannot exceed
mn− kl − 1.

Proof: Consider Fig. 20. We can easily check that
the length of any path betweens and t cannot exceed
L̂(G1, s, p) + L̂(G2, q, t) = mn− kl − 1.

It is easy to show that any(L(m,n; k, l), s, t) must
satisfy one of conditions (L0), (UB1), (UB2), (UB3),
(UB4), (UB5), (UB6), and (F5), where (L0) is defined as
follows:

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_06

Volume 47, Issue 3: September 2020

 
______________________________________________________________________________________ 



(a)

t

s

(b) (c)

p

q t

s

p

q

t

s

p
q

G1 G1 G1G2 G2 G2

Fig. 20. The longest(s, t)-path when condition (F5) holds, where bold
lines indicate the longest(s, t)-path.

(L0) (L(m,n; k, l), s, t) does not satisfy any of
conditions (F1), (F4), and (F5).

If (L(m,n; k, l), s, t) satisfies (L0), then̂U(L(m,n; k, l),
s, t) is mn − kl. Otherwise, Û(L(m,n; k, l), s, t) can
be computed by using Lemmas 15–17. So, we have the
following formula of upper bounds:

Û(L(m,n; k, l), s, t) =














































|ty − sy|+ 1, if (UB1) holds;

n− sy + tx, if (UB2) holds;

|ty − sy|+ 2, if (UB3) holds;

L̂(G′, s, t), if (UB4) or (UB5) holds;

max{L̂(G1, s, t), L̂(G2, s, t)}, if (UB6) holds;

mn− kl − 1, if (F5) holds;

mn− kl, if (L0) holds.

Now, we show how to obtain a longest(s, t)-path forL-
shaped supergrid graphs. Notice that if(L(m,n; k, l), s, t)
satisfies (L0), then by Theorem 14, it contains a Hamiltonian
(s, t)-path.

Lemma 18. If (L(m,n; k, l), s, t) satisfies one of the condi-
tions (UB1), (UB2), (UB3), (UB4), (UB5), (UB6), and (F5),
then L̂(L(m,n; k, l), s, t) = Û(L(m,n; k, l), s, t).

Proof: Consider the following cases:
Case1: conditions (UB1), (UB2), and (UB3) hold. Clearly

the lemma holds for the single possible path betweens and
t (see Figs. 18(a)–(c)).

Case 2: condition (UB4) holds. Then, by Lemma 16,
Û(L(m,n; k, l), s, t) = L̂(G′, s, t). In this case,G′ is a L-
shaped supergrid graph. There are two subcases:

Case2.1: (sy(resp., ty) 6 l and ty(resp., sy) > l)
or (sy, ty > l and [(n − l > 2) or (n − l = 2 and
{s, t} 6= {(1, n− 1), (2, n)} or {(1, n), (2, n− 1)})]). First,
let sy(resp., ty) 6 l and ty(resp., sy) > l. Without loss
of generality, assume thatsy 6 l and ty > l. Consider
(G′, s, t) and see Fig. 18(e). Then,G′ = L(m,n− n′; k, l′),
wheren′ = sy − 1 and l′ = l − n′. Sincesy = 1 in G′,
ty > l′, andn−n′ ≥ 2, it is obvious that(G′, s, t) does not
satisfies conditions (F1), (F4), and (F5). Now, letsy, ty > l.
Then,G′ = L(m,n− n′; k, l′) satisfies thatn′ = l − 1 and
l′ = 1. Consider Fig. 18(d). Sincen − n′ − l′ > 2, l′ = 1,
{s, t} is not a vertex cut, and{s, t} 6= {(1, n − 1), (2, n)}
or {(1, n), (2, n− 1)}, (G′, s, t) does not satisfy conditions
(F1), (F4), and (F5). Thus, by Theorem 14(G′, s, t) contains
a Hamiltonian(s, t)-path.

Case2.2: sy, ty > l, n− l = 2, and{s, t} = {(1, n−
1), (2, n)} or {(1, n), (2, n− 1)}. In this subcase,(G′, s, t)
satisfies condition (F5). Hence,(G′, s, t) lies on Case 5 (see

later).
Case3: condition (UB5) holds. In this case,{s, t} is a

vertex cut ofL(m,n; k, l) (see Fig. 19(a)). By Lemma 16,
Û(L(m,n; k, l), s, t) = L̂(G′, s, t), whereG′ = R(m,n− l)
is a rectangular supergrid graph. Sincen− l > 1, s = (1, l+
1), and t = (2, l + 1), (G′, s, t) does not satisfy condition
(F1). Thus, by Lemma 3,(G′, s, t) contains a Hamiltonian
(s, t)-path.

Case 4: condition (UB6) holds. In this case,{s, t} is
a vertex cut ofL(m,n; k, l) (see Figs. 19(b)–(g)). Then,
removings and t splits L(m,n; k, l) into two components
G′

1 andG′
2. Let G1 = G′

1 ∪ {s, t} andG2 = G′
2 ∪ {s, t}.

Thus,

• if m−k = 2 andsy = ty, thenG1 = R(m−k, sy) and
G2 = L(m,n − sy + 1; k, l − sy + 1) (see Figs. 19(b)
and 19(c)).

• if m− k = 1 andm = 2, thenG1 = L(m, sy; k, l) and
G2 = R(m,n− sy + 1) (see Figs. 19(d) and 19(e)).

• if n− l = 2 andsx = tx, thenG1 = L(sx, n; sx−(m−
k), l) andG2 = R(m− sx + 1, n− l) (see Figs. 19(f)
and 19(g)).

Then the path going through vertices of the larger sub-
graph betweenG1 and G2 has the length equal to
Û(L(m,n; k, l), s, t). The longest(s, t)-path in each sub-
graph computed by Lemma 3, 12, 13, or Case 5; as depicted
in Figs. 19(b)–(g).

Case5: condition (F5) holds. In this case,m − k = 1,
n − l = 2, l = 1, k > 2, and {s, t} = {(1, 2), (2, 3)} or
{(1, 3), (2, 2)} (see Fig. 13(d)). Consider Fig. 20. By Lemma
17, Û(L(m,n; k, l), s, t) = L̂(G1, s, p) + L̂(G2, q, t). By
Theorem 6, there exist a longest(s, p)-pathP1 and longest
(q, t)-pathP2 of G1 andG2, respectively. Then,P1 ⇒ P2

forms a Hamiltonian(s, t)-path ofL(m,n; k, l).
It follows from Theorem 14 and Lemmas 15–18 that the

following theorem concludes our result.

Theorem 19. Given aL-shaped supergridL(m,n; k, l) and
two distinct verticess andt in L(m,n; k, l), a longest(s, t)-
path can be computed inO(mn− kl)-linear time.

The linear-time algorithm is formally presented as Algo-
rithm 1.

VI. CONCLUDING REMARKS

Based on the Hamiltonicity and Hamiltonian connectivity
of rectangular supergrid graphs, we first obtain two Hamil-
tonian connected properties of rectangular supergrid graphs.
Using the Hamiltonicity and Hamiltonian connectivity of
rectangular supergrid graphs, we proveL-shaped supergrid
graphs to be Hamiltonian and Hamiltonian connected except
one or three conditions. Furthermore, we present a linear-
time algorithm to compute the longest(s, t)-path of aL-
shaped supergrid graph. The Hamiltonian cycle problem on
solid grid graphs was known to be polynomial solvable.
However, it remains open for solid supergrid graphs in which
there exists no hole. This result can be regarded as the
first attempt for solving the Hamiltonian and longest(s, t)-
path problems on solid supergrid graphs, whereL-shaped
supergrid graphs form a subclass of solid supergrid graphs.
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Algorithm 1: The longest(s, t)-path algorithm

Input : A L-shaped supergrid graphL(m,n; k, l) with
mn > 2, and two distinct verticess and t in
L(m,n; k, l).

Output : The longest(s, t)-path.
Method:

1. if (m− k = 1 or n− l = 1) and ((L(m,n; k, l), s, t)
does not satisfy conditions (F1), (F4), and (F5))then
output HP (L(m,n; k, l), s, t)) constructed from
Lemma 12;
// construct Hamiltonian(s, t)-path whenm− k = 1 or
n− l = 1

2. if (m− k > 2 andn− l > 2) and ((L(m,n; k, l), s, t)
does not satisfy conditions (F1), (F4), and (F5))then
output HP (L(m,n; k, l), s, t)) constructed from
Lemma 13;
// construct Hamiltonian(s, t)-path whenm− k > 2 and
n− l > 2

3. if (L(m,n; k, l), s, t) satisfies one of conditions (F1),
(F4), and (F5),then output the longest(s, t)-path
based on Lemma 18.
// construct the longest(s, t)-path whenL(m,n; k, l) contains

no Hamiltonian(s, t)-path
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