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Abstract—With the increasing development of machine learn-
ing, conventional embedded systems cannot meet the require-
ment of current academic researches and industrial applica-
tions. Artificial Intelligence System (AIS) based on machine
learning has been widely used in various safety-critical systems,
such as machine vision, autonomous vehicles, collision avoid-
ance system. Different from conventional embedded systems,
AIS generates and updates control strategies through learning
algorithms which make the control behaviors nondeterministic
and bring about the test oracle problem in AIS testing proce-
dure. There have been various testing approaches for AIS to
guarantee the safety and robustness. However, few researches
explain how to conduct AIS testing with a complete workflow
systematically. This paper provides a comprehensive survey of
existing testing techniques to detect the erroneous behaviors of
AIS, and sums up the involved key steps and testing components
in terms of test coverage criterion, test data generation, testing
approach and common dataset. This literature review aims at
organizing a standardized workflow and leading to a practicable
insight and research trend towards AIS testing.

Index Terms—artificial intelligence system, machine learning,
neural network, testing, verification.

I. INTRODUCTION

ARTIFICIAL Intelligence (AI) is a technique capable
of making the machine think or act like a human by

simulating human intelligence. With the broad applications
of artificial intelligence in wearable devices, autonomous
cars, smart robot and smart city [1], the traditional embed-
ded system, including sensor, controller and actuator, has
evolved into the artificial intelligence system (AIS) with the
capabilities of autonomous learning, decision and controlling.
For instance, autonomous cars [2] perceive the surrounding
driving environment by sensors such as radar and camera.
Based on the perception data, autonomous cars perform the
tasks such as obstacles detection and tracking, traffic signals
detection and recognition, and route planning through the
intelligence component implemented by machine learning
(ML). Then, autonomous cars make decisions for these tasks
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and drive safely on road via the autonomous interations with
driving environment.

The progress of AI technology goes through three stages:-
symbolism AI, connectionism AI and actionism AI [3] over
the past decades. The symbolism AI is a technology based
on mathematical logic, which is defined by physical symbols
to imitate human thoughts intelligently with deduction rules.
The heuristic algorithms and expert system are the classical
technologies developed based on the symbolism AI. The
connectionism AI is a technology based on neural network,
and is defined by neurons and connections between them
to mimic the human brain structure and learning function.
Therefore, the neural network and deep learning (DL) are the
fundamental methods to implement the connectionism AI.
The actionism AI is a technology based on cybernetics, which
aims at interacting with the external environment through
intelligent and autonomous behaviors. In this case, the AI
system based on actionism is regarded as an optimization and
control system by the methods of evolutionary computation
or reinforcement learning. With the incredible development
of hardware and computing capability, the connectionism
AI has become the essential technology in learning the
distribution of large-scale data and predicting the output cor-
respondingly. Thus, we mainly focus on the connectionism
based AI system and discuss the state-of-the-art of testing
AIS in this paper.

Since some applications of artificial intelligence are safety-
critical systems, once some faults occur without any safety
control behavior from system or person, there will be either
error decision or fatal consequence. The traffic accident
happened on March 18, 2018 that a self-driving Uber SUV
“killed” a pedestrian makes the safety of self-driving system
an emergency service required before the self-driving car
is employed. As shown in the report [4], the perception
system “sees” clearly the pedestrian through LiDAR but the
decision system makes no decision, brake, slow down or alert
the assistant driver, for the potential collision. Similar cases
that Waymo self-driving car collides into an accident vehicle
without any avoidance and Tesla Model S crashes because of
the misclassification between the sky and white truck indicate
that the autonomous level of self-driving system is still in
Level 3, which requires the human intervention in emergency
cases. Thus, it is crucial to detect the erroneous behaviors
in AIS and assure its safety and robustness through certain
testing techniques.

The nature and features of intelligence system1 design
and implementation, the complex requirements, large-scale
network, and nondeterministic and uninterpretable learning
results, bring great challenges in revealing the error behaviors

1Hereafter intelligence system and artificial intelligence system (AIS) are
used interchangeably.
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and faults in system [5]–[7]. Various testing techniques have
been investigated to test the intelligence component in intel-
ligence system, especially machine learning based system.
For example, adversarial attack [8], generative adversarial
network [9] and metamorphic testing [10], [11] for detecting
faults in training model, and mutation testing [12], [13]
for testing adequacy of test data. Some researchers and
institutions have reviewed the progress of machine learning
testing from different perspectives. For example, Hains et
al. [14] investigate the existing verification and simulation
techniques for the safety of machine learning. Masuda et
al. [15] review the error detection of machine learning and
the applications of conventional software testing on machine
learning. Braiek et al. [16] study the datasets, and black-
and white-box based testing techniques for machine learning
testing. Ma et al. [17] discuss the safety challenge in machine
learning system. Huang et al. [18] introduce the testing and
verification techniques for the safety of machine learning.
However, the above mentioned researches mainly focus on
the testing or verification techniques without a systematic
testing procedure from test data generation to different testing
approaches. In this paper, we outline the systematic testing
workflow of artificial intelligence system in terms of test
coverage metric, test data generation, testing approach and
common datasets by inspecting the related publications since
2009, and discuss the dominant methods for individual
aspect.

The remainder of this paper is organized as follows.
Section II introduces the preliminaries of deep learning,
deep neural network (DNN), the architecture of artificial
intelligence system and the testing workflow. Section III
introduces our review procedure by collecting related publi-
cations and analyzing the publications in terms of researcher
and institution, geographical distribution, and publication
venues. Section IV discusses the coverage metrics for neural
network testing at three levels of different granularities.
Section V introduces the dominant test data generation
algorithms for training and assessing learning model. Section
VI and Section VII focus on different testing and formal
verification techniques. Section VIII presents the common
datasets used for image classification and self-driving. Sec-
tion IX summarizes the paper and discusses the future work
in intelligence system testing.

II. PRELIMINARIES

A. Deep Learning

As one of the machine learning method, deep learn-
ing [19]–[21] helps computer implement some functions in
human-level by learning from enormous amounts of data
and heuristic knowledge. With the purpose of designing
and implementing the AIS, DL has achieved an incredible
progress in human-level abilities in areas of computer vi-
sion [22], machine translation [23], speech recognition [24]
and game playing [25]. The above mentioned applications
have been used in various safety-critical systems such as
autonomous driving system [2], collision avoidance system
[26] and medical image processing system [27].

A DL system is either composed of DNN components
or a combination of DNN and conventional software [28].
Different from the development of traditional software which
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Fig. 1: Illustration of a Simple DNN

is logically based, DNN components learn the patterns from
the distribution of training data and the data features. Thus,
it is crucial to detect the erroneous and insecure behaviors
of DL systems through a variety of testing techniques.

B. DNN Architecture
Deep neural network [21] is structured by layers and con-

nections between neurons in neighbor layers. These layers
are composed of one input layer, multiple hidden layers
and one output layer, and each connection corresponds to
a pre-trained weight. Except neurons in the input layer, each
neuron in the hidden and output layers has a bias. As the
basic unit, the neuron takes the outputs from neurons in
last layer as inputs, and delivers the value calculated by the
activation function as output. Thus, DNN is formally defined
as a tuple N = (L, T, F ) [29], in which

1) L = {L1, L2, · · · , LK} is a set of layers. L1 is the input
layer, L2 ∼ LK−1 are the hidden layers, and LK is the
output layer. Assume that there are sl neurons in the
l-th layer, then Ll = {n1l , n2l , · · · , nkl , · · · , n

sl
l }, where

nkl is the k-th neuron in the l-th layer.
2) T ⊆ L × L is a set of connections between layers.

Each hidden layer has incoming connections and out-
going connections, while input layer only has outgoing
connections and output layer only has incoming con-
nections.

3) F = {f2, f3, · · · , fK} is a set of activation functions
for each layer except the input layer. For the neuron
nkl , its output value is vkl = fl(u

k
l ), in which ukl =

Σ
sl−1

i=1 w
i
l−1v

i
l−1 + bkl , fl is the activation function, ukl is

the input value of nkl , wil−1 is the weight of connection
between neuron nil−1 and nkl , vil−1 is the output of
neuron nil−1, and bkl is the bias of nkl .

As shown in figure 1, this is a simple example of a full
connected DNN. Given the input vector (i11, i

2
1) = (0, 1),

the trained weights w1
1 = −1 and w2

1 = 1, and bias
b32 = 0, take ReLU as the activation function, the output
value of the third neuron in the second layer, n32, will be
v32 = ReLU(Σ2

j=1w
j
1i
j
1 + b32) = ReLU(1) = max(0, 1) = 1.

Furthermore, v32 = 1 will be regarded as the input of the
neurons in the third layer.

C. Artificial Intelligence System
Since the connectionism AI is the most popular technolo-

gy, we briefly discuss the architecture of artificial intelligence
system based on deep learning in this section.
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Fig. 2: Architecture of Artificial Intelligence System

The conventional embedded system takes as input the data
from sensors and computes the control strategies according
to the program with specific task. The controllers output the
corresponding decision based on the control strategies and
transform this decision into a command to actuators. Then
actuators consequently take some operations to control the
entire embedded system. Thus, the conventional embedded
system is logic deterministic with the certain program and
control behaviors. Different from the conventional embed-
ded system, the control strategies of artificial intelligence
system are obtained by learning from training data under
the machine learning algorithm, which will lead to less
precise strategies since the intelligence system is data-driven.
As shown in figure 2, the AIS learns the online or offline
strategies by online learning or offline learning from the
sensor data or offline data under the learning algorithms for
specific application. Then make a decision according to the
learned strategies and forward this decision to actuators in the
format of commands. In this case, the advanced embedded
system can perform the autonomous learning, decision and
controlling with the intelligent component, the machine
learning program. The testing of conventional embedded
system follows a general testing procedure: generating test
cases, executing test cases and comparing the actual outputs
with the expected outputs. Nevertheless, because of the
nature of machine learning algorithms, the control strategies
update even for the same training data, which can generate
different or interpretable control behaviors and weaken the
safety and robustness of intelligence system. Therefore, there
exists the oracle problem [30] in testing artificial intelligence
system.

D. Artificial Intelligence System Testing

Testing intelligence system is a process of detecting sys-
tem erroneous behaviors, which aims to guarantee the safety
and robustness of system. The AIS is a data-driven system
because system learns from the input dataset and predicts the
behavior with the trained model. Therefore, the correctness
of system can be determined by checking whether the output
behaviors meet the requirements. As shown in figure 3, given
an intelligence system, the testing activity is conducted as the
following steps.

1) Generate the samples, including training data, test data
and individual oracle, based on the pre-designed dataset-

2 1 1
3 2

4
2

7

19

26

5

0

5

10

15

20

25

30

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

N
u
m

b
er

 o
f 

p
u
b

lic
at

io
n
s

Year

Fig. 4: Publications of Artificial Intelligence System Testing
from 2009 to 2019

s through some samples generation algorithms to satisfy
the specific requirement of test coverage.

2) When given a training model, testers would take the
data generated in the first step as the training data and
train this model to get a learned model.

3) After training, testers would take the test dataset gener-
ated in the first step as the evaluation data and output
the predicted decision of each test data.

4) Compare the predicted output with the corresponding
oracle generated in the first step to determine the
correctness of the predicted output.

5) If the predicted output is not equal to the relative oracle,
which indicates an incorrect behavior, then repair the
intelligence system and conduct regression testing to
check whether any new mistakes are introduced in the
repair process; Otherwise, no error behavior is detected
and terminate the testing process.

III. REVIEW METHOD

To perform a comprehensive survey on artificial intelli-
gence system testing, we follow a similar review method
from the survey on metamorphic testing [31]. The review
process of publication collection and results are as follows.

A. Publication Collection

We searched papers about AIS testing in the Google
Scholar between 2009 to 2019, which contain either “neural
network”, “machine learning”, “test”, “verification”, “robust-
ness”, “safety”, “self-driving” or “dataset” in title, abstract
or keywords. After examining all of the searched papers,
we filtered out 72 publications closely related to the scope
of our review. Figure 4 lists the number of publications on
AIS testing we selected and shows a significant growth since
2016, because Koopman et al. [5] proposed the challenges
in testing and validating autonomous vehicle in that year.
Therefore, research works from 2016 to 2019 mostly focus
on studying test data generation algorithms and testing ap-
proaches. While papers from 2009 to 2015 mainly argue the
safety problem of intelligency system and designing datasets
for new application environments.

B. Collection Results

1) Researchers and Organizations: We identified 49 co-
authors from 22 different institutions in these 72 publications.
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Fig. 3: Workflow of Artificial Intelligence System Testing

TABLE I: Top 10 Co-authors on AIS Testing

Author Institution Papers

Huang Xiaowei University of Liverpool, UK 7
Goodfellow Ian Google Brain, USA 7
Kwiatkowska Marta University of Oxford, UK 5
Sun Youcheng University of Oxford, UK 3
Papernot Nicolas Pennsylvania State University, USA 3
Hinton Geoffrey University of Toronto, CAN 3
Kurakin Alexey Google Brain, USA 3
Pei Kexin Columbia University, USA 3
Liu Yang Nanyang Technological University, SG 3
Ma Lei Harbin Institute of Technology, CHN 3

TABLE II: Geographical Distribution of Publication

Country Papers

United States 30
China 10
United Kingdom 7
Switzerland 5
Australia 5
Germany 5
Canada 3
Japan 2
Italy 2
Brazil 1
France 1
India 1

Table I lists the top 10 authors with at least three papers
published. Among which, both Huang Xiaowei and Good-
fellow have 7 papers separately to be the most prolific authors
in AIS testing, since Huang Xiaowei has proposed various
testing methods including DeepCover [29] and DeepConcolic
[32] and Goodfellow made a huge contribution in the area
of artificial intelligence.

2) Geographical Distribution of Publications: We in-
spected the geographical distribution of each publication to
the institution country of its first author. According to the
observation of table II, all 72 papers were from only 12
countries. Among which, the USA and China take more
than half of the publications. By continent, 47.2% of the
papers are from America, 27.8% from Europe, 18.1% from
Asia, and 6.9% from Oceania. This indicates that America,
especially USA, leads the maintream in AI and AIS testing.

3) Publication Venues: The 72 papers reviewed were
published in 33 different venues totally. Table III lists the
top 10 venues with at least two papers about AIS tesing
published. As observed, 34.7% of papers are published by
arXix preprint online. 22.2% of papers are published by the
journals and conferences with the scope of machine learning,
such as 6.9% in CVPR, 2.8% in TNNLS and 2.8% in NIPS.
25% of papers are from the area of software engineering,
such as 4.2% in SP and 2.8% in ASE.

TABLE III: Top 10 Venues on AIS Testing

Venue Papers

arXiv preprint 25
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR)

5

IEEE Symposium on Security and Privacy (SP) 3
International Conference on Computer Aided Verification
(CAV)

3

IEEE Transactions on Neural Networks and Learning Systems
(TNNLS)

2

Advances in Neural Information Processing Systems (NIPS) 2
International Conference on Machine Learning (ICML) 2
International Conference on Automated Software Engineering
(ASE)

2

Communications of the ACM 2

IV. TEST COVERAGE

There already exists various test coverage metrics for
traditional software testing adequacy: statement coverage,
condition coverage, decision coverage and Modified Con-
dition/Decision Coverage (MC/DC). There are also coverage
criteria for software architecture testing, such as component
path coverage with node coverage and edge coverage [33].
However, all the metrics above cannot be used directly to
cover the data flow of AIS testing due to the complexity of
neural network architecture and training process. Researchers
take neuron as the basic coverage unit to conduct both major
function behavior coverage and corner-case behavior cover-
age of neural network [34]. Therefore, we divide the neural
network coverage into three categories from perspective of
granularity:- neuron-level coverage, layer-level coverage and
neuron-pair-level coverage. Table IV lists the fine classes for
individual super class.

A. Neuron-Level Coverage

The neuron-level coverage depends on the output value
of neuron. Thus, the neuron-level coverage can further be
subdivided into activated neuron coverage, k -multisection
neuron coverage, neuron boundary coverage and strong
neuron activation coverage.

1) Activated Neuron Coverage: A neuron is considered
activated if the neuron output is greater than the neuron
activation threshold and makes contribution to neural net-
work’s behaviors including normal function and corner-case
behaviors; Otherwise, the neuron is regarded inactivated
by the input data. Therefore, as shown in Equation 1, the
activated neuron coverage [10], [28] CovANC is the rate of
the number of neurons activated and the number of neurons
in the whole DNN. It is desired to generate a test dataset
to enlarge the number of activated neurons so that with the
neuron coverage increased.
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TABLE IV: Coverage Criteria of Testing DNN

Coverage Criterion Description Application

Neuron-Level Coverage

Activated Neuron Coverage The number of neurons activated in the DNN DeepXplore [28],
DeepTest [10]

k -multisection Neuron Coverage The number of sections covered in k equal sections DeepGauge [34]

Neuron Boundary Coverage The coverage of corner-case regions DeepGauge [34]

Strong Neuron Activation Coverage The coverage of corner-case regions with hyperactive neurons DeepGauge [34]

Layer-Level Coverage Top-k neuron coverage The number of the most active k neurons in each layer DeepGauge [34]

Neuron-Pair-Level
Coverage

Sign-Sign Cover The sign change of neuron ni
l affects the sign of neuron nj

l+1 DeepCover [29]

Distance-Sign Cover The distance change of neurons in layer l affects the sign of
neuron nj

l+1

DeepCover [29]

Sign-Value Cover The sign change of neuron ni
l affects the output value of

neuron nj
l+1

DeepCover [29]

Distance-Value Cover The distance change of neurons in layer l affects the output
value of neuron nj

l+1

DeepCover [29]

CovANC =
nactivated

N
(1)

DeepXplore [28] first introduced the notion of activated
neuron coverage empirically to detect erroneous corner-case
behaviors in deep learning system, and increased neuron
coverage by generating new tests from unlabeled test inputs
to activate more neurons. DeepTest [10] proposed nine image
transformations to simulate real-world environment of self-
driving, and each image transformation can lead to different
neuron coverage with the same input data. Therefore, the
neuron coverage can be increased by combining some of
these image transformations. However, both DeepXplore and
DeepTest require the knowlege of neural network, which
limits the AIS testing a labor-intensive and time-consuming
activity.

2) k -multisection Neuron Coverage: Ma et al. [34] pro-
pose using neuron output value range to distinguish the major
function region and corner-case region since activated neuron
coverage based on neuron output value is computationally
intensive. Therefore, given a neuron n , its output range,
[lown, highn], is denoted as the major function region of
the neuron. To measure how the test dataset T covers the
major function region [lown, highn], this region is divided
into k equal subsections and k > 0. As shown in Equation
2, k -multisection neuron coverage for a neuron n , Covk,n,
is the rate of the number of subsections covered by T and
the total number of subsections, in which x is a test input in
dataset T , φ(x, n) is the output of neuron n with test input
x , and Sni is the set of values in the i -th subsection. The
k -multisection neuron coverage for the neural network N ,
CovKMN , is based on the k -multisection neuron coverage
of all neurons in network, which is defined in Equation 3.

Covk,n =
|{Sni |∃x ∈ T : φ(x, n) ∈ Sni }|

k
(2)

CovKMN =
Σn∈N |{Sni |∃x ∈ T : φ(x, n) ∈ Sni }|

k × |N |
(3)

3) Neuron Boundary Coverage: Though [lown, highn]
is referred to approximate the major function region,
there still exists some cases where neuron output

φ(x, n) /∈ [lown, highn]. In other words, φ(x, n) may
locate in (−∞, lown) or (highn,+∞). Thus, (−∞, lown)∪
(highn,+∞) is referred to as the corner-case region of
neuron n . In this case, to measure how many corner-case
regions are covered by test dataset T , the neuron boundary
coverage CovNBC is the rate of the number of neurons
falling in corner-case region and the toal number of corner
cases as in Equation 4. In which, NUPPER = {n ∈ N |∃x ∈
T : φ(x, n) ∈ (highn,+∞)} is the set of neurons located
in the upper corner-case region, and NLOWER = {n ∈
N |∃x ∈ T : φ(x, n) ∈ (−∞, lown)} is the set of neurons
located in the lower corner-case region. Please note that, the
total number of corner cases of neuron boundary coverage
is equal to 2× |N |, because (−∞, lown) and (highn,+∞)
are mutally exclusive and neuron cannot fall in two regions
at the same time.

CovNBC =
|NUPPER|+ |NLOWER|

2× |N |
(4)

4) Strong Neuron Activation Coverage: Note that, hyper-
active corner-case neurons affect the training of DNN sig-
nificantly. Therefore, it is essential to measure the coverage
of hyperactive corner-case neurons. That is, the coverage
of upper corner-case region which is denoted as strong
neuron activation coverage. Similar to the neuron boundary
coverage, strong neuron activation coverage is the rate of the
number of neurons falling in the upper corner-case region and
the total number of corner cases as in Equation 5.

CovSNA =
|NUPPER|
|N |

(5)

B. Layer-Level Coverage

Since hyperactive neurons determine the major function
behaviors of neural network, Ma et al. [34] further investigate
the neuron coverage from the perspective of top hyperacive
neurons in each layer. Therefore, an effective input test
dataset should cover more and more hyperactive neurons.
Given test input x , neuron n1 and n2 in the same layer, if
φ(x, n1) > φ(x, n2), then n1 is more active than n2 . Here,
the top-k neuron coverage is designed to measure how many
neurons are activated as the most k neurons in each layer by
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the input test dataset T . As shown in Equation 6, topk(x, i))
is the set of first k neurons which are ranked descendingly
with their outputs.

CovTKN =
| ∪x∈T (∪1≤i≤ltopk(x, i))|

|N |
(6)

C. Neuron-Pair-Level Coverage

Both neuron-level and layer-level coverage take neurons
as characterization of the behaviors of neural network, but
these two coverage metrics overlook the propagation of
changes between neurons from adjacent layers. Inspired by
the MC/DC criterion, Sun et al. [29] propose the neuron-
pair-level coverage by taking α = (nil, n

j
l+1) as the neuron

pair, in which nil is a neuron regarded as a condition in
the l -th layer and njl+1 is a neuron regarded as a decision
in the (l + 1)-th layer. Hence, neuron-pair-level coverage is
presented to inspect the influence of neurons in the l -th layer
on neurons in the (l + 1)-th layer, which is essentially used
to measure the influence of neuron changes on the network’s
output.

The change of neuron nkl when given two test inputs x1
and x2 could be a sign change (denoted as sc(nkl , x1, x2)),
value change (denoted as vc(g, nkl , x1, x2), and g is a val-
ue change function), and a distance change (denoted as
dc(h, l, x1, x2), and h is a distance change function) for
neurons in the l -th layer. Therefore, given the neuron pair
α = (nil, n

j
l+1), two test inputs x1 and x2, the neuron-pair-

level coverage is divided into the following four categories.
1) Sign-Sign Cover: The sign change of condition neuron

nil and signs of other neurons in the l -th layer not changing
affect the sign of decision neuron njl+1 in the next layer.
That is, if sc(nil, x1, x2) ∧ ¬sc(nkl , x1, x2) ∧ (k 6= i) ⇒
sc(njl+1, x1, x2), we say that (nil, n

j
l+1) is sign-sign covered

by x1 and x2 which is denoted as covSS(α, x1, x2).
2) Distance-Sign Cover: The small distance change of

neurons in the l -th layer can cause the sign change
of decision neuron njl+1 in the next layer. Namely, if
dc(h, l, x1, x2) ⇒ sc(njl+1, x1, x2), we say that (nil, n

j
l+1)

is distance-sign covered by x1 and x2, denoted as
covhDS(α, x1, x2).

3) Sign-Value Cover: Similar to sign-sign cover, the sign
change of condition neuron nil and signs of other neurons
in the l -th layer not changing affect the value of decision
neuron njl+1 in the next layer. That is, if sc(nil, x1, x2) ∧
¬sc(nkl , x1, x2) ∧ (k 6= i) ⇒ vc(g, njl+1, x1, x2) , we say
that (nil, n

j
l+1) is sign-value covered by x1 and x2, denoted

as covgSV (α, x1, x2).
4) Distance-Value Cover: Similar to distance-sign cover,

the small distance change of neurons in the l -th layer leads
to the value change of decision neuron njl+1 in the next
layer. Namely, if dc(h, l, x1, x2)⇒ vc(g, njl+1, x1, x2), then
(nil, n

j
l+1) is distance-value covred by x1 and x2, denoted as

covh,gDV (α, x1, x2).

V. TEST DATA GENERATION

During training procedure, some common datasets are
used as the training sets to compare the training performance
of different training models. During testing procedure, the
testing data included in the common datasets is used to

measure the training effectiveness and correctness of intel-
ligence sytem. Thus, both training and testing procedures
are data-driven. Since the AIS may output different labels
for inputs with high similarity, generating test data that can
cover not only major function behaviors but also corner-case
behaviors becomes an indispensable activity in intelligence
system testing. As shown in table V, there are mainly five
algorithms proposed for test data generation since 2013.
Below we will introduce each algorithm in detail.

A. Adversarial Examples

Adversarial examples are test data generated with small,
even imperceptible, perturbation on the original test inputs,
which cause the network under test to misclassify it [8], [22],
[35]–[37]. As followed is the formal definition of adversarial
example.

Definition 1 (Adversarial Examples). Given neural network
f : x → y, x ∈ Rn, y ∈ Rm, where yi is the confidence of
input x classified as label i, and C(x) = arg max

i
yi is the

label i with the largest confidence yi for input x. Assume
C(x) is the correct label, and x

′
is a test input very close

to x. If C(x) 6= C(x
′
), then x

′
is the adversarial example.

Following Definition 1, neural network is vulnerable to ad-
versarial perturbation, and adversarial examples are regarded
as effective means to attack network. Therefore, debuggers
can detect erroneous behaviors of intelligence system by
adversarial examples and enhance the robustness by re-
training the intelligence system against adversarial examples.

Szegedy et al. [8] propose to generate test data by using the
box-constrained L-BFGS to solve the following minimization
problem under the condition of f(x

′
) = l. Equation 7 hopes

to minimize the distance between x and x
′
, L2 =‖ x−x′ ‖22,

and the loss function lossf,l(x
′
) for the generated test data

x
′

also labeled as l.

Minimization c· ‖ x− x
′
‖22 +lossf,l(x

′
) (7)

To generate adversarial examples in a quick way, Goodfel-
low et al. [38] have presented the Fast Gradient Sign Method
(FGSM) based on the norm L∞. As shown in Equation 8, the
adversarial example x

′
depends on the single-step ε and the

gradient sign of loss function lossf,t(x), which determines
the direction that increases the probability of the targeted
class t.

x
′

= x− ε · sign(∇lossf,t(x)) (8)

However, the adversarial examples generated from FGSM
may not be with the smallest perturbation. Therefore, to
improve the accuracy of adversarial examples, Kurakin et al.
[39] proposed the Basic Iterative Method (BIM) by replacing
single-step ε in FGSM with multiple smaller steps α and
minimizing the loss funtion for directed at the targeted
label t. Equation 9 indicates that the adversarial example
generated from the i-th step depends on that from the last
step iteratively.

x
′

i = x
′

i−1 − clipε(α · sign(∇lossf,t(x
′

i−1))), x
′

0 = 0 (9)
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TABLE V: Algorithms of Test Data Generation

Algorithm Description Feature Year

Adversarial Examples Generate test data with imperceptible perturbations to the
input

blackbox & whitebox 2013

Generative Adversarial Examples Generate test data using generative adversarial nets blackbox 2014

Metamorphic Testing Based Strategy Generate follow-up test data with the noise from the meta-
morphic relation

blackbox 2009

Concolic Testing Based Strategy Generate test data with the smallest distance to the input by
the actual execution and symbolic execution

whitebox 2018

Synthesis Approach Generate test data by changing the modification space blackbox 2017

Kurakin [40] further proposed the Iterative Least-likely
Class Method (ILCM) by taking the target label with the
least likelyhood that is the most difficult to attack rather than
the label with the most possibility in BIM. DeepFool [41]
also generates the smallest adversarial perturbation based on
L2 to make the adversarial image reach the other side of the
classifier’s boundary iteratively until misclassification. Thus,
DeepFool is as fool as FGSM but with smaller perturbation.

Since image classification varies with the change of each
pixel and the great influence increases the possibility of target
classification, Papernot et al. [42] proposed the Jacobian-
based Saliency Map Attack (JSMA) to obtain a saliency
map, which indicates the influence of each pixel on target
label classification. Therefore, we can generate adversarial
example with small perturbation by changing pixels with the
greatest influence.

To get an adversarial image with less distortion on the
seeded image, Carlini and Wagner [43] proposed applying
three distance metrics:- L0, L2 and L∞ norms to have a
target attack on neural network. Su et al. [44] presented an
extreme method to generate adversarial image by changing
only one pixel of the seeded image.

As introduced above, most of these algorithms generate
specific perturbation for the specific image which leads to
adversarial example generation computationally intensive.
The universal perturbation [45]–[47] is proposed for the mis-
classification of entire test dataset instead of misclassifying
one specific test case. That is, the same perturbation can be
used for different original images even other neural networks
with similar architecture (denoted as double universal) [45].
UPSET [46] generates universal perturbation according to the
target label, as which any perturbed image can be recognized.
In other words, the adversarial examples are generated from
the same perturbation and recognized as the same target
label. However, the universal perturbation is training data
dependent as the universal perturbation updates according
to the amount of training data. To solve this problem,
Mopuri et al. [47] propose the universal perturbation in
absence of training data, named data independent universal
perturbation, which is used to fool the learned features and
misclassify the majority of data samples.

Besides the approaches mentioned above, there also exist
some other algorithms for adversarial example generation.
Cisse et al. [48] replace the task loss function with a
surrogate loss function, Houdini, which converges to the
task loss eventually. Then similarly, adversarial examples
are generated based on the gradient of Houdini. Baluja et
al. [49] propose the Adversarial Transformation Networks

(ATNs), which are trained to generate adversarial examples
by solving a joint loss function including the input-space
loss function and output-space loss function. The input-space
function aims at minimizing the difference between original
input and perturbed example. The output-space function aims
at maximizing the probability of fooling the network with the
target class. Since some adversarial examples can transfer
among small scale datasets, Liu et al. [50] use an ensemble-
based approach to generate non-targeted and targeted adver-
sarial examples that transfer over different large models and
large scale datasets. That is, the adversarial example x

′
from

k models can fool the (k + 1)-th model as well. Therefore,
the ensemble-based approach is an optimizer-based problem
as Equation 10, in which αi is the ensemble weights, fi
is the i-th model, t is the target class. The traditional
adversarial examples are considered to fool computer vision
but not human visual system with subtle perturbations. To
attack and fool human eyes, Elsayed et al. [51] propose
to generate adversarial examples transfering from machine
learning model to human visual system using ensemble-
based approach as well.

arg min
x′
−log((Σki=1αifi(x

′
)) · 1t) + λd(x, x

′
) (10)

B. Generative Adversarial Examples

The Generative Adversarial Nets (GAN) [9], including
a generative model G and a discriminative model D, are
proposed to generate samples by learning and try to fool the
discriminative model. The purpose of generative model is
producing samples by learning the training data distribution
that cause the discriminative model making a mistake. And
the discriminative model must determine whether the input
sample is from training data or generative model G. As
shown in Equation 11, the generator G(z) learns distribution
from data x by the input noise pz(z), D(x) is the probability
of x from the training data rather than G(z). In other words,
D is trained to maximize the probability of recognizing
x from the training data, while G is trained to minimize
log(1 − D(G(z))). Thus, GAN is used as a fundamental
approach to generate test data with high quality and close to
the natural data as well [9], [52], [53].

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1−D(G(z)))]
(11)
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C. Metamorphic Testing Based Strategy

Metamorphic testing (MT) [31], [54], [55] is an approach
to alleviate the test oracle problem by using the certain
property of program instead of comparing the expected
output with the actual output since some expected outputs
are expensive to compute. Such a property is referred to
as the metamorphic relation (MR) of the program function.
Metamorphic relation is the relationship between multiple
inputs and outputs that should be satisfied by the correct
program. That is, given the program under test P , source
test case ts, source output os. Then generate the follow-up
test case tf and its corresponding output of . If ts, os, tf
and of do not satisfy the relevant MR, the program P is
incorrect. If they satisfy the MR, P is considered containing
no faults under this testing. As described above, MT is also
used as a strategy of test case generation since it generates
the follow-up test cases according to the source test cases
and related MRs.

MT has already been applied on machine learning classifi-
er testing since 2009 by employing the MRs of permutation,
addition, duplication and removal of attributes, samples and
labels [56], [57], which are used to generate follow-up test
cases. To test DNN-based self-driving system, DeepTest [10]
takes the property that the output steering angle should keep
unchanged under different real-world driving environments
as the metamorhpic relation to generate new test cases
and determine whether the self-driving system satisfies the
MR. Nine transformation based MRs:- changing brightness,
changing contrast, translation, scaling, horizontal shearing,
rotation, blurring, fog and rain against the original natural
images are used to mimic real-world weather conditions
and generate follow-up images for the weather effects. In
addition to the weather influence on the self-driving system,
Zhou et al. [11] investigate the effect of noise outside of
the drivable area on the obstacle perception inside of the
drivable area. The drivable area is referred to as the region
of interest (ROI). Given two frames of 3D point cloud data
As and Af , and two frames are identical except that Af
contains some data points outside the ROI. After executing
the obstacle perception system, the Os and Of will be the
sets of obstacles identified in As and Af respectively. Then
the MR of obstacle perception system is that the noise in the
region outside ROI would not cause the obstacles inside ROI
undetectable. That is, if As ⊆ Af , then Os ⊆ Of . Therefore,
when given As, the follow-up test case Af will be obtained
according to this MR.

D. Concolic Testing Based Strategy

Concolic testing is an integration of concrete execution
and symbolic execution [58]. The program is executed with
some concrete input values, and then solve the symbolic
constraints collected for each conditional statement to cover
other execution paths uncovered by concrete inputs. Thus,
new test case variants from concrete inputs are generated
during the constraint solving procedure. Inspired by this,
Sun et al. [32] leverage concolic testing on DNN testing
to generate adversarial examples with high coverage, named
DeepConcolic. Given a DNN under test, a set of coverage
requirements <, an unsatisfied requirement r, the initial test
suite T . In the phase of concrete execution, a test input t ∈ T

is identified to satisfy requirement r. Then, in the phase of
symbolic execution, a new test input t

′
close to one of the

test input t
′′

from T is generated to satisfy requirement r.
That is, ∃t′′ ∈ T , ‖ t′′ − t′ ‖6 d and t

′
satisfies r, then t

′
is

added to the test suite T . Repeatedly generating t
′

until all
requirements are satisfied or no more requirements in < can
be satisfied.

E. Synthesis Approach

Dreossi et al. [59] propose an image generator by syn-
thesizing realistic images from lower dimension images to
test car classification in autonomous vehicle system. They
first define a modification space including object configura-
tions (e.g. road backgourd, cars) and image parameters (e.g.
brightness, contrast, saturation) for the original images. Then
sample the modification points from the modification space
as inputs of image generator to synthesize new images with
new road scenarios. These synthetic images consequently are
used to detect faults in the car classification subsytem.

VI. TESTING APPROACH

The application of machine learning on embedded systems
leads to challenges on testing the safety, correctness and
robustness of intelligence systems [5]–[7], [14]–[18], [60],
[61]. The safety indicates the measures for ensuring system
or personal safety when illegitimate attacks occur. The cor-
rectness represents the probability of correct behaviors. The
robustness reflects the influence of pertubations on system’s
functional behaviors. Researchers have investigated various
testing techniques to test the properties of intelligence system
mentioned above, including adversarial attack, mutation test-
ing, metamorphic testing and test prioritization techniques
as shown in table VI. Since formal verification is also an
effective approach to assure these properties of intelligence
system, we also briefly discuss the relevant techniques of
formal verification in this section.

A. Adversarial Attack

Neural network is found vulnerable to imperceptible per-
turbations [8]. In other words, the adversarial examples
are misclassified with high confidence by a trained neural
network. Therefore, adversarial attack can be regarded as
a powerful method to detect defects in intelligence systems
[62]. Adversarial attack is a procedure of adversarial example
generation, which has been discussed in Section V-B. We will
review the categories of adversarial attack with regard to the
output label and distance metric.

1) Targeted and Non-Targeted Adversarial Attack: Ac-
cording to the classification results for individual adversarial
example, adversarial attack is divided into two categories:
targeted and non-targeted adversarial attack [22], [53].
Targeted attack indicates that the input adversarial example
is misclassified as a specific label, while non-targeted attack
indicates that the input adversarial example is assigned as
any label not equal to the correct one. That is, following
Definition 1, given the neural network f , original input
x, the related adversarial example x

′
, and labels C(x)

and C(x
′
) recognized for input x and x

′
respectively. If

C(x) 6= C(x
′
), this attack is said to be the non-targeted

attack. If C(x) 6= C(x
′
) and C(x

′
) = ltarget, where ltarget
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TABLE VI: Summarization of Testing Approaches

Testing Approach Description Advantage Disadvantage Year

Adversarial Attack Reveal the defects in DNN by executing
adversarial examples

Attack the neural network easily Computationally intensive 2013

Mutation Testing Evaluate the testing adequacy Generate mutants by mutating
training data, training program and
trained model

Computationally intensive 2018

Metamorphic Testing Determine the system correctness by
checking whether the metamorphic re-
lation is satisfied

Blackbox Difficult to identify the MRs thor-
oughly

2009

Test Prioritization Measure the correctness of classifica-
tion by the purity of test data

Reduce the cost of mannual label-
ing

Time cost in running and comput-
ing all of test inputs and the purity
individually

2019

is the specific label, this attack is said to be the targeted
attack.

2) Distance Metric: Since adversarial example is required
close to the original input, the adversarial attack can also
be mainly divided into three categories according to the
distance metric Lp-norm: L0-norm attack, L2-norm attack,
and L∞-norm attack [43], [63]. Following the definition of
Lp-norm in Equation 12, L0-norm, L2-norm and L∞-norm
are as shown in Equation 13, Equation 14 and Equation
15. L0 indicates the number of changed feature data in
the original input. As a result, L0-norm attack is used to
minimize the number of features perturbed and generate
new feature data against the target label. L2 equals the
Euclidean distance between original data and adversarial
example. Less L2 indicates a smaller perturbation between
the individual feature data and a high similarity between
original data and adversarial example. Hence, L2 is also used
to solve the problem of overfitting in adversarial example.
L∞ represents the maximum difference among all feature
data, which is utilized to control the maximum perturbation
between original data and adversarial example.

Lp =‖ x− x′ ‖p= (Σni=1|xi − x
′

i|p)
1
p (12)

L0 = Σni=1|xi − x
′

i|0 (13)

L2 =
√

Σni=1|xi − x
′
i|2 (14)

L∞ = max(|x1 − x
′

1|, |x2 − x
′

2|, · · · , |xn − x
′

n|) (15)

B. Mutation Testing

Mutation testing is a method to measure test adequacy
of a test suite by injecting faults in the original program
under test, namely mutants [64]. The ratio of the number of
mutants detected and the total number of mutants is referred
to as the mutation score. The higher the mutation score is,
the stronger the fault detectability of test suite is. That is,
given a test suite T , a program under test P , and m mutants
of P , P

′
= {P1, P2, · · · , Pm}. Execute mutants on the test

suite, if there are n mutants killed by T , the mutation score
will be n/m which indicates the fault detectability of test
suite T .

Motivated by mutation testing, Shen et al. [12] propose five
kinds of mutation operators according to the architecture of
neural network, including deleting neurons in the input layer
and hidden layers, changing the bias, weights and activation
functions. A mutant neural network is said to be killed once
its output is distinct from the output of the original network.
The more mutants networks are killed indicating a powerful
test suite for DNN testing.

Since a trained model is obtained from the training pro-
gram and training data, Ma et al. [13] propose a further
study on mutation testing of deep learning system from
two perspectives. One is generating mutant trained models
based on the source-level mutation operators on the training
data or training program. That is, given an original training
dataset D, original training program P , a trained model M
by training P on D, then generate mutant data D

′
with

five data mutation operators and mutant program P
′

with
three program mutation operators. After training program
P on mutant data D

′
or training mutant program P

′
on

data D, the mutant trained models M
′

are obtained. Which
are evaluated against the test data T for its test adequacy.
Another one is generating mutant trained models directly
based on the model-level mutation operators on the original
trained model. Given an original training dataset D, original
training program P , a trained model M by training P on
D, then create mutant trained models M

′
by utilizing eight

model-level mutation operators on M . Similarly, analyze the
test adequacy of test data T by executing M

′
on T .

C. Metamorphic Testing
As discussed in Section V-C, metamorphic testing deter-

mines the correctness of software under test by checking
whether the related metamorphic relations are satisfied or
not. Thus, it is a fundamental activity identifying diverse
metamorphic relations to evaluate their capability of fault
detection and the quality of software.

Tian et al. [10] have explored nine transformation based
MRs, including changing brightness, contrast, translation,
scaling, horizontal shearing, rotation, blurring, fog and rain
on the images to test the robustness of autonomous vehicles.
Take images from camera as the source images, and create
the follow-up images by one or more transformation MRs
on source images. The DNN under test takes source and
follow-up images as inputs respectively, and outputs the
source and follow-up steering angles under different real-
world weather conditions, namely θs = {θ1s , θ2s , · · · , θns },
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θf = {θ1f , θ2f , · · · , θnf }. Strictly speaking, the steering angles
should keep unchanged under these tranformations. That is,
θs = θf . However, a small variation of steering angles, θ̂ =
{θ̂1, θ̂2, · · · , θ̂n}, in real-world driving environment would
not affect the driving behaviors. Thus, the variations within
the error ranges could be allowed as shown in Equation 16,
in which MSEorig = 1

nΣni=1(θ̂i − θis)2.

(θ̂i − θif )2 6 λMSEorig (16)

D. Test Prioritization

The general procedure of testing DNN-based system is
executing DNN-based system against a test dataset with
manual labels and inspecting whether the each learned label
and manual label are identical, during labeling each test case
before testing is a labor-intensive activity.

To reduce human effort on data labeling, Shi et al. [65]
propose a test prioritization techinique, DeepGini, to detect
erroneous behaviors by converting the problem of misclassi-
fication to the problem of impurity of test dataset, which can
determine whether the input test case is misclassified by its
impurity without the need of labels. Take binary classification
as example, given a test data t, the output feature vector
B = {c1, c2}, then execute DNN to compute the probability
of each feature for t. If the probability classified as c1 is
Pc1 = 100%, and c2 is Pc2 = 0, then the feature vector B
has the highest purity and t is more likely to be classified
correctly. In contrast, if Pc1 = 50%, Pc2 = 50%, then B has
the lowest purity, and t is more likely to be misclassified.
ξ(t) is defined as the metric of impurity and the likelihood
of t being misclassified. As shown in Equation 17, pt,i is the
probability of test case t being classified as class i. A lower
p2t,i indicates a higher impurity and a higher likelihood to
misclassify t. Therefore, DeepGini can reveal the incorrect
behavior by only executing the test dataset without labeling
them manually.

ξ(t) = 1− ΣNi=1p
2
t,i (17)

VII. FORMAL VERIFICATION

Testing is an essential activity for detecting the erroneous
behaviors of intelligence sytems, and various kinds of testing
techniques have been investigated for testing the robustness,
testing adequacy and decreasing test cost. Besides the above-
mentioned testing techniques, there exist a small portion of
formal verification studies to ensure the safety of intelligence
systems by solving the satisfiability problem [26], [61],
[66]–[68], non-linearity problem [60], [69]–[71], symbolic
interval analysis [72], reachability analysis [73], and abstract
interpretation [74], [75].

A. Satisfiability Solver

Huang et al. [61] reduce the safety verification of a image
classifier to the correct behavior satisfiability which can
search for adversarial examples if misclassifications exist.
Given a neural network N , an input image x, a region η
round x with the same class. N is said to be safe for input x
and η if the classification of images in η is invariant to x. That
is, N, η � x. In more depth, modify the input image x with a

family of manipulations ∆, N is said to be safe for input x,
η and manipulations ∆ if the classification of region η keeps
invariant to x under manipulations ∆, namely N, η,∆ � x. If
N, η,∆ 2 x, then the image classifier is vulnerable to these
manipulations or adversarial perturbations.

B. Non-linear Problem

The formal verification of safety is also specified to
prove the counterexample not exist for the set of variable
constraints to make the property always true [60]. Since some
activation functions are non-linear, the formal verification is
transformed into a Mixed Integer Program (MIP) with the
value of binary varibales δa, where δa = {0, 1}. The binary
varibale δa indicates the phase of activation function ReLU.
If δa = 0, say the activation function is blocked and the
output of related neuron will be 0; Otherwise, the activation
function is passing and the output of related neuron will be
equal to its input value.

C. Symbolic Interval Analysis

ReluVal [72] utilizes the symbolic interval arithmetic to
obtain the accurate range of DNN’s output according to the
ranges of input variables. Given an input range X , sub-
intervals of X and security property P . Say DNN is secure
if no value in range X and its sub-intervals violate property
P , that is, any value from range X satisfies P ; Otherwise
DNN is insecure if there exists one adversarial example
in X violating P , that is, there exists at least one sub-
interval containing an adversarial example to make property
P unsatisfied.

D. Reachability Analysis

To eliminate the limitation of network scale for formal
verification, Ruan et al. [73] propose to transform safety
verification into reachability analysis. If all values in the
output range, the lower and upper bounds [l, u], correspond
to an input in input subspace X

′ ⊆ [0, 1]n, then the
network f is reachable and the reachability diameter is
D(X

′
; f) = u(X

′
) − l(X

′
). The network f is said to be

safe w.r.t the input x ∈ X
′

if all inputs in X
′

have the
same label to x, as shown in Equation 18. Furthermore, the
network f is more robust than network g given the input
subspace X

′
if D(X

′
; f) < D(X

′
; g). And X

′
leads to a

more robust network f than X
′′

if D(X
′
; f) < D(X

′′
; f).

∀x
′
∈ X

′
: arg max

j
cj(x

′
) = arg max

j
cj(x) (18)

E. Abstract Interpretation

Since the scales of input data and neural network are
extremely tremendous, it is infeasible to verify whether
individual input satisfies the safety properties precisely.
To overcome this obstacle, an abstract domain is used
to approximate the concrete domain and verify the safety
properties against abstract domain directly, referred to as
the abstract interpretation theory [76], [77]. The computing
efficiency is obtained by cutting down the precision. There
are three types of abstract domains for different precision
requirements, including interval domain, zonotope domain
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TABLE VII: Summarization of Formal Verification Techniques

Verification Technique Description Advantage Disadvantage Year

Satisfiability solver Transform the safety verification to sat-
isfiability solving problem

Verify the safety based on a region
around a data point

Limitation of image complexity
and network scale

2017

Non-linear problem Transform the safety verification to
non-linear problem

Propose a new benchmark PCAM-
NIST

Approximation of each sub-domain 2017

Symbolic interval analysis Verify the security by analyzing sym-
bolic interval

Compute rigorous bounds of DNN
output

Lack of rigorous behavior analysis
of hidden neurons

2018

Reachability analysis Transform the safety verification to
reachability problem

Work with large scaled networks Expensive cost on running time 2018

Abstract interpretation Transform the robustness verification to
abstract interpretation

Trade-off between precision and s-
calability

More precise domains increase the
running time

2018

and polyhedra domain, among which the interval domain
brings the lowest precision and polyhedra domain leads to
the highest precision. Therefore, considering both precision
and efficiency, AI2 [74] and DiffAI [75] propose employing
the zonotope domain to represent the abstract elements in
neural network and outputing the abstract elements in each
layer. Finally determine the safety of network by verifying
whether the label of abstract output in the output layer is
consistent with that of the concrete output.

To improve the precision and efficiency of DNN safety
verification, Yang et al. [78] propose a symbolic propagation
method based on the abstract interpretation by representing
the values of neurons symbolically and propagating them
from the input layer to output layer forwardly. Given a
network f , input X0, activation function ReLU, they first
transform the concrete input layer to interval domain by
abstract transformer function, and then the output of each
neuron will be y = ReLU(Σki=1wici + b) where ci is
a symbolic variable. Finally, compute the range of output
layer by the interval abstract domain based on the symbolic
representation of output layer. Note that this output range is
more precise than the range from only the interval domain
without the symbolic propagation.

VIII. COMMON DATASETS

Intelligence system has been used in various safety- and
mission-critical systems, and it is essential to design a dataset
adaptive for diverse application scenarios to conduct the
training and testing procedure. There already exist many
datasets for training and testing different intelligence systems
such as the Enron dataset for natural language processing
[79], Speech Commands for speech recognition [80], [81],
Drebin [82] and Mobilesandbox [83] for Android malware
detection [84]. In this section, we primarily introduce two
kinds of popular datasets for image classification and self-
driving. As shown in table VIII, the first six datasets,
including training data, test data and corresponding labels,
are datasets common used for image classification, and the
last four datasets are used for objects detection subsystem in
self-driving.

A. Datasets for Image Classification

MNIST [85], [86] is a dataset for recognizing handwritten
digits (0∼9) including 70,000 images originating from the
NIST database [87]. The MNIST dataset is composed of a

training dataset with 60,000 images and a test dataset with
10,000 images, and each of which contains half of clear digits
written by government staff and half of blurred digits written
by students. EMNIST [88], [89] is an extension dataset
of MNIST for identifying handwritten digits (0∼9) and
letters (a∼z, A∼Z). Therefore, there are totally 62 classes
in EMNIST, including 10 classes of digits and 52 classes of
letters. However, some uppercases and lowercases can not
be distinguished easily (e.g. C and c, K and k), the letters
are merged into 37 classes. Fashion-MNIST [90], [91] is a
dataset with the extremely same format and size of MNIST
for identifying 10 classes of fashion products, such as T-
shirt, trouser, pullover, dress, coat, sandals, shirt, sneaker,
bag and ankle boots. ImageNet [92], [93] is an image dataset
describing the synsets in the WordNet hierarchy with on
average 1000 images. CIFAR-10 and CIFAR-100 [94] are
labeled image datasets consisting of 60,000 32×32 color
images, 50,000 of which are training images and 10,000 are
test images. CIFAR-10 is divided 10 classes, and there are
5000 training images and 1000 test images for each class.
Similarly, CIFAR-100 is divided 100 fine classes, and each
class contains 500 training images and 100 test images.

B. Datasets for Self-Driving

Udacity Challenge dataset [95] is a set of images for
training and testing the objects detection models in the
Udacity Challenge competition to measure the performance
of each participated model in terms of detection capability
and classification precision. The Udacity Challenge dataset
contains two parts according to its classification. One consists
of 9420 images in three classes:- car, truck and pedestrain;
Another consists of 15,000 images in five classes: car,
truck, pedestrain, traffic light and bycicle. MSCOCO 2015
[96], [97] is a dataset gathered from the daily scenes of
common objects in the real-world environment, which aims
at object recognition and localization. This dataset contains
165,482 training images, 81,208 verification images and
81,434 testing images in 91 classes, such as animal, vegetable
and human. KITTI dataset [98]–[100] contains the realistic
images captured from the real-world driving environments
such as mid-size city, rural area and highway. All these
images are divided into five classes, including road, city,
residence, campus and human, for evaluation tasks like stero,
optical flow, visual odometry, object detection and tracking.
The Baidu Apollo [101] open platform provides the mas-
sive annotation data and simulation for training and testing
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TABLE VIII: Common Datasets

Dataset Description Input Format Class# Training Data#/Test Data#

MNIST Identify handwriting digits 28×28 gray image 10 60,000 / 10,000

EMNIST Identify handwriting digits and letters 28×28 gray image 10 (by digits) /
37 (by letters)

60,000 / 10,000

Fashion-MNIST Identify costume 28×28 gray image 10 60,000 / 10,000

ImageNet 2012 Describe synsets from WorldNet with image datasets Images from internet 1000 1200,000 / 100,000

CIFAR-10 Identify real-world images in 10 classes 32×32 color image 10 50,000 / 10,000

CIFAR-100 Identify real-world images in 100 classes 32×32 color image 100 50,000 / 10,000

Udacity Challenge Object identification datasets used in Udacity Challenge 1920×1920 color image 12 24,000

MSCOCO 2015 Common objects identification image 91 328,000

KITTI Multiple driving environments for self-driving testing image 5 15,000

Baidu Apollo Multiple driving environments for self-driving testing 3382×2710 image 26 116.6GB

autonomous driving tasks, such as obstacle detection and
classification, traffic light detection, road hackers, obstacle
trajectory prediction and scene analysis under different street
view and vehicle movement images.

IX. CONCLUSION AND FUTURE WORK

Since machine learning plays a fundamental role in safety-
critical intelligence systems, it is necessary to ensure the
safety, robustness of machine learning based intelligence sys-
tems. We have defined the workflow of intelligence system
testing and provided an overview of intelligence system test-
ing techniques in terms of testing coverage metric, test data
generation, testing approaches, formal verification techniques
and common datasets, which aims at building a standard
testing framework for intelligence system testing. However,
there still exist the following opportunities in intelligence
system testing because of the increasing development of
machine learning and system scale.

1) Test coverage. Since intelligence sytem has been em-
bedded in more and more application areas, training
and testing procedure should be enhanced to adapt to
different systems which leads to more complex net-
works. Thus, this is the first opportunity to increase the
testing coverage on different scaled intelligence systems
with regard to the traditional software testing coverage
metrics.

2) Test dataset. Both training and testing are data-driven,
the datasets with huge size are needed to improve the
testing adequacy for different environments or scenarios.
Enormous test data involves powerful computing ability
and expensive computing cost. Therefore, this is the
second opportunity to design a dataset with relatively
smaller size to test various scenarios.

3) Testing object. Intelligence system testing currently
focuses on assuring the system safety and robustness.
This is the third opportunity to test more properties
for machine learning system including efficiency and
interpretability.

4) Interpretability of AI system. After erroneous behaviors
are detected in the testing process, testers can explain
the occurrence by locating suspicious neurons and fea-
ture data. Therefore, this is the fourth opportunity to
investigate the interpretability of AI system.
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