TAENG International Journal of Computer Science, 47:3, IJCS 47 3 08

Crucial Topics in Computer Architecture Education
and a Survey of Textbooks and Papers

Abdullah Yildiz, Sezer Goren, H. Fatih Ugurdag, Baris Aktemur, and Taylan Akdogan

Abstract—We have been teaching undergraduate computer
architecture since 2012 in an unconventional way. Most under-
graduate computer architecture courses are based on micro-
processors, and they quickly move into advanced topics such
as instruction pipelining, forwarding, branch prediction, cache,
and even memory management unit. We instead spend only the
last one-third of our course on these topics. The first two thirds
of the course is devoted to microcontrollers, i.e., simple-minded
processors with no memory hierarchy, no branch prediction,
sometimes even no pipelining. Our claim is that it is very hard to
truly grasp the advanced topics without full grasp of the basics.
Equipped with the above approach, this article comes up with
an all-inclusive list of crucial topics for computer architecture
education, and it surveys 25 computer architecture textbooks as
well as 38 computer architecture education papers to see how
much they cover these topics. In addition to that, the article
contains a concise description of the perspective of our course.
One of the pillars of our course is a working CPU on FPGA. We
have so far had around 600 students design their own unique
CPUs using Verilog given a complete instruction set, close to
70% of them with complete success.

Index Terms—computer architecture education; computer
organization education; FPGA; microcontroller versus micro-
processor; assembly language; instruction set completeness;
one-instruction CPU; instruction set design; memory-mapped
I/O; self-modifying code; memory banks; memory hierarchy;
instruction pipelining; CPU customization

I. INTRODUCTION

INCE 2012, we have been teaching undergraduate com-
puter architecture with a grounds-up approach at Ozye-
gin University. We have also been using part of the material
in advanced digital design and microprocessors courses at
Yeditepe University as well as Ozyegin University. The
computer architecture education material in question has
been developed at both of these universities. Some of the
development work has been carried out through a PhD thesis
at Yeditepe University and a funded research project run
at Yeditepe University and Ozyegin University. There have
also been some altruistic contributions from several graduate
students at both universities. Undergraduate students have
also contributed through course and senior projects.
Usually, even undergraduate computer architecture/organi-
zation courses rapidly move into advanced-level architectural
techniques such as pipelining, forwarding, branch predic-
tion, cache policies, virtual memory. They spend the whole
semester on these advanced topics without ensuring that

Manuscript received February 21, 2020 and revised June 3, 2020. This
work was supported by TUBITAK under grant no. 117E090.

A. Yildiz is with the Dept. of Computer Engineering, Yeditepe University,
Istanbul, 34755, Turkey e-mail: ayildiz@cse.yeditepe.edu.tr.

S. Goren is with the Dept. of Computer Engineering, Yeditepe University,
Istanbul, 34755, Turkey. H. F. Ugurdag and T. Akdogan are with School of
Engineering, Ozyegin University, Istanbul, 34794, Turkey. Barig Aktemur
is currently a senior software engineer at Intel, Germany; his contributions
to this work were carried out while he was a faculty member at Ozyegin
University.

the students have the necessary underlying low-level digital
design background to appreciate the respective trade-offs.

Advanced-level architectural techniques aim to improve
Instructions Per Cycle (IPC) while assuming Instructions Per
Second (IPS or MIPS for Million IPS) will also improve.
IPS equals IPC times the clock frequency. For IPS to
improve when IPC improves, the clock frequency should
not go down or should go down less than the IPC goes up.
However, advanced-level architectural techniques that boost
IPC usually make the hardware more complex, thus lowers
the clock frequency (i.e., making the critical path of the
logic circuit longer). What is worse is that it is not easy
to see the extent of reduction in clock frequency from the
architectural/algorithmic trade-off being made, even when a
person is experienced in digital design.

Given the above perspective, we have a different view of
what is crucial in an undergraduate computer architecture
course. This article contributes a crucial topic list to the
literature for computer architecture education. We also sur-
veyed 25 computer architecture textbooks plus 38 computer
architecture education papers to see how much they cover
these topics. The article also contains a description of our
course. We claim it is crucial that students are able to design
a working (though simple) CPU on FPGA at the end of the
semester. So far, around 600 of our students had to design a
CPU. 70% of them successfully tested it in simulation and
on FPGA.

This article is organized as follows. In the next section,
we outline our computer architecture course and teaching
philosophy as well as the CPU it is based on. The following
section lists and defines the computer architecture topics we
or other instructors deem critical, some of which are basic
and some of which are advanced topics. The same section
does an analysis of each topic in terms of how much it is
covered in the related textbooks and articles we found. We
then draw some conclusions in the final section.

II. OUR COMPUTER ARCHITECTURE COURSE AND
VSCPU

The first time we taught our undergraduate (sophomore
level) computer architecture course (in 2012), it was a small
class (16 students). As a consequence, we were able to have
more interaction and unrehearsed discussions. In one of those
discussions, we really tried to define what a “computer” is. It
is basically a calculator, as the name has the verb “compute”,
which is not too different from ‘“calculate”. However, the
calculation commands of a computer come from a memory
in an automated fashion as opposed to them being entered
manually by a human. There, we made a further observation
that we should call it a computer only if the available
calculation commands allowed us to implement an arbitrary
algorithm.

Volume 47, Issue 3: September 2020

TAENG International Journal of Computer Science, 47:3, IJCS 47 3 08

Hence, we realized that we are in fact looking for a set
of commands that serve as the “basis vectors” of the space
of all algorithms. Basis vectors are such that by using their
multiples and superimposing them we can arrive at any point
in the vector space. Another way of looking at it is that the
commands implemented by a computer (a.k.a. instructions)
are like the elements in the periodic table. They are the
atoms from which molecules are made and in turn matter
is made. Then, we naively asked what those fundamental
elements in our case (i.e., instructions) are. In other words,
we were curious about the smallest set of instructions one
can come up with, namely, the question of “instruction set
completeness”. Therefore, the whole classroom at this point
agreed that we could call a compute engine a computer only
if its instructions possessed “instruction set completeness”.

To paraphrase it, the question we posed was “what is the
minimum number of instructions necessary and what are
they?” so that we can do any set of discrete computations
(see the crucial topic of Instruction Set Completeness in the
next section). It is an easy question but does not have a
simple answer.

Some students had the right intuition and said one in-
struction is enough, and that is the NAND instruction. Their
reasoning was that in the prerequisite Digital Systems course,
we taught them that NAND is a universal gate that can
implement any logic. We obviously told them that they
are forgetting about conditionals and loops (but yet a one-
instruction CPU is possible). With all the naiveness of this
initial edition of our course, we designed a 16-instruction
CPU, which is instruction-set-complete (otherwise, it could
not be called a CPU).

Having said that, we believe the most important topic in
computer architecture education is “instruction set complete-
ness” as it is how one can define a “computer”. And as you
will see in our survey section below, hardly any textbook or
article gives it the emphasis it deserves.

We called the CPU we designed to support our computer
architecture course “VerySimpleCPU” and VSCPU in short.
There is also the “Very Simple CPU” of Carpinelli [1]. It
is just a coincidence that we have the same name. Other-
wise, the two are completely different, even to an extent
that Carpinelli’s Very Simple CPU is not instruction-set-
complete. To reduce the confusion between the two CPUs,
we will call ours VSCPU.

VSCPU [2] is a microcontroller (MCU) such as PIC16.
Hence, it does not have memory hierarchy or even a pipeline.
It is a bare-bones CPU. It has Von Neumann architecture
(although we have also implemented its Harvard variants).
Its memory words are 32-bit wide. Its instruction words (IW)
have a 3-bit opcode, a 1-bit immediate flag, and two 14-bit
arguments (see Fig. 1(a)). Including the immediate flag, it
has 16 instructions. If we just had a 3-bit opcode (hence no
immediate flag), then either one of the two arguments would
be 15 bits or we would have an unused bit in the IW. By
the way, we could have had 1 or 3 arguments (see Fig. 1(b))
instead of 2 arguments. Having 2 arguments strikes a good
balance between addressed memory space and code density.

Our computer architecture course has 3 parts. Part 1
teaches the basic architecture of VSCPU and its assembly
programming. Part 2 deals with designing it in Verilog and
mapping it to FPGA. Part 3 is a shorter version of traditional

courses and hence teaches some of the advanced topics listed
earlier. There are also lab sessions. The lab supports Part
1 and 2. On top of it, the students work on a project and
design a CPU called ProjectCPU (a cross between VSCPU
and PIC16) and make it work on FPGA.

We developed a set of tools and components for and
around VSCPU:

o Two different instruction sets (one also supports

floating-point arithmetic)

o Assembler

o Instruction Set Simulator (ISS)

e Web-based ISS

e C compiler

e PIC16 to VSCPU assembly converter

o FPGA debug interface

o Worst Case Execution Time (WCET) profiler

o Hundreds of synthesizable Verilog implementations (in-

cluding pipelined versions)

e Several peripherals

o Several customized versions

Table I lists the instructions of VSCPU v1, which has only
unsigned integer instructions. Although there are a total of
16 instructions, we list only the 8 fundamental ones, which
are enough for doing any computation. Instructions that are
not fundamental, hence not listed, are ADDi, NANDi, SRL1,
LTi, CPi,BzJi, MUL, MUL1i and can be implemented using
the fundamental instructions.

MUL is multiply and is not a necessary instruction as it
can be implemented in software as a function. We have
it just because we have a spare opcode. ADDi, NANDi,
SRLi, LTi, CPi, MUL1i are such that we replace *B with
B in the function of the respective instructions in Table I.
For ex., ADDi A B does *xA = xA + B. The “i” in an
instruction name denotes that it is the immediate version of
the respective instruction. BZJ1i reads as Branch on Zero
or Jump immediate and acts as a Jump instruction. We did
not want to violate the rule that every instruction has an
immediate version. Also note that all instructions except BZJ
and BZJ1i implicitly perform PC = PC + 1 (not shown in
Table I), where PC stands for Program Counter, same as
Instruction Pointer.

It is possible to have an instruction-set-complete CPU with
only one instruction. We will later discuss our version of a
one-instruction CPU, but then it is not practical as it has
poor assembly code density. VSCPU, on the other hand, has
good assembly code density, is easy to code and read at
assembly level. It has even better code density, readability,
memory space size, and performance than even PIC16 (a
commercial MCU). That is because PIC16 has one operand
whereas VSCPU has two operands, and PIC16 has 8-bit data
words whereas VSCPU has 32-bit data words.

VSCPU is perfect for assembly coding so that a student
can understand CPU functionality at a very low-level and
hence can design it in Verilog on FPGA. Every single student
designs both their own VSCPU on FPGA in the Lab and
what we call a ProjectCPU (yet another instruction set,
one argument, and is similar to PIC16) for their project
assignment. The students are expected to come up with
unique implementations of ProjectCPU. We correlate their
Verilog using MOSS [3] and verify the uniqueness of their
work.

Volume 47, Issue 3: September 2020

TAENG International Journal of Computer Science, 47:3, IJCS 47 3 08

31 29 28 27

14 13 0

| opcode ‘ i | A

*A=(*A) op (*B)

31 29 28 27 26 18 17

98 0

| opcode ’ i |_| A

*A=(*B) op (*C)

(b)

Fig. 1. (a) VSCPU IW. (b) An alternate IW with 3 operands.

We will further discuss our VSCPU and the course around
it in the next two sections, when we discuss the crucial topics
in computer architecture education and their coverage by
textbooks and education articles as well as our course.

III. CruUcCIAL ToPICS IN COMPUTER ARCHITECTURE
EDUCATION

This section is the main contribution of this article to
the literature. We list here 18 crucial topics that may be
considered in computer architecture or related courses. We
list not only the topics we regard important but also topics
that are covered in courses that are more traditional than
ours.

o Assembly Coding

« Instruction Set Completeness

e One-Instruction CPU

e Tradeoffs in Instruction Design

e Memory-Mapped I/O

« Indirect Memory Access

o Detailed Explanation of Harvard vs von Neumann
o Self-Modifying Code

o Granularity of Simulation Environment
o Working CPU on FPGA

+ Memory Banking

e Memory Hierarchy

o Virtual Memory

 Pipelining and Hazards

o Forwarding

o Branch Prediction

o Out-of-Order and Multiple Issue

e CPU Customization

We did a comprehensive survey of computer architecture
textbooks [4]-[28] and papers on computer architecture
education [1], [29]-[65] to find out which of them cover the
individual crucial topics listed above. Figure 2 summarizes
how much the textbooks and the papers we surveyed cover
the individual topics.

In this section, we present the results of our survey for
these crucial topics by first giving a definition of each topic,
and then we evaluate our findings on what percentage of the
textbooks and papers cover each topic.

A. Assembly Coding

The ultimate goal of a computer architecture course would
be to design a working CPU on FPGA. It is only possible
to design a system if one truly understands the relationship
between the inputs and outputs. The input of a CPU is the
program (i.e., a sequence of instructions) and input data, and
the output is the output data. At the center of all this, it is
the instructions, which are of key importance. The set of
instructions is the true programming language of the CPU.
To design a CPU, we first need to speak its language, and
hence be able to code in its assembly language.

Assembly language of a CPU goes with what we call the
Instruction Set Architecture (ISA) of the CPU, namely, the
set of instructions and architecture the instructions assume.
The internal design of a CPU can be done in hundreds of
different ways but they would all be the same CPU as long
as the assembly language (hence the ISA) is the same.

We quickly give the ISA in the first two weeks of the
course, which we explain as a state machine (processor core)
and a memory. We state the ISA not as something written
in concrete but instead as something that could have been
designed differently. We spend the rest of first one third of
the course solving programming problems using assembly
code. Most courses use assembly coding to a certain extent.
What is critical is the extent of assembly coding in the course.
For us, it is a pillar of the course.

We classified the emphasis on assembly level coding as
three different categories: high, medium, and low. Based on
our findings, about 50% of the papers [1], [30], [32], [34],
[38]-[41], [43], [46], [49], [51], [54], [56], [60], [62]-[65]
put low emphasis, about 20% of them [33], [37], [44], [45],
[53], [55], [58], [99], [61] put medium emphasis, and 30%
of them [29], [31], [35], [36], [42], [47], [48], [50], [52],
[57] put high emphasis on the importance of assembly-level
coding. Almost every textbook [4]-[23], [25]-[28] puts high
emphasis on assembly-level programming for the respective
processor they introduce.

B. Instruction Set Completeness

Computer Architecture courses are mostly about general-
purpose CPUs. A CPU has an instruction set and a memory

Volume 47, Issue 3: September 2020

TAENG International Journal of Computer Science, 47:3, IJCS 47 3 08

= Textbooks
10 = Papers
e)/

One-Instruction CPU o 46

Instruction Set Completeness

. . .10
Tradeoffs in Instruction Design gy 39

Memory-Mapped /0 &=—— 20 92

Indirect Memory Access ———1 26

/= 11
I [,)

P 10
Self-Modifying Code _—

Working CPU on FPGA ™0 ' 60

10
I [,)

Detailed Exp. of Harvard vs von Neumann

Memory Banking

Memory Hierarchy % 88

==9

Virtual Memory I O

e 49

Pipelining and Hazards — ())

Forwarding g 20 =)
/= 14
e ()

Out-of-Order, Multiple Issue D3_ 7

Branch Prediction

CPU Customization ::0' 6

(a) Coverage of topics

I8 Textbooks
00 Papers
100 5

(5]

on

s

S 501 |

o

faw

.]
Low Medium High
(b) Emphasis on assembly coding
BB Textbooks
00 Papers
g, 40 y
<
=
3]
B8 20| .
N | I
Assembly Assembly HDL Other N/A
plus HDL

(c) Granularity of simulation environment

Fig. 2. Comparison of textbooks and papers on teaching processor design.

Volume 47, Issue 3: September 2020

e | ()

TAENG International Journal of Co

mputer Science, 47:3, IJCS 47 3 08

TABLE 1
VSCPU V1 INSTRUCTION SET.

Instruction | Description Functionality
ADD A B ADDition *A = *A + *B
NAND A B bitwise NAND *A = ~ (xA & *B)
SRL A B Shift Right or Left *A = (*B < 32) ? (*A >> xB) (xA << (*B-32))
LT A B Less Than *A = xA < xB
CP A B CoPy *A = *B
CPI A B CoPy Indirect *A = *xxB
CPIi A B CoPy Indirect immediate *xA = *xB
BZJ A B Branch on Zero or Jump PC = (#xB == 0) ? xA : (PC + 1)

architecture around it, hence the ISA. As we have tried to
point out before, if we are speaking of a general-purpose
CPU, we need to define what a CPU is. A CPU needs to
have a “complete” instruction set (not an arbitrary set of
instructions), hence the question of instruction set complete-
ness.

A complete instruction set makes any computation pos-
sible. A Universal Turing Machine (UTM) can compute
anything. Therefore, proving that a given ISA can emulate
a UTM would prove its instruction set completeness (that
it is Turing-complete). However, Turing machines are cum-
bersome machines, and this approach is just a theoretical
exercise. Instead, we recommend the approach of assuming
a well-established CPU to be instruction-set-complete and
writing a converter that converts assembly programs of
the well-established CPU to the assembly of the CPU in
question. We have, for ex., a rigorous assembly converter that
converts from PIC16 to VSCPU. Obviously, the converter
has to handle the differences between the two architectures
as well.

We previously mentioned that VSCPU has 16 instructions
but actually 8 of them (see Table I) form a complete set.
In our course, we also discuss the fact that some of these 8
instructions can be implemented using others, hence making
a smaller subset a complete instruction set. For ex., we have
previously asked on an exam the implementation of CPI
and CPI1i using self-modifying code and CP, NAND, SRL
instructions. On the other hand, BZJ can be implemented
with CP, NAND, LT instructions if we memory-map PC
(Program Counter register in the Core). ADD, however, can
be implemented using, CP, NAND, SRL, CPI, CPIi, BZJ.

Based on our survey, there is no paper that mentions
this issue. When we looked at the textbooks, only one [20]
mentions the relationship between an instruction set and
Turing machine. However, 20% of the textbooks [6], [7],
[9], [19], [25] discuss the completeness of an instruction set
in terms of the necessity of arithmetic, logic, branch, and
memory instructions within a processor.

C. One-Instruction CPU

In our computer architecture lectures, once we start dis-
cussing instruction sets and whether they are complete or not,
the following question comes up: “What is the minimum
number of instructions possible in a complete instruction
set?”

Some students quickly say that it is possible to have a
complete instruction set with only one instruction. When we
ask them what that single instruction would be, they quickly
reply “NAND”. Their justification is that in a previous digital

design course, we told them that we can construct any logic
with a two-input NAND gate (i.e., a universal gate like NOR
and MUX).

It is clear that any truth table (hence any combinational
logic cloud) can be implemented with NAND gates. How-
ever, a program is like a hardware state machine. State
machines are simply combinational logic plus flip-flops, and
flip-flops can also be implemented with NAND gates. How-
ever, there are physical issues there. And more importantly,
the NAND gates in a flip-flop cannot be simply replaced with
NAND instructions. The correct approach would be to start
with a complete instruction set longer than one instruction
and implement the instructions there with NAND instructions.
The tricky part there is the implementation of branch and
jump instructions.

One-instruction CPUs are called “One Instruction Set
Computer” (OISC) in the literature [20]. Although this is
not a perfect name, we guess it has been adopted due to
its similarity to RISC. Design of OISCs has been so far
mainly an educational exercise. Recently, OISC architecture
has been used as an enabler for encrypted data computation
[66], [67].

The earliest publication that describes an OISC is Mavad-
dat and Parhami [63]. The respective CPU is called URISC
for Ultimate RISC. The single instruction that does it all is
subleq and has three addresses as argument. It subtracts the
contents of the first two addresses and branches to the third
address if the result is negative. The nice thing about URISC
(and all other subleq CPUs) is that they are word-oriented.
That is, they process multiple bits with each instruction.
The criticism is that this is actually multiple instructions in
disguise of a single instruction, namely, subtract, less than,
and branch.

It is also possible to have an OISC around only a copy
instruction (mostly called move). This is possible if the ALU
ports are tied to certain memory addresses (i.e., memory-
mapped). This can be regarded as moving the ALU from
the CPU core to the peripherals. In other words, the ALU
becomes a coprocessor. This is also a multi-instruction
machine in disguise, as with this approach, we can have
hundreds of instructions and yet call the machine an OISC.
This basically gets us into the area of “Transport Triggered
Architectures” (TTAs) [68], which is recently popular again,
but yet is beyond the scope of this article.

In our lectures, the question that comes up is not only
if an OISC is possible but also if it can be done with
a NAND instruction. The same question can be asked in
regards to a NOR instruction. And “The NOR Machine
[69]” partially answers that. Its NOR instruction is word-
oriented like subleq. The NOR Machine is partially a TTA

Volume 47, Issue 3: September 2020

TAENG International Journal of Computer Science, 47:3, IJCS 47 3 08

as “shifting” is handled on a memory-mapped coprocessor.
Branching is similar although no coprocessor is needed. It is
simply that PC is memory-mapped.

Since the students’ questions center on NAND and since,
in our opinion, other OISCs are not truly one-instruction
CPUs, we designed a NAND Machine. As our NAND based
OISC is bit-oriented, it does not need a coprocessor that
shifts bits. However, PC is memory-mapped just like the
NOR Machine. On the other hand, we built a single-operand
machine just like PIC16 family of MCUs and unlike the
three-operand NOR Machine.

The NAND machine has a single instruction like other
OISCs, hence no opcode is needed. And since it has a single
operand, each instruction is nothing but simply an address.
It has memory with a wordsize of one bit. The machine has
a W register in the core just like PIC16, and we instead call
it R. The single instruction NANDs the bit at the address
pointed indirectly by the instruction (A) with the bit in R
and writes it into both R and memory location [A] (i.e.,
R=*[A]=! (R&*[A])). [A] refers to the number formed
by bits (*A, *(A-1), *(A-2), ..., *(A-n+l)),
where n is the bitwidth of the memory address.

Our approach in proving that this machine can compute
anything has been to create layers of more and more high-
level instructions. In the process of doing that, we call the
single fundamental instruction “Oth order instruction”. Using
this instruction, we create “lst order instructions”. Using
those, “2nd order instructions” are created and so on.

The 1st order instructions are what we call Z, T, and
A. These also represent addresses as in our case, i.e., an
instruction is nothing but an address. With a program, we
can always initialize data. Z is a location in memory that is
guaranteed to be or initialized to zero, whereas T is a location
that is true (1). A is an instruction where the address is an
address other than Z or T. A is not a particular address. It
can be anything.

Using 7z, T, and A, we can implement R=0, R=1,
* [A]1=0, » [A]=1, R=x [A], » [B] =+ [A], « [A]=!«[A],
*B=!«[A], which we call the 2nd order instructions. The
3rd order instructions are 3-operand logic instructions. At the
very top, we built a scripting language that even supports
functions. We have a program that converts our scripting
language to our NAND machine’s instructions.

Last but not least, our OISC implements jump capability
by mapping PC to particular n locations in the memory (n
being the address bitwidth). When the MSB of these bits
is written, the jump happens. If it is a branch that we are
implementing, the address we write into that special location
has the possibility of being the next instruction location.

Only 6% of the papers [46], [63] propose single instruction
processors although they do not analyze them to show that
they are instruction-set-complete. Only one of the textbooks
[20] surveyed analyzes the topic of one-instruction CPU
in detail and introduces a theorem to determine whether a
processor is instruction-set-complete as well.

D. Tradeoffs in Instruction Design

VSCPU instructions have 2 operands. However, in our
computer architecture course, we consider 3-operand instruc-
tions as well. We start with a Von Neumann architecture

and use a memory with 32-bit wordsize. We justify 32
bits by saying it is a commonly used wordsize in SRAMs.
We subtract 4 bits for the VSCPU opcode (including the
immediate flag) from 32. That leaves us with 28 bits for
3 operands, i.e., two 9-bit operands and one 10-bit operand.
There is no point in having an operand wider than the others.
And with 9 bits we can address 512 locations, which may be
somewhat small for quite a few programs. Although memory
size can be addressed with banking, at this point the students
do not know about memory banking, and also it introduces
some complications. We then say if we had 2 operands in
each instructions, then they could each be 14 bits and could
address 16K locations. That is a memory of 64KB since
each location is 32 bits. 64KB is a decent memory size for
an MCU.

As a a course project, the students design what we call
ProjectCPU, which is a cross between VSCPU and PIC16.
ProjectCPU is 1-operand just like PIC16. Therefore, the stu-
dents see the tradeoffs between different number of operands.
As the number of operands gets smaller, the program gets
longer, because we need more instructions to the same thing.
However, the number of memory locations we can address
gets larger or memory wordsize can be smaller hence giving
us more locations for the same memory size.

None of the papers we surveyed mention this topic, while
about 30% of the textbooks [9], [11], [14], [21], [23]-[25]
cover this topic.

E. Memory-Mapped I/O

Mapping special registers or special hardware blocks to
particular memory locations is a very crucial concept in com-
puter architecture. Because of that, we had to use this concept
in the prior subsections above without fully explaining it.

A basic CPU is nothing but a machine (i.e., the Core)
that keeps reading the Memory and writing it, continually
transforming the numbers in the Memory. The only interface
of a basic CPU is an interface between a host and the
Memory, through which the Host can inject a program and
initial data values and can offload the final values of output
variables from the Memory. Therefore, a basic CPU only
supports batch processing.

How do we use a CPU in interaction with a physical
world and run interactive real-time programs on it? For such
interaction, we need additional pins on the CPU other than
the ones for the host interface. If these pins come out of the
Core, that means the new core with additional pins would
need to have additional instructions. If each version of the
CPU has a different instruction set, that means every version
of the CPU would need modifications in the compiler.

The solution is that these additional pins are memory-
mapped, i.e., each pin has a separate address as shown in
Fig. 3. As a result of this, setting and resetting these pins or
reading them can be implemented with the copy instruction.
The only hardware change would be redesigning the Memory
Decoder in the Memory (see Fig. 3).

Note that sometimes CPU pins are driven by some ded-
icated logic (in a way coprocessors). In that case, what
are memory-mapped are not the pins but the configuration
registers of the logic, which is usually called a peripheral.

About 10% of the papers [41], [45], [57], [65] briefly
mention memory-mapped I/O model and about 8% of them

Volume 47, Issue 3: September 2020

TAENG International Journal of Computer Science, 47:3, IJCS 47 3 08

CPU

Memory

Core

RAM

*600 D

500: unused

600: unused

Fig. 3. Memory-mapped I/O.

[47], [50], [52] strongly emphasize memory-mapped I/O
model. Within the textbooks, we observed that almost every
textbook [4]-[10], [12]-[19], [21]-[28] covers the topic of
memory-mapped I/O.

F. Indirect Memory Access

In a regular CPU instruction, there is an opcode as well
as flag(s) and operands. An operand is either an immediate
number or an address. However, neither of these can handle
arrays unless self-modifying code is written (note that self-
modifying code requires von Neumann architecture or mod-
ified Harvard). To handle arrays, “indirect memory access”
is needed. That is about operands in certain instructions
that point to addresses that contain an address. VSCPU has
indirect addressing through one operand in CPI and CPIi
instructions (see Table I and Fig. 4). VSCPU also, in a way,
has indirect addressing in BZJ and BZJ1i instructions.

In the case of PIC16, for ex., indirect addressing is not
implied through particular opcodes but a particular address.
For that particular address, the value of not the address itself
but the value at the address pointed by it is used. And to set
that particular location itself, another special address is used.

About 25% of the papers [36], [38], [40]-[42], [45],
[50], [58], [65] touch upon indirect addressing mechanism,
whereas every textbook [4]-[28] discusses indirect memory
access mechanism in detail.

G. Detailed Explanation of Harvard vs von Neumann

A system that employs Harvard architecture has separate
memory spaces for instruction and data. On the other hand,
a system that employs von Neumann architecture uses the
same memory space for both instruction and data.

The main advantage of Von Neumann is that it can boot
itself. That is, it does not need a host to load the program.
Also, it offers “simplicity”. We do not have two different
types of addresses. One other advantage is that program
and data can be intermixed. Another one is that it allows
self-modifying programs although this is not a significant
advantage.

On the other hand, Harvard has the advantage that the
total memory space is smaller and hence the data addresses

500: *700
*500 = **600
600: 700
=>*500 = *700
700: *700
(a)
500: 700
**500 = *600
600: *600
=>*700 = *600
700: *600

(b)

Fig. 4. (a) CPI 500 600. (b) CPIi 500 600.

(i.e., instruction operands) are smaller in bitwidth compared
to Von Neumann. As a result, the instruction width can be
smaller thus reducing the program memory size. It should
be noted that if the ISA has branch and jump instructions
with fixed address operands, then those instructions include
program space addresses unlike the rest of the instructions.
In the case of VSCPU, we do not have this inconsistency in
the Harvard version of our ISA as our BZJ and BZJi take
as an operand an address in the data memory space, which
in turn, points to the program memory space.

There is also a performance aspect. Harvard (a single-
port program memory and a single-port data memory) is
equivalent to a 2-port Von Neumann. However, a 2-port
memory is slower and more expensive compared to 2 single-
port memories.

Volume 47, Issue 3: September 2020

TAENG International Journal of Computer Science, 47:3, IJCS 47 3 08

Most microcontrollers are Harvard, while microprocessors
are Von Neumann from a main memory perspective and
Harvard from a cache perspective.

We found that the comparison between Harvard and von
Neumann architectures was briefly mentioned in about 10%
of the papers [39]-[41], [65]. On the other hand, about 50%
of the textbooks [7], [10], [13], [16]-[19], [21], [23], [24],
[26]-[28] discuss this topic.

H. Self-Modifying Code

As explained before, for code to be self-modifying, either
the processor should be Von Neumann or modified Harvard.
Modified Harvard is such that a few special addresses in the
data memory space serve as a gateway/bridge to the program
memory space.

Self-modification can be used to make programs smaller
and faster. However, such programs are very difficult to de-
bug. Therefore, self-modifying code is not a desired feature.
It rather allows for theoretically interesting cases. For ex., the
ability of programs modifying themselves in an ISA has an
impact on instruction set completeness. In VSCPU, if self-
modifying code is written, CPT and CPIi are not needed as
they can be emulated with a few lines of code using the rest
of the instructions. Figure 5 shows an example on how to
emulate VSCPU CP1 instruction with a set of other VSCPU
instructions.

On a similar note, in ISAs with branch and jump instruc-
tions with fixed target address, self-modifying code can be
used to turn branch and jump instructions to instructions with
variable target address.

One convincing benefit of self-modifying code can be
making reverse engineering difficult.

None of the papers discuss self-modifying code. However,
this topic is covered in about 25% of the textbooks [6], [7],
[10], [17], [24], [27].

100: NAND 103 601
101: NAND 103 103
102: ADD 103 600
103: CP 500 O

601: OxFFFFCO000

Fig. 5. This code does CPI 500 600 (“100:” for ex. indicates the instruction
is stored in address 100).

1. Granularity of Simulation Environment

It is indisputable that simulation tools are a must for
computer architecture education. When the point is the
simulation of a processor, the level of simulation affects
the learning curve of students in understanding the working
mechanism of a processor. Computer architecture courses
based on complex architectures such as x86, ARM, MIPS,
etc. usually prefer to use an ISS due to the course length.
The drawback of this approach is that anyone who runs the
simulator can only examine the current status of registers of
the processor and memory for the instruction that is currently
executed. As a result of that, it can be difficult to track what
is happening in the processor over time while instructions
are executing.

A better approach is to use a cycle-accurate simulator
for the processor and base the teaching on a less complex
processor architecture. If such is the case, usually a model of
the processor written in a Hardware Description Language
(HDL) is used. Thus, it becomes possible to track changes
that take place inside the processor during the execution of
a program at the level of individual clock cycles.

While 23% of the papers [30], [32], [35], [38], [43], [44],
[47], [58] discuss employing an environment that supports
both assembly and HDL-level simulation within the courses,
20% of the papers [1], [29], [36], [42], [48], [50], [60], [65]
discuss assembly-based approach, and 20% of the papers
[311, [33], [34], [37], [39], [40], [53], [56], [61] discuss HDL-
based approach. Within the textbooks, only 8% of them [15],
[20] address both assembly and HDL-level simulation, and
about 40% of them [4]-[9], [11], [14], [17], [21] only prefer
to base things on assembly-based simulation.

J. Working CPU on FPGA

FPGAs are very helpful for instructors of computer ar-
chitecture in showing the students to put their hardware
modifications in action on a CPU working real-time. Students
can design any hardware on their computers by writing its
description in HDL such as Verilog and then download it on
to the FPGA in a few minutes. The change from the ability
to design processors on paper to within a simulation software
is huge, while the transition to students implementing their
own CPUs (even individually customized) on a chip is even
bigger.

Using FPGAs to support computer architecture education
was addressed by 60% of the papers [30], [31], [33]-[37],
[39]-[41], [43], [44], [46], [47], [49], [50], [52]-[54], [56],
[58], [61], [64]. Interestingly, only 12% of the textbooks [5],
[8], [12] surveyed mention FPGA-assisted learning method.

K. Memory Banking

Memory banking is about implementing a memory with
multiple physical memories. Memory banking comes up in
different contexts. It can be used to improve memory access
time (as in the case of DRAMs) by creating a pipelined
access, though at the cost of additional area. However, in our
courses, we approach it from a slightly different perspective
(i.e., microcontroller perspective).

The address part of an instruction in a microcontroller is
not too many bits, hence the microcontroller cannot address
a huge memory space. In the case VSCPU, an address is
14 bits, and the addressable Von Neumann memory space is
214 = 16K locations. If that space is not enough to hold
all of the program and data, we may want to modify our
CPU by making the addresses 15 bits. That lets us address
215 = 32K memory locations. However, there is a side-
effect. The instructions have to grow from 32 (=3+1+14+14)
bits to 34 (=3+1+15+15) bits. VSCPU uses 3 bits for opcode
and 1 bit for immediate flag. In a simple and efficient CPU,
an instruction has to fit in one location (i.e., one word) of
the memory. And since VSCPU is Von Neumann the whole
memory should grow also in width besides its growth in
height (i.e., number of locations). This is the case even when
all variables still fit in a wordsize of 32 bits.

Volume 47, Issue 3: September 2020

TAENG International Journal of Computer Science, 47:3, IJCS 47 3 08

One approach is to use a Harvard architecture and de-
couple instruction and data memory from each other and let
them have different wordsizes.

However, a better approach is “Memory Banking”. This
can be used in conjunction with a Von Neumann or Harvard
architecture. We can use 2 or more banks. Let us suppose we
use 2 banks. That is, we put a second memory with another
2% = 16K locations in the case of VSCPU. The core of
the CPU thinks there are only 16K locations (hence a 14-
bit address) and accesses the bank on the top (see Fig. 6).
If the programmer wants the CPU core to access the other
bank, the other bank has to be brought to the top. Memory-
Mapping comes to the rescue at this point. The CPU designer
picks a special address (1 in Fig. 6). This location serves as a
single-bit value and selects between the two banks. One way
of looking at this is as follows. In a way, we still increase the
address to 15 bits from 14 bits. However, the CPU core (i.e.,
the instruction set) is not aware of this. The only people that
know this and are in coordination are the memory designer
and programmer. Memory designer is the person that puts the
memory banks there and designs the memory decoder, both
of which are internal to the memory block. The programmer
writes the appropriate bank number in location 1 (with a CP1
instruction), when there is a need for changing the memory
bank.

However, there is a small problem. This trick works with
data memory but not instruction memory. There is a problem
both with Von Neumann and Harvard architectures. Let us
look at how we can solve the problem when the architecture
is Von Neumann. We do not want the bank number to change
for instructions when the bank number changes for data.
Also, for instructions, we cannot simply use a CP1i to change
the bank number. Instruction address (PC) has to either keep
incrementing or should jump.

Here is a solution for this problem. We add an additional
bit to the address port of the memory. This bit indicates if
the memory access is for an instruction or data. If it is a
data access, what we suggested earlier in terms of banking
works. If it is an instruction, the address is actually an offset.
That is either 1 (for most instructions) or the jump amount
as a distance from the current instruction to the jump/branch
target. All of this implies that the current instruction address
(PC) is kept in the memory block (maybe in addition to the
CPU core). If the jump/branch target addresses are kept as
offsets, this approach is more easily implemented. However,
even without it, this is a feasible approach.

When we look at the literature, we see that none of the
papers mention memory banking, while about 50% of the
textbooks [S]-[7], [11], [13]-[16], [18], [23], [24], [26], [27]
cover the topic.

L. Memory Hierarchy

Microcontrollers (for ex. VSCPU) do not have memory hi-
erarchy, while microprocessors (i.e., sophisticated processors
that even have hardware support for easily running operating
systems) have memory hierarchy. Memory hierarchy is a
solution to a dilemma. The dilemma is as follows.

Consider a basic CPU such as VSCPU, which has a single
memory space and has a single physical memory. The smaller
the memory, the faster it is, and hence the CPU is faster.

1: unused
*1
1: unused
memory 1
output 0
~
—
-
[=)
3]
E=3
o
.~
c
[0
0

Fig. 6. Memory banking.

However, small memory does not support big programs. To
address that, if we make the memory large, then the CPU
slows down. The question is how we can have the best of
both worlds.

The answer to this question is introducing “Memory Hier-
archy”. That is, CPU core most often interacts with a small
and hence fast memory. It every once in a while interacts
with a bigger (main) memory and fills the smaller memory.
This brings us to a “Load/Store Architecture”. That is, all
instructions operate on the locations of the smaller memory
(address space 1), except load and store instructions, which
serve as a bridge between address space 1 and the address
space 2 of a bigger (but slower) memory. A register file and
a main memory (with an option of cache included) is an
example for this approach (see Fig. 7).

Another approach is the cache (abbrev. as $) approach,
which is a hardware based approach for memory hierarchy,
which we may also call “big but yet fast” or “big and small”
approach. In this approach also, the CPU core interacts
with a small memory, which is supplied from a bigger
memory. However, the difference is that the smaller memory
does not interact with the big memory through load and
store instructions, instead they interact through an automated
hardware mechanism. And one other difference is that there
is only one address space.

In modern microprocessors, both of the mechanisms ex-
plained above are employed. Therefore, they have a memory
hierarchy with register file at the top, then cache, and then
main memory.

We motivate the concept of memory hierarchy with exam-
ples such as refrigerator/super market and bookcase/library.

In our courses, we also discuss the full memory hierarchy
including the disk (as well as virtual memory and swap
space). In addition, we discuss the usual physical implemen-
tations of the types of memory in the memory hierarchy. One
interesting observation we share with students (especially
those with EE background) when covering this topic is
that memory hierarchy mechanism resembles “impedance
matching”.

We observed that about 30% of the papers [32], [43], [47],
[48], [51], [52], [54], [57]-[59] discuss including memory
hierarchy in a typical curriculum, and about 90% of the
textbooks [4]-[14], [16]-[18], [21]-[28] at least cover cache
memory in detail.

Volume 47, Issue 3: September 2020

TAENG International Journal of Computer Science, 47:3, IJCS 47 3 08

LoadS All other
oad/Store - instructions
Main Memory : $ Reé;illseter

Memory hierarchy.

Fig. 7.

M. Virtual Memory

“Virtual memory” is such that each program (i.e., process)
thinks that it has a dedicated memory space. This prevents
programs from corrupting each other or the operating system.
The instructions point to addresses in the virtual memory
space, which need to be translated to the “physical memory”
space. The physical memory addresses are the addresses fed
to the pins of the physical memory. The translation between
the two types of addresses has to be made in real-time.
That is why modern microprocessors employ a hardware unit
called Memory Management Unit (MMU).

Problems that arise as a result of this address translation
problem are fragmentation, cache access efficiency, and the
size of tables in the MMU. The concept “page” and “page
tables” come to the rescue at this point.

The concept of virtual memory not only allows every
program to have its memory space but also allows hard disk
to act as an extension of DRAM (i.e., main memory), thus
the “swap space”.

We have seen that about 10% of the papers [47], [48],
[57] mention this topic, while almost all of the textbooks
[4]-[18], [20]-[28] cover it.

N. Pipelining and Hazards

Today almost every processor employs instruction pipelin-
ing technique since it improves clock frequency and Instruc-
tions Per Cycle (IPC) of the processor. However, pipelining
a datapath of a processor has some consequences, which
are commonly called as hazards. There are three types of
pipeline hazards as structural, data, and control hazards. A
basic pipeline addresses a structural hazard, i.e., the same
hardware unit being busy for more than one cycle.

For a student to fully understand pipelining of a processor,
he/she needs to have a strong logic design background.
Although we teach the basic idea of pipelining in our
logic design courses, we do a quick overview in computer
architecture and other advanced courses. We introduce cut-
lines to a combinational (i.e., feed-forward) logic and put
flops on the cut-lines, thus reducing the critical path and
increasing the clock frequency. Then, we study and contrast
“latency” and “cycle-time” (a.k.a., initiation interval). We
give examples featuring a water pipe, exam grading, and a
computer network with servers thousands of miles apart. We
later introduce “retiming”, which balances cycle-time. Then,
we introduce “functional pipelining”, which then leads us
to “software pipelining”. Eventually, the student understands
that pipelining is a very high-level concept and simply means
that we initiate (hence overlap) a new instance of a repetitive
computation without waiting for the previous instance to end.

Later, we study “stallable pipelines” and the fact that a
processor’s pipeline needs to support stalls. This brings us
to stalls that result from data and control hazards (as well

as those due to cache misses), which are the topics of the
following subsections.

In our computer architecture course, we also make the
connection between pipelining and state machine design.
For a simple CPU implementation, the number of states for
different instructions can be different. However, the first thing
we do for a pipelined CPU implementation is to implement
all instructions with the same number of states. In doing
that for a particular instruction, the trick is to do nothing
in states that do not serve any purpose for that instruction.
The minimum number of states we use for the pipelined
implementation of VSCPU is 4 states. That is because there
are a maximum of 4 memory accesses in VSCPU instructions
and every instruction requires a minimum latency of 2 cycles.
As for the 4 memory accesses, we have one read for the
instruction, one read for operand A, one read for operand
B, and one write for the result to be deposited in address
A. This leads us into the issue of a multi-port memory. At
steady state, in a pipeline with no stalls, there is a need for
3 read ports and 1 write port. This can be implemented 3
double-port block RAMs of an FPGA. In such discussions,
we also visit the need for a host interface.

About 50% of the papers [30]-[32], [34], [35], [37], [38],
[43], [44], [47], [52], [54], [56]-[59], [64] support teaching
pipelining mechanism and about 90% of the textbooks [4]-
[14], [16]-[18], [20]-[28] cover pipelining mechanism in
detail.

O. Forwarding

Read-after-write data dependencies (i.e., data hazards) be-
tween consecutive instructions can cause the pipeline to stall.
Depending on the depth and exact sequence of steps in the
pipeline, there can be a data dependency problem between
instructions that are apart. In our computer architecture
course, we briefly touch on “Forwarding” and pictorially
explain how the pipeline can be kept running without stalls
in the existence of data dependencies between neighboring
instructions. However, we deal with an HDL implementation
of Forwarding in more advanced courses.

Forwarding is mentioned in about 25% of the papers [30],
[341, [35], [371, [43], [44], [47], [52], [58], while about 50%
of the textbooks [4], [5], [8], [10]-[13], [16], [21], [23]-[25],
[28] cover forwarding mechanism.

P. Branch Prediction

When a branch instruction (or an indirect jump instruction
as in VSCPU) enters the pipeline, its outcome and hence
the next instruction is not known until the later stages of
the pipeline. In such case, the straight-forward approach
would be to stall the pipeline until the branch instruction’s
target (i.e., address of the next instruction to be executed) is
resolved. Unlike most other computer architecture courses,
we also look into implementations of stallable pipeline be-
sides “Branch Prediction” approach, which keeps the pipeline
running.

Although a stallable pipeline is an acceptable approach,
it wastes clock cycles and reduces the overall IPC of the
processor. Instead, the processor could continue to fetch in-
structions by guessing the outcome of the branch instruction.

Volume 47, Issue 3: September 2020

TAENG International Journal of Computer Science, 47:3, IJCS 47 3 08

The simplest approach would be to continue with the next
instruction (in the address right after the current instruction)
and jump to the target, once the branch condition’s value
and the target are known. At the point these are resolved
and it turns out that the branch is taken, the instructions
executed after the branch have to be undone. If the pipeline
is ordered such that a branch instruction is fully resolved
before the “write-back stage” of the pipeline, where the
result is written back, then the undo mechanism is simple. It
requires modifying the PC and canceling (i.e., invalidating)
the instructions in the pipeline stages before the pipeline
stage where branch resolution is complete. In cases where
the branch is fully resolved after write-back, complex register
renaming schemes are required.

Today, modern micprocessors employ dynamic and com-
plex branch predictors instead of static and simple ones in
order to lower the misprediction rate. Branch predictors are
placed in the “Instruction Fetch Unit” of a processor, and
they can be quite complex and hence making the fetch unit
one of the most complex pipeline stages.

This topic is only covered in about 15% of the papers [29],
[35], [43], [51], [59], while about 80% of the textbooks [4]-
[8], [10]-[14], [16], [17], [21]-[28] cover the topic of branch
prediction.

Q. Out-of-Order and Multiple Issue

In our computer architecture course, we do not discuss this
dimension much. However, we touch on it when we discuss
the topic of “Delay Slots” in branch prediction. Although
delay slots are usually filled at compile-time, they could be
filled in run-time as well.

Out-of-order execution normally refers to reordering of
executions by the processor core at run-time. Any bubbles
(i.e., stalls) that result in the pipeline due to hazards or cache
misses can be filled by keeping a queue of instructions in a
buffer and identifying those instructions that are ready to be
deployed.

Although “Multiple Issue” is a separate topic, it is looked
at together with out-of-order execution, as they are both
employed in superscalar processors. Multiple issue is also
employed in Very Long Instruction Word (VLIW) processors.
The asymptotic value of IPC for a regular RISC processor
is 1, however, multiple-issue can achieve higher IPC.

These are both advanced topics, which should be reserved
for advanced architecture courses, however, we at least men-
tion them and create some awareness. Multiple issue for ex.
requires instructions to be fetched in groups and introduces
an extra complexity when the group of instructions fetched
has a branch instruction. There is additional complexity when
a branch target points to the middle of a group. As for out-of-
order execution, in some approaches, instruction execution is
out-of-order but instructions are retired (i.e., write-back step
is completed) in-order.

Only one paper [38] covers this topic, while about 70% of
the textbooks [4]-[8], [10]-[14], [16], [17], [20]-[24], [26]
cover the topic.

R. CPU Customization

Customizing a CPU can be useful in situations where the
same program runs on the CPU indefinitely and performance,
area, and/or power consumption matters.

For ex., if the instruction set of a processor does not
include a multiply instruction but the application contains
too many multiplication operations, the processor will spend
a lot of time running a subroutine that implements multi-
plication. Consequently, there will be a huge degradation in
performance and power consumption with respect to a pro-
cessor that contains multiply instruction. By modifying the
instruction set of the processor to add a multiply instruction,
one can both save power and increase the performance of
the application. The impact on this on area can be in either
direction as ALU area increases but the area of program
memory is reduced since multiply is moved from software
to hardware.

On the other hand, in some applications unused instruc-
tions can be eliminated thus making the ALU smaller with
no impact on program memory. In the case of rarely used
instructions, they can be moved to software from hardware,
thus making the ALU smaller but program memory bigger.

A customized microcontroller is easy to design and can
be frequently utilized in FPGA design.

This topic is covered in about 6% of the papers [43],
[56], and interestingly, none of the textbooks discuss CPU
customization.

IV. STUDENT EVALUATION

In the context of this research, we did an exam to evaluate
the students’ performance and also conducted a survey to
evaluate the students’ learning and perception of our VSCPU
based computer architecture education course. The exam and
survey were carried out on 64 students of Computer Engi-
neering in Yeditepe University that were enrolled CSE224-
Introduction to Digital Systems course in Spring 2020.

We asked students to answer the following types of
questions within the exam:

« VSCPU assembly programming:

— given a C program, write its corresponding VSCPU
assembly code.

— write an assembly program that solves a particular
problem (e.g., bubble sort).

e Memory tracing of a running program on VSCPU:
fill in the table to show the changes in memory for each
instruction in a given program.

¢ Design of VSCPU in Verilog HDL: design VSCPU
state machine that could execute a particular subset of
instructions.

Figure 8 shows the average percentage grade for each
type of question. As can be seen from the results, students
performed well on the exam with an average score of at least
80% on all types of questions.

On the other hand, we asked students to answer a survey
in the context of term project. Survey questions are given in
Table II and the results of the survey are given in Figure 9,
10 and 11, respectively. The following is a summary of the
survey responses:

1) Almost every student thinks that his/her effort in the
term project was at least satisfactory.

2) About 85% of the students think that they gained at
least sufficient confidence on the design of a CPU at
the end of the project.

Volume 47, Issue 3: September 2020

TAENG International Journal of Computer Science, 47:3, IJCS 47 3 08

Fig. 8.

3)
4)
5)

0)

TABLE II
STUDENT SURVEY QUESTIONS.

Question

Q1. Level of effort you put into the term project (Poor/Satisfactory/Excellent)

Q2. Contribution to learning CPU Design (Poor/Satisfactory/Excellent)

a. Level of skill/knowledge at the start of project
b. Level of skill/knowledge at the end of project

c. Level of skill/knowledge required to complete the project

d. Contribution of project to your skill/knowledge

Q3. Tools (Poor/Satisfactory/Excellent)
a. Instruction set simulator
b. C compiler
c. Assembler

d. User manual

Q4. Project content (Strongly disagree/Disagree/Neutral/Agree/Strongly agree)

a. Learning objectives were clear
b. Project content was organized and well planned

c. Project workload was appropriate

d. Project organized to allow all students to participate fully

Q5. When you compare VSCPU to other CPUs with respect to learning computer architecture (select all that apply)

a. VSCPU ISA is simpler than other CPUs

b. VSCPU makes understanding how pipelining, interrupt, etc. mechanisms work on a CPU easier

c. Writing programs in assembly language for VSCPU requires less effort than other CPUs

d. Implementing VSCPU on hardware (i.e., FPGA) and running a program on it help me better understand the

course

Q6. What aspects of this project were most useful or valuable? (select all that apply)

a. Design and implementation of a CPU from scratch

b. Improving practice of writing assembly programs

c. Understanding how a CPU communicates with peripherals

d. Understanding how a C program translates (i.e., compiles) to instructions of CPU

Q7. How would you improve this project? (select all that apply)

a. Customizing VSCPU by adding new instructions (e.g., multiply-add, division, etc.)

b. Writing programs with a subset of VSCPU instructions (e.g., using only NAND, ADD, and BZJ)

100 F 7

Percentage

VSCPU Memory Design of
assembly tracing of VSCPU in
programming a running Verilog HDL
program
on VSCPU

Exam results.

About 70% of the students agree that the project
content and workload was satisfactory.

About 70% of the students find VSCPU most valuable
to design a CPU from scratch.

About 90% of the students feel at least comfortable
with using the tools.

About 56% of the students think that VSCPU is

a contributing factor with respect to other CPUs in
learning computer architecture.

About 70% of the students find VSCPU useful to
design and implement a CPU, about 58% of them
think that VSCPU ISA improves their ability to write
assembly programs, about 65% of them think that
VSCPU does help them to understand how a CPU
accesses 1/O devices, and 19% of them find VSCPU
useful to understand how a compiler works.

Based on these feedback from the students, we can con-
clude that using VSCPU as a course material was effective in
motivating them to learn about how a processor and computer
works. However, we also noticed that some students didn’t
find some part of our VSCPU based course as a contributing
factor to learn computer architecture (especially coding in
assembly language). For this reason, we are planning to mod-
ify the content of our course in order to improve students’
performance and better meet their expectations.

7)

V. CONCLUSIONS

In this paper, we analyzed 25 textbooks on computer
architecture and 38 papers on computer architecture educa-

Volume 47, Issue 3: September 2020

TAENG International Journal of Computer Science, 47:3, IJCS 47 3 08

1§ Poor
In Satisfactory
0o Excellent
60 |- -
Q
2 40| s
=
S
& 201 s
0

Q1: Level of effort you put into the project

Fig. 9. Survey results - part I.

tion from the perspective of 18 critical topics covered in
our references. Along the way, we also explained our own
approach on computer architecture teaching, which is based
on our own processor called VSCPU.

Below is a sorted list of the 18 topics from the one covered
most in our references to the one covered the least (with
the average percentage of textbook and paper coverage in
parentheses):

« Assembly Coding (100%)

 Pipelining and Hazards (70%)

 Indirect Memory Access (63%)

o Memory Hierarchy (60%)

e Memory-Mapped I/O (59%)

¢ Granularity of Simulation Environment (56%)

¢ Virtual Memory (55%)

o Branch Prediction (48%)

o Forwarding (38%)

o Out-of-Order and Multiple Issue (37%)

o Working CPU on FPGA (36%)

e Detailed Explanation of Harvard vs von Neumann
(30%)

e Memory Banking (25%)

o Tradeoffs in Instruction Design (15%)

o Self-Modifying Code (13%)

o Instruction Set Completeness (12%)

e One-Instruction CPU (5%)

o CPU Customization (3%)

On the other hand, we deem the below topics as basic
topics, which must be covered even in an introductory
computer architecture course:

« Assembly Coding

« Instruction Set Completeness

e One-Instruction CPU

o Tradeoffs in Instruction Design

e Memory-Mapped I/O

o Indirect Memory Access

o Detailed Explanation of Harvard vs von Neumann

o Self-Modifying Code

o Granularity of Simulation Environment

« Memory Banking

Unfortunately, the following are covered in 30% or fewer
of the textbooks and papers:

e One-Instruction CPU (5%)

o Instruction Set Completeness (12%)

o Self-Modifying Code (13%)

o Tradeoffs in Instruction Design (15%)

e Memory Banking (25%)
o Detailed Explanation of Harvard vs von Neumann
(30%)

Most computer architecture courses are based on micro-
processors, and they quickly move into advanced topics such
as pipelining, forwarding, branch prediction, cache, virtual
memory without spending enough time on the above basic
concepts.

Out of the above basic concepts, we see “Instruction Set
Completeness” as the top priority since it is what separates a
general-purpose computer from a non-general-purpose com-
puter. In discussing instruction set completeness, the question
of a NAND instruction being sufficient or not always comes
up as it is taught to be a gate sufficient to implement all
logic functions (remember your basic logic design course).
Later, the discussion naturally leads a computer architecture
class to “Tradeoffs in Instruction Design”. While the core of
a processor implements the instructions, the other half of a
processor is the memory, and a discussion of Von Neumann
versus Harvard architectures is where we usually end up.
Such discussion should include self-modifying code even
though it is against the current practice to write such code.
Then, there should be a discussion of what the memory size
should be and what we need to do if we exceed the size
dictated by the address size in the instructions. That is the
topic of “Memory Banking”.

Last but not least, we need to state that implementing
a CPU on FPGA adds extraordinary value to a computer
architecture course although it is considered here to be an
advanced topic. At that point, we see that implementing
customized CPUs on FPGA for particular applications is
relatively trivial once you have a working CPU on FPGA.

ACKNOWLEDGMENT

This work was supported by TUBITAK under grant no.
117E090.

REFERENCES

[1] J. D. Carpinelli and T. Zaman, “Instructional Tools for Designing and
Analysing a Very Simple CPU,” Int. Journal of Electrical Engineering
& Education, SAGE, vol. 43, pp. 261-270, 2006.

[2] A. Yidiz, H. F. Ugurdag, B. Aktemur, D. iskender, and S. Goren,
“CPU design simplified,” in Proc. of Int. Conf. on Computer Science
and Engineering (UBMK). IEEE, 2018, pp. 630-632.

[3] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: Local
Algorithms for Document Fingerprinting,” in Proc. of Int. Conf. on
Management of Data (SIGMOD). ACM, 2003, pp. 76-85.

[4] D. A. Patterson and J. L. Hennessy, Computer Organization and
Design RISC-V Edition: The Hardware Software Interface. Elsevier,
2017.

[5] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quan-
titative Approach. Elsevier, 2011.

[6] W. Stallings, Computer Organization and Architecture: Designing for
Performance. Pearson, 2003.

[7] A.S. Tanenbaum, Structured Computer Organization. Pearson, 2016.

[8] S. Harris and D. Harris, Digital Design and Computer Architecture:
ARM Edition. Morgan Kaufmann, 2015.

[9] J. G. De Lamadrid, Computer Organization: Basic Processor Struc-
ture. Chapman and Hall/CRC, 2018.

[10] A. Clements, Computer Organization & Architecture: Themes and
Variations. Cengage Learning, 2013.

[11] M. Dubois, M. Annavaram, and P. Stenstrém, Parallel Computer
Organization and Design. Cambridge University Press, 2012.

[12] V. C. Hamacher et al., Computer Organization and Embedded Systems.
McGraw-Hill, 2012.

[13] D. Comer, Essentials of Computer Architecture.
Hall/CRC, 2017.

Chapman and

Volume 47, Issue 3: September 2020

TAENG International Journal of Computer Science, 47:3, IJCS 47 3 08

Fig.

[14]

[15]

[16]
(17]
(18]
[19]
[20]
[21]
[22]
[23]

[24]

[25]
[26]

In Poor
Im Satisfactory
0o Excellent

60 |- s
)
s 40 |
(=]
S
& 20 .
0
Level of Level of Level of Contribution of project
skill/knowledge at skill/knowledge at skill/knowledge to your skill’knowledge
the start of project the end of project required to
complete the project
(a) Q2: Contribution to learning of design of a CPU
60 =
S 40| 2
=
(5}
2
£ 20 =
0
Instruction set simulator ~C compiler Assembler User manual
(b) Q3: Tools
I8 Strongly disagree
10 Disagree
I@ Neutral
Oo Agree
00 Strongly agree
40 =
(4]
)
<
g
% 20 =
v
0

Learning objectives
were clear

Project content
was organized

Project workload Project organized to

and well planned

allow all students
to participate fully

was appropriate

(c) Q4: Project content

10. Survey results - part II.

L. Null and J. Lobur, The Essentials of Computer Organization and
Architecture. Jones & Bartlett, 2014.

N. Nisan and S. Schocken, The Elements of Computing Systems:
Building A Modern Computer from First Principles. MIT Press,
2005.

M. Abd-El-Barr and H. El-Rewini, Fundamentals of Computer Orga-
nization and Architecture. John Wiley & Sons, 2005.

A. S. Berger, Hardware and Computer Organization. Newnes, 2005.
1. East, Computer Architecture and Organization. CRC Press, 2004.
H. A. Farhat, Digital Design and Computer Organization. CRC Press,
2003.

W. E. Gilreath and P. A. Laplante, Computer Architecture: A Minimalist
Perspective. Springer, 2003.

S. P. Dandamudi, Fundamentals of Computer Organization and De-

sign. Springer, 2003.

J. Y. Hsu, Computer Architecture: Software Aspects, Coding, and
Hardware. CRC Press, 2001.

S. G. Shiva, Computer Organization, Design, and Architecture. CRC
Press, 2007.

H. G. Cragon, Computer Architecture and Implementation. ~ Cam-

bridge University Press, 2000.
M. M. Mano, Computer System Architecture. Prentice Hall, 1993.
M. Balch, Complete Digital Design: A Comprehensive Guide to

[27]

[28]

[29]

[30]

[31]

[32]

(33]

Digital Electronics and Computer System Architecture. ~ McGraw-
Hill, 2003.

P. Juola, Principles of Computer Organization and Assembly Lan-
guage. Pearson, 2006.

B. Chalk, A. T. Carter, and R. W. Hind, Computer Organisation and
Architecture: An Introduction. ~ Macmillan Int. Higher Education,
2017.

A. Clements, “ARMs for the poor: Selecting a processor for teaching
computer architecture,” in Proc. of Frontiers in Education Conf. (FIE).
IEEE, 2010, pp. T3E/1-6.

V. Rubio and J. Cook, “A FPGA implementation of a MIPS RISC
processor for computer architecture education,” Master’s thesis, New
Mexico State University, Las Cruces, New Mexico, 2004.

C. M. Kellett, “A project-based learning approach to programmable
logic design and computer architecture,” IEEE Transactions on Edu-
cation, vol. 55, pp. 378-383, 2012.

B. Nikolic, Z. Radivojevic, J. Djordjevic, and V. Milutinovic, “A
survey and evaluation of simulators suitable for teaching courses
in computer architecture and organization,” IEEE Transactions on
Education, vol. 52, pp. 449458, 2009.

K. Nakano, K. Kawakami, K. Shigemoto, Y. Kamada, and Y. Ito, “A
tiny processing system for education and small embedded systems on
the FPGAs,” in Proc. of Int. Embedded and Ubiquitous Computing
(EUC). IEEE, 2008, pp. 472-479.

Volume 47, Issue 3: September 2020

TAENG International Journal of Computer Science, 47:3, IJCS 47 3 08

Fig. 11.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

VSCPU ISA is simpler than other CPUs [N 75.6

VSCPU makes understanding how pipelining,
interrupt, etc. mechanisms work on a CPU easier

Writing programs in assembly language for I
VSCPU requires less effort than other CPUs ’

Implementing VSCPU on hardware (i.e., FPGA) and run-
ning a program on it help me better understand the course

[73.2

[34.1

(a) Q5: When you compare VSCPU to other CPUs with respect to learning computer architecture:

Design and implementation of a CPU from scratch [70.7

Improving practice of writing assembly programs [58.5

Understanding how a CPU communicates with peripherals [65.9

Understanding how a C program translates
(i.e., compiles) to instructions of a CPU

[195

(b) Q6: What aspects of this project were most useful or valuable?

Customizing VSCPU by adding new in-
structions (e.g., multiply-add, division, etc.)

Writing programs with a subset of VSCPU I G
instructions (e.g., using only NAND, ADD, and BZJ) :

[71.1

(c) Q7: How would you improve this project?

Survey results - part III.

Y. Li and W. Chu, “Aizup-a pipelined processor design and implemen-
tation on Xilinx FPGA chip,” in Proc. of Symp on FPGAs for Custom
Computing Machines (FCCM). 1EEE, 1996, pp. 98-106.

P. Buli¢, V. Gustin, D. Sonc, and A. Strancar, “An FPGA-based inte-
grated environment for computer architecture,” Computer Applications
in Engineering Education, Wiley, vol. 21, pp. 26-35, 2013.

H. Oztekin, F. Temurtas, and A. Gulbag, “BZK.SAU.FPGA10.1: A
modular approach to FPGA-based micro computer architecture design
for educational purpose,” Computer Applications in Engineering Ed-
ucation, Wiley, vol. 22, pp. 272-282, 2014.

A. K. Uht, J.-C. Lo, Y. Sun, J. C. Daly, and J. Kowalski, “Building
real computer systems,” IEEE Micro, vol. 20, pp. 48-56, 2000.

A. Clements, “Computer architecture education,” IEEE Micro, vol. 20,
pp. 10-12, 2000.

M.D. L. A. Cifredo-Chacén, A. Quir6s-Olozdbal, and J. M. Guerrero-
Rodriguez, “Computer architecture and FPGAs: A learning-by-doing
methodology for digital-native students,” Computer Applications in
Engineering Education — Wiley, vol. 23, pp. 464-470, 2015.

A. Hernandez Zavala, O. Camacho Nieto, J. A. Huerta Ruelas,
C. Dominguez, and R. Arodi, “Design of a general purpose 8-bit
RISC processor for computer architecture learning,” IPN Computacion
y Sistemas, vol. 19, pp. 371-385, 2015.

D. §uh’k, M. Vasilko, and P. Fuchs, “Design of a RISC microcontroller
core in 48 hours,” Journal of Electrical Engineering, vol. 52, pp. 171-
176, 2001.

J. Djordjevic, B. Nikolic, and A. Milenkovic, “Flexible web-based ed-
ucational system for teaching computer architecture and organization,”
IEEE Transactions on Education, vol. 48, pp. 264-273, 2005.

J. Gray, “Hands-on computer architecture: teaching processor and
integrated systems design with FPGAS,” in Proc. of Workshop on
Computer Architecture Education (WCAE). ACM, 2000, pp. 17-24.
B. Hatfield and L. Jin, “Improving learning effectiveness with hands-on
design labs and course projects for the operating model of a pipelined
processor,” in Proc. of Frontiers in Education Conf. (FIE). 1EEE,
2010, pp. F1E/1-6.

S. Yamazaki, T. Satoh, T. Jiromaru, N. Tachi, and M. Iwano, “Instruc-
tional Design of a Workshop “How a Computer Works” Aimed at
Improving Intuitive Comprehension and Motivation,” in Proc. of 1IAI

[46]

(471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

International Conference on Advanced Applied Informatics. 1EEE,
2014, pp. 338-341.

V. Gustin and P. Buli¢, “Learning computer architecture concepts with
the FPGA-based “Move” microprocessor,” Computer Applications in
Engineering Education, Wiley, vol. 14, pp. 135-141, 2006.

S. L. Harris, D. M. Harris, D. Chaver, R. Owen, Z. L. Kakakhel,
E. Sedano, Y. Panchul, and B. Ableidinger, “MIPSfpga: using a
commercial MIPS soft-core in computer architecture education,” IET
Circuits, Devices & Systems, vol. 11, pp. 283-291, 2017.

D. Ellard, D. Holland, N. Murphy, and M. Seltzer, “On the design of a
new CPU architecture for pedagogical purposes,” in Proc. of Workshop
on Computer Architecture Education (WCAE). ACM, 2002, pp. 6—12.
R. Brennan and M. Manzke, “On the introduction of reconfigurable
hardware into computer architecture education,” in Proc. of Workshop
on Computer Architecture Education (WCAE). ACM, 2003, pp. 15—
21.

H. Oztekin, F. Temurtas, and A. Gulbag, “On the improvement of the
teaching quality and learning effectiveness in the computer organi-
zation course through FPGA and modular centered microcomputer
design,” Computer Applications in Engineering Education, Wiley,
vol. 26, pp. 1825-1840, 2018.

V. J. Reddi, A. Settle, D. A. Connors, and R. S. Cohn, “PIN: A binary
instrumentation tool for computer architecture research and education,”
in Proc. of Workshop on Computer Architecture Education (WCAE).
ACM, 2004, pp. 22-29.

J. H. Lee, S. E. Lee, H. C. Yu, and T. Suh, “Pipelined CPU design
with FPGA in teaching computer architecture,” IEEE Transactions on
Education, vol. 55, pp. 341-348, 2012.

K. Nakano and Y. Ito, “Processor, assembler, and compiler design
education using an FPGA,” in Proc. of Int. Conf. on Parallel and
Distributed Systems (ICPADS). 1EEE, 2008, pp. 723-728.

W. Wolf, “Rethinking embedded microprocessor education,” in Proc.
of ASEE Annual Conf. & Expo, 2001, pp. 861-866.

J. Qian, R. Wang, S. Shi, Y. Zhu, and Z. Xie, “Simplifying and
integrating experiments of hardware curriculums,” in Proc. of Int. Conf.
on Computer Science and Information Technology (ICCSIT). 1EEE,
2010, pp. 610-614.

V. Bonato, R. Menotti, E. Simdes, M. M. Fernandes, and E. Marques,
“Teaching embedded systems with FPGAs throughout a computer

Volume 47, Issue 3: September 2020

TAENG International Journal of Computer Science, 47:3, IJCS 47 3 08

(571

[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

science course,” in Proc. of Workshop on Computer Architecture
Education (WCAE). ACM, 2004, pp. 8-14.

W. Zhang and U. Z. Zhang, “Teaching the Introductory Computer
Architecture Course with a Systematic View,” in Proc. of Midwest
Section Conf. of ASEE, 2007, pp. 1-10.

V. Angelov and V. Lindenstruth, “The educational processor Sweet-
16,” in Proc. of Int. Conf. on Field Programmable Logic and Appli-
cations (FPL). 1EEE, 2009, pp. 555-559.

A. Clements, “The undergraduate curriculum in computer architec-
ture,” IEEE Micro, vol. 20, pp. 13-21, 2000.

J. D. Carpinelli, “The very simple CPU simulator,” in Proc. of
Frontiers in Education (FIE). 1EEE, 2002, pp. T2F/11-14.

R. Nakamura, Y. Ito, and K. Nakano, “TinyCSE: Tiny Computer
System for Education,” in Proc. of Int. Symp. on Computing and
Networking. 1EEE, 2013, pp. 639-641.

Y. Chen and P. Cao, “Toy CPU: An innovative curriculum design,”
in Proc. of Int. Conf. on Computer Science & Education (ICCSE).
IEEE, 2012, pp. 1690-1693.

F. Mavaddat and B. Parhami, “URISC: The ultimate reduced instruc-
tion set computer,” Int. Journal of Electrical Engineering Education,
SAGE, vol. 25, pp. 327-334, 1988.

X. Wang, “Using FPGA-based configurable processors in teaching
hardware/software co-design of embedded multiprocessor systems,”
in Proc. of Int. Conf. on Microelectronic Systems Education (MSE).
IEEE, 2011, pp. 114-117.

L. Ribas-Xirgo, “Yet another simple processor (YASP) for introductory
courses on computer architecture,” IEEE Transactions on Industrial
Electronics, vol. 57, pp. 3317-3323, 2010.

N. G. Tsoutsos and M. Maniatakos, “Investigating the Application of
One Instruction Set Computing for Encrypted Data Computation,” in
Proc. of Int. Conf. on Security, Privacy, and Applied Cryptography
Engineering (SPACE). Springer, 2013, pp. 21-37.

——, “HEROIC: homomorphically EncRypted one instruction com-
puter,” in Proc. of Design, Automation & Test in Europe Conf. &
Exhibition (DATE). 1EEE, 2014, pp. 1-6.

H. Corporaal, “Design of transport triggered architectures,” in Proc.
of Great Lakes Symposium on VLSI (GLSVLSI). 1EEE, 1994, pp.
130-135.

A. Demin, “The NOR machine,” In PragPub magazine, accessed
through https://pragprog.com/magazines/2012-03/the-nor-machine,
2012.

Abdullah Yildiz is a PhD candidate at the Dept. of Computer Engineering,
Yeditepe University. He received his BS degree in EE from Uludag Univer-
sity in 2008 and MS degree in EE from Ozyegin University in 2012. His
research interests include computer architecture education, digital design
and verification, and embedded systems.

Sezer Goren received the BS and MS degrees in EE from Bogazici
University and the PhD degree in Computer Engineering from the Uni-
versity of California, Santa Cruz. She was a senior engineer in Silicon
Valley from 1998 to 2004 at Syntest, Cadence, Apple, PMC-Sierra, and
Aarohi Communications. She is currently a full professor and chair of the
Dept. of Computer Engineering, Yeditepe University. Her research interests
include reconfigurable computing, design automation, design verification,
test, computer arithmetic, vehicular technologies, and embedded systems
design.

H. Fatih Ugurdag is a full professor at Ozyegin University. He received
his MS and PhD from Case Western Reserve University in EE in 1989
and 1995, respectively. He received his BS in EE with a double major in
Physics from Bogazici University in 1986. He did an MS thesis on machine
vision and a PhD dissertation on parallel hardware design automation. He
worked in the industry in the USA between 1989-2004 at companies such
as GE, GM, Lucent, Juniper, and Nvidia as a machine vision engineer, EDA
software developer, and chip designer. In late 2004, he joined academia. His
research interests include real-time hardware/software design in the areas of
video processing, communications, and automotive systems.

Baris Aktemur is a senior software engineer at Intel, Munich. Previously
he was an assistant professor of computer science at Ozyegin University.
He received his BS in Computer Engineering from Bilkent University in
2003 and MSc and PhD degrees in Computer Science from University of
Illinois at Urbana-Champaign in 2005 and 2009, respectively. His research
interests include programming languages, compilers and debugging tools,
and software engineering.

Taylan Akdogan is the Dean of Faculty of Engineering at Ozyegin
University. He received his PhD degree from Massachusetts Institute of
Technology (MIT) in Physics in 2003, and BS degrees from Bogazici
University in EE and Physics in 1995. He did a PhD dissertation on nucleon-
nucleon interactions. His research expertise includes nucleon-nucleon in-
teractions, electromagnetic structure of nucleons and light nuclei, neutrino
physics, computational and mathematical physics, data acquisition systems.
He contributed to discoveries of both tau neutrino and Higgs boson, two
fundamental particles of the Standard Model. He started his academic career
as a research scientist at MIT in 2003. He joined the faculty of Bogazici
University in 2006 and served as the Dean of Faculty of Arts and Sciences
between 2014-2016, then joined Ozyegin University in 2017.

Volume 47, Issue 3: September 2020

