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Abstract— Matching cost aggregation is one of the oldest and 

still popular methods for stereo correspondence. While effective 

and efficient, cost aggregation methods typically aggregate the 

matching cost by summing/averaging over a user-specified, 

local support region. This is obviously only locally-optimal, and 

the computational complexity of the full-kernel implementation 

usually depends on the region size. In order to improve 
aggregation accuracy, we propose a segment-tree stereo 

matching method with improved matching costs. A reasonable 

weight for the matching process is assigned by introducing color 

and gradient multi-dimensional information components in 

order to overcome inaccuracies of weak texture regions. Next, 

similar regions are merged, whereby pixel points belonging to 

the same parallax consistency are merged with the 

corresponding generation tree. Finally, depth and color 

information are used for the tree reconstruction, while a 

color-depth weight is adopted in order to enhance the structure 

of the tree. Performance evaluation on 19 Middlebury data sets 

shows that the proposed method is comparable to previous 

state-of-the-art aggregation methods in disparity accuracy and 

processing speed. 

Index Terms—Segment-tree, matching cost, color-depth 

weight, stereo matching 

I. INTRODUCTION 

xtracting three-dimensional information from images is 

key in the field of machine vision. In particular, stereo 

matching is a major research topic within image extraction 

techniques, and has been widely applied in intelligent 

vehicles [1], robots [2], navigation [3], medical diagnosis [4], 

and drones [5]. For binocular parallax matching, the disparity 

value is generally calculated using information extracted 

from the two left and two right frames taken at the same 

horizontal line within the scene. A study by Scharstein 

divided the binocular matching algorithm into a global and 

local algorithm [6] in order to optimize the balance between 

matching accuracy and efficiency. Global algorithms have 

been able to improve results by minimizing the output of the 

energy equations, which tends to be computationally 

complex. Local algorithms, in contrast, are more efficient, 

yet they are less accurate.   

Yang proposed a non-local cost-aggregation algorithm 
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based on bilateral filtering [7]. The algorithm pre-structures 

the entire reference picture into a minimum spanning tree 

(MST) model, and then performs tree-based filtering [8] in 

order to decrease the complexity. However, there is a weight 

unevenness distribution problem in the cost calculation 

process. Mei proposed a segment-tree (ST) stereo matching 

algorithm, an MST variant based on image segmentation, 

whereby segment information is introduced into the 

non-local cost-aggregation framework [9]. More specifically, 

a two-step filtering method updates the cost at the second step 

of filtering. Weight information is adjusted using the depth 

information. In addition, Zhang [10] proposed a cross-scale 

framework to improve existing local and non-local 

aggregation algorithms. In particular, for ST-based 

algorithms, the spanning tree structure is directly determined 

using the image segment strategy. Furthermore, Ma proposed 

the application of a constant time weighted median filter in 

stereo matching, effectively improving the accuracy of image 

edges [11]. A three-dimensional cost-aggregation stereo 

matching algorithm was proposed by Li for multiple 

spanning trees [12]. In particular, the MST does not exhibit 

smoothing and mismatching due to the application of 

three-dimensional coordinates to define disparity maps 

combined with multiple minimum spanning trees and block 

matching [13].  Hamzah proposed a stereo matching 

algorithm for iterative guided filtering and image 

segmentation and combined numerous algorithms to 

determine the optimal matching effect [14]. However, the 

original proposed segment strategy neglects the parallax 

consistency assumption, which inevitably leads to the 

roughness of the initial segment result [15]. 

In the current study, we first calculate the inappropriate 

phenomenon of weight within the weak texture region, and 

introduce the color and gradient multi-dimensional 

information components for the construction of the cost 

function. Moreover, a new grouping strategy is proposed for 

the algorithm framework based on the segment tree. 

Experimental results demonstrate that the proposed method 

obtains optimal matching results while maintaining the time 

efficiency of the algorithm. 

II. IMPROVED METHOD 

A. Improved initial matching cost function  

The Absolute Deviation Gradient (AD-Gradient) 

similarity measure is generally adopted for the matching cost 

function of the traditional spanning tree structure. This 

measure is the first step of the original spanning tree 

algorithm. Assume that  AD

dC p represents the cost of the 
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color component of pixel point p  at disparity d , and 

 GradX

dC p represents the cost of the horizontal direction 

gradient component of pixel point p  at disparity d . Let  

denote the user-defined adjustment factor, which acts as a 

contraint for the color and horizontal gradient components. In 

addition, 
col and

grdx  represent the truncation thresholds 

used to limit the negative effects of outliers for the color and 

gradient components, respectively.  leftI p represents the 

pixel point p  of the left image.  right

iI p  represents the pixel 

point p of the right image. The total cost Cd(p), and the costs 

of the color and horizontal gradient components can be 

expressed as follows:  

       1AD GradX

d d dC p C p C p      ,            (1) 

     
, ,

1
min ,

3

AD left right

d i i coli R G B
C p I p I p 



 
  

 
 ,   (2) 

      min ,GradX left right

d x x grdxC p I p I p    .      (3) 

Taking into account the presence of variations in the 

vertical direction of the scene, combined with the advantages 

of the AD-Gradient method, the matching function can be 

improved with the addition of a new weight component in the 

cost function. Let  GradY

dC p represent the gradient cost amount 

in the vertical direction, and  and  denote the user-defined 

adjustment factors used to constrain the component items. 

The cost of the vertical direction gradient component can be 

determined as follows: 

         1 AD GradX GradY

d d d dC p C p C p C p           (4) 

      min ,GradY left right

d y y grdyC p I p I p    .       (5) 

Fig. 1 presents an experimental comparison of the 

traditional and proposed cost functions applied to the  

Moebius test image. The disparity map results of Fig. 1(c) 

(original cost function) and Fig. 1(d) (proposed vertical 

gradient cost function) demonstrate that the proposed method 

performs better than the original cost function in terms of the 

processing of vertical edge details within the image. 

However, the cost of pixels within insufficient texture 

regions is close to zero. Thus, such pixels make a minimal 

contribution to the cost aggregation process compared with 

regions where the texture is sufficient. In order to overcome 

the defects in the weak texture region, a transformation can 

be performed based on the cost and gradient functions as 

follows:  

   

1

1 d
d C p

C p
e


 


.                                  (6) 

The optimized matching cost function converts the cost of 

pixels that may exhibit zero values in the traditional cost 

function into positive non-zero terms. Equation (6) is a 

monotonically increasing Sigmoid function. Via this 

transformation, the contribution values of pixel points in the 

weak texture region can be raised, thereby allowing for the 

differentiation of different pixel points in the weak texture 

region. Fig. 2 compares the disparity map between the stereo 

matching algorithm and the original algorithm following the 

initial cost function transformation. A comparison of the 

disparity map results of Fig. 2(b) (original cost function) and 

Fig. 2(c) (improved cost function) demonstrates that the 

proposed method has a minimal effect on the strong texture 

region, yet it can effectively deal with the weak texture 

region, thus improving the matching result. 

 

                
(a)                             (b)                       (c)                       (d) 

Fig. 1. (a) Moebius test image, (b) magnified area of test image, (c) contrast 

disparity map of the original cost function method, and (d) contrast disparity 

map of the improved method. 

 

B. Segment tree grouping strategy 

The cost aggregation of the segment tree is based on the 

construction process of the minimum spanning tree, where all 

pixels in the image are connected by edges, and the sum of 

the weights of the edges between connected pixels is 

minimized. This configuration regards the reference image as 

an undirected connected graph, denoted as ( , )G V E . The 

term V  represents a set of pixel points within the image, 

while E  represents a set of edges for each pair of adjacent 

pixels within the image. Let s  and r  be a pair of adjacent 

pixels, then  I s  and  I r  are the color information of pixel 

points s and r  . Its weight 
ew  is determined as follows: 

     ,ew w s r I s I r   .                         (7)  

 

(

a)                           (b)                           (c)   
Fig. 2. Comparison of disparity maps obtained from the cost function 

following optimization. (a) Lampshade test image, (b) original cost function 

method, and (d) improved method. 

 

Yang proposed taking the spanning tree as the minimum 

spanning tree as edges with smaller weights are less likely to 

spin deep edge regions. In order to obtain accurate 

aggregation results, such edges need to be selected during the 

process of the spanning tree construction to determine the 

spanning tree with the smallest sum of edge weights. In the 

minimum spanning tree structure, for any two pixel 

points p and q , only one path existing connects the two 

pixels. The distance  ,D p q  between the two is determined 

by the sum of the edge weights along the path. The similarity 

measure functions for two pixel points p  and q  can then be 

calculated using the distance value as follows:  

   , ,
e E

D p q w p q


 ,                            (8) 

 
 ,

, exp
D p q

S p q


 
  

 
.                      (9) 

where   is a user-defined adjustment factor. By 
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definition, if the colors between two points are closer and the 

distance  ,D p q  is greater, the similarity between the two 

nodes will be lower. In the tree structure, pixels closer to 

point p  or pixels similar to point q  will obtain a greater 

weight.  

The segment tree structure proposed by Mei [9] can be 

divided into three steps, as demonstrated in Fig. 3. Note that 

for simplicity, only six nodes are used in the figure. The three 

steps can be described as follows: 

1) Initialization (Fig. 3(a)): The edges in edge set E  are 

sorted into ascending order according to the defined weights, 

and each node in point set V  is regarded as a graph subtree. 

2) Grouping (Fig. 3(b)): The edge set E is fully scanned, 

and the two subtrees are connected to form a larger new 

subtree, whereby each subtree is the MST of the 

corresponding segment. Let pv and qv  denote the nodes that 

are connected by edge je E , if pv  and qv  belong to 

different subtrees, the weights 
jew  of the edges connected 

between the subtrees satisfy the criteria proposed in the 

literature [16]. More specifically, if  pInt T  and pT  

represent the maximum edge weight and region size in 

subtree pT , respectively, and k  is a constant parameter 

specified by the user, then 
jew satisfies: 

 

   min ,
je p q

p q

k k
w Int T Int T

T T

 
   
 
 

.             (10) 

 

3) Link (Fig. 3(c)): Following the grouping step, a linking 

step is performed whereby subtrees 
pT  and 

qT  are merged 

into a complete ST structure.  

The ST method can be thought of as a segment algorithm, 

as it creates an MST for the entire graph, as well as for each 

segment. It can be inferred that the ST structure directly 

determines the final result of the cost aggregation. This 

means that the grouping step plays an important role in 

building the ST structure. However, the original segment 

algorithm usually performs insufficiently due to several 

limitations. First, k is not able to efficiently control the 

expected region size, resulting in a poor  segment effect for 

the original segment algorithm. The larger the value of k , 

the looser the threshold at the beginning of the grouping and 

the insufficient segment of the depth discontinuity. 

Conversely, for smaller values of k , the initial grouping is 

more efficient, yet it will lead to excessive segments. In this 

case, small segments with too low a pixel value cannot obtain 

the required support weights from adjacent regions. Second, 

increases in the size of region T  result in a sharp decrease in 

the k T term, as well as the ability to distinguish the same 

type of region. Meanwhile, when T increases, the execution 

of grouping decisions is greatly constrained. The original 

grouping method easily divides areas belonging to the 

parallax into different regions. Based on the above 

limitations, a grouping strategy to construct a new ST 

structure is proposed. In particular, we let 0.06k  . The 

proposed optimized method can provide a more constrained 

threshold at the beginning of grouping, as well as a relaxation 

threshold when merging regions. This forces the merging of 

similar regions to better satisfy the different consistency 

assumption as follows: 

 

   

   

log 1 ,
min

log 1
j

p p

e

q q

Int T k T
w

Int T k T

   
 
    
 

.              (11)  
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Fig. 3. Flow of building a segment tree proposed by Mei. (a) Initialization, 

(b) grouping, and (c) link. 

 

C. Enhanced segment based on color and depth information 

The original MST algorithm only uses the color 

information in the edge weight function to construct the tree. 

This leads to the lack of 3D cues in the matching process, 

leading to a greater number of mismatches in the disparity 

map. Based on this, we fuse the depth and color information 

to reconstruct the tree. Moreover, the algorithm is segmented 

a second time by color and depth weights to enhance the 

structure of the tree. Studies have demonstrated that the 

segment effect can be effectively improved [17] when two 

clues are used as features. More specifically, the weight of 

edge e  connected by pixels s  and r  can be 

updated. I normalize I to the range of [0,1], D normalize I 

to the range of [0,1]. We introduce the weight term   to 

balance the proportion of color and depth. Depth image D  

then be determined via Equation (12): 

 

   
 

   
1e

I D

I s I r D s D r
w  

 
  

 
.          (12) 

 

Fig. 4 displays the disparity map results calculated based 

on the color and depth information method. By comparing 

the disparity map results of the initial method (Fig. 4(c)) and 

the method using the depth information component (Fig. 

4(d)), it can be seen that our proposed method is more 

reliable when processing the details in the depth 

discontinuous region. 

 

                  
(a)                                (b)                     (c)                     (d)   

Fig. 4. Disparity map based on color and depth information. (a) Cones test 

image, (b) intercepting enlarged area, (c) initial method, (d) method using 

depth information component. 
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III. RESULTS AND DISCUSSION 

A. Experimental results and performance analysis 

To evaluate the effectiveness of the proposed algorithm, 

experiments were performed using standard test image pairs 

obtained from the Middlebury Data Platform website [18]. 

The test images used in the study were corrected for camera 

distortion using polar line correction. The algorithm was 

implemented using the C++ language on the VS2013 

software platform. The computer specifications are as 

follows: Intel(R) Xeon(R) E3-1226 CPU with a clock speed 

of 3.30 GHz and a memory capacity of 8 GB. The 

experimental results use the image mismatched pixel 

percentage as the evaluation metric of the algorithm. The 

variable R denotes the ratio of mismatched pixels to the total 

number of pixels in the entire disparity map and is calculated 

as follows: 

    
 ,

1
, ,C T d

x y

R d x y d x y
N

   .           (13) 

where N  is the total number of pixel points in the disparity 

map,  ,Cd x y is the disparity value at point  ,x y  on the 

disparity map,  ,Td x y  is the standard disparity value 

corresponding to point  ,x y , and   is the error threshold. 

When the error threshold is equal to 1, the current matching 

point in the disparity map differs from the real disparity map 

by more than one pixel, and the point is set as the mismatched 

pixel. 

Algorithm comparison tests were performed on the 

Tsukuba, Venus, Teddy, and Cones images using four sets of 

standard stereo images from the Middlebury Dataset 

Platform (http://vision.middlebury.edu). The parallax search 

ranges of the four groups of images are [0, 15], [0, 19], [0, 

59], [0, 59], with corresponding parallax scaling scales of 16, 

8, 4, and 4, respectively. Fig. 5 compares the disparity maps 

obtained by the proposed algorithm with algorithms from the 

literature (ST-2, CS-NL, CS-ST and IST-2 algorithms) on 

four sets of test images. The mismatched pixels in the 

non-occlusion regions are marked in red. It can be observed 

that the proposed algorithm exhibits fewer mismatches 

amongst all algorithms. The CS-NL and CS-ST algorithms 

exhibit more error points in the left camera area of the 

Tsukuba image. However, in the bear region of the Teddy 

image, the two aforementioned algorithms, along with our 

proposed algorithm, achieve improved results compared with 

the ST-2 and IST-2 algorithms. In addition, the processing of 

the object edges is more refined. Due to the effective 

information provided by the proposed algorithm cost 

function, the matching results obtained from the weak texture 

region are more accurate compared with the literature 

algorithms. Such regions include the table lamp area of the 

Tsukuba image and the wooden frame area of the Cones 

image.  

Table Ⅰ compares the data of the proposed and literature 

algorithms for an error threshold of 1. All optimal values are 

highlighted in bold. The percentage of the erroneous pixels in 

the Nonocc/All/Disc. regions are used to evaluate the 

performance of the algorithm. The proposed algorithm 

performs best for all regions within the Venus, Teddy, and 

Cones images. This demonstrates the high accuracy of the 

proposed grouping strategy, as well as the effectiveness of 

the processing of edge regions and the resultant smoother 

image. In addition, based on the overall performance of the 

algorithms in the non-occlusion region, the proposed 

algorithm is closer to the disparity value of the corresponding 

region in the real disparity map. Moreover, the disparity map 

obtained in the weak texture region generally exhibits fewer 

mismatch points. 

       

       

       

       
                 (a)                                   (b)                                  (c)                                    (d)                                  (e)                                   (f)                                   (g)                   

Fig. 5. Comparison of four groups of image experiments. Pixels with erroneous disparities are marked in red. (a) Test image, (b) actual disparity map, (c) ST-2 

algorithm disparity map, (d) CS-NL algorithm disparity map, (e) CS-ST algorithm disparity map, (f) IST-2 algorithm disparity map, (g) proposed algorithm 

disparity map. 
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TABLE Ⅰ  

MISMATCH RATE OF LITERATURE AND PROPOSED ALGORITHMS. 

Algorithm 
Tsukuba Venus Teddy Cones 

Avg.Nonocc 
Nonocc All Disc Nonocc All Disc Nonocc All Disc Nonocc All Disc 

ST-2 2.04 2.71 8.96 0.43 1.01 5.35 6.96 13.91 16.53 3.28 11.28 9.34 3.18 

CS-NL 2.96 3.61 10.44 1.62 2.64 12.68 7.47 16.09 19.47 4.72 14.36 13.18 4.19 

CS-ST 3.10 3.84 11.01 1.46 2.56 12.49 7.36 16.15 19.76 4.74 14.50 13.43 4.16 

IST-2 1.68 2.34 7.92 0.41 1.01 5.05 6.84 13.84 16.25 3.22 11.25 9.08 3.04 

Proposed 1.72 2.37 7.99 0.34 0.69 3.98 6.25 13.06 14.83 3.04 10.72 8.61 2.84 

TABLE Ⅱ  

COMPARISON OF ALGORITHM RUNNING TIMES. 

Algorithm Tsukuba Venus Teddy Cones Avg. Time(s) 

ST-2 0.32 0.52 0.99 1.01 0.71 

CS-NL 0.45 0.71 1.42 1.45 1.01 

CS-ST 0.43 0.70 1.29 1.29 0.93 

IST-2 0.31 0.52 0.98 0.98 0.70 

Proposed 0.37 0.61 1.17 1.18 0.83 

 

 

In order to verify the time complexity of the proposed 

algorithm, all algorithms are run on the same configured 

machine. Runtime comparisons for ST-2, CS-NL, CS-ST, 

IST-2 and the proposed algorithms on four sets of standard 

test images are reported in Table Ⅱ . All optimal values are 

highlighted in bold. It can be seen that the ST-2 and IST-2 

algorithms exhibit the fastest execution time, while the 

CS-NL algorithm has the longest execution time. The 

proposed algorithm achieves an equilibrium in terms of time 

efficiency and matching accuracy. The results in Table Ⅱ

demonstrate that although the running time of the proposed 

algorithm is not optimal, a higher matching accuracy is 

observed. Moreover, unlike the ST-2 and IST-2 algorithms, 

the algorithm efficiency is not excessively reduced. 

Further tests were performed on 15 stereo image pairs 

from the Middlebury dataset. Fig. 6 compares the disparity 

map of a portion selected from 15 sets of stereo image pairs. 

There exists a large number of weakly textured regions in 

the Baby1 and Wood1 images. Due to the high similarity 

levels between pixels in this part of the region, ambiguous 

matching is likely to occur during the calculation process. 

The proposed new cost function can effectively provide 

reliable information support for matching and fixing 

incorrect matching points. In addition, thanks to the 

reasonable grouping of the segment tree structure, the 

proposed algorithm can segment similar regions in an image 

at a greater accuracy compared with other regions. It can be  

observed from the disparity maps of the Books and Reindeer 

images that the proposed algorithm exhibits fewer false 

matching points, with smoother and more accurate images 

compared with other algorithms. 

The experimental results are shown in Table Ⅲ , whereby 

only the mismatch rate in the non-occlusion region is 

recorded. All optimal values are highlighted in bold. The 

average mismatch rate of the proposed algorithm is slightly 

lower than that of the CS-BF algorithm. However, the 

proposed algorithm performs better than the CS-BF 

algorithm in several images (e.g. the Aloe and Cloth3 

images). Moreover, the average mismatch rate of the 

proposed algorithm is lower than those of the other 

algorithms. The average mismatch rates of the ST-2 and 

IST-2 algorithms are approximately equal, while the CS-NL 

algorithm performs the worst. Although the proposed 

algorithm performs poorly for several stereo image pairs, it 

outperforms the other algorithms in most stereo image pairs. 

In terms of time efficiency, the ST-2 and IST-2 algorithms 

exhibit faster runtimes compared to the remaining algorithms. 

However, the CS-NL and CS-ST algorithms perform a 

greater amount of cross-scale space calculations, and thus 

complexity levels increase, leading to longer running times. 

According to the experimental results, the proposed 

algorithm is able to produce high-precision disparity map 

results by limiting excessive running times.
 

IV. CONCLUSION 

In the current study, we present a novel matching costs 

method for stereo matching. First, in order to determine a 

reasonable weight distribution in the matching process, 

multi-dimensional color and gradient features are introduced 

to enhance the appearance modeling. In addition, a new 

grouping strategy is proposed to divide the pixels that 

conform to the parallax consistency into the same spanning 

tree. Preliminary results demonstrate the proposed method 

achieves promising results in terms of aggregation accuracy 

and efficiency on the Middlebury dataset. First, we would 

like to test our method with more challenging outdoor stereo 

data sets, such as the KITTI Vision Benchmark [19]. Second, 

we would like to test with various segmentation methods, 

since the performance of the algorithm is closely related to 

the segmentation results. Finally, we would like to extend 

this method to perform more general edge-preserving image 

processing tasks. 

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_23

Volume 47, Issue 3: September 2020

 
______________________________________________________________________________________ 



 

 

 

 

       

       

       

       
(a)                              (b)                               (c)                               (d)                               (e)                               (f)                             (g) 

Fig. 6. Comparison of four groups of image experiments. (a) Test image, (b) real disparity map, (c) ST-2 algorithm disparity map, (d) CS-NL algorithm 

disparity map, (e) CS-ST algorithm disparity map, (f) IST-2 algorithm disparity map, and (g) proposed method. 

 

 

 

TABLE Ⅲ  

MISMATCH RATE OF 15 STEREO IMAGE PAIRS. 

Stereo Pairs ST-2 CS-NL CS-ST IST-2 Proposed 

Aloe 4.74 6.57 6.59 4.48 4.76 

Art 10.71 13.87 13.21 10.79 10.37 

Baby1 4.24 7.88 4.79 4.34 3.65 

Books 9.34 12.47 10.98 9.06 8.67 

Cloth1 0.52 1.15 1.16 0.51 0.56 

Cloth2 3.64 5.36 5.34 3.60 3.87 

Cloth3 2.16 3.16 3.06 2.17 2.09 

Cloth4 1.46 2.40 2.18 1.38 1.32 

Dolls 6.14 7.62 7.11 6.16 5.90 

Laundry 12.05 17.85 18.46 12.47 11.12 

Moebius 8.27 11.66 10.11 8.66 8.33 

Reindeer 7.01 11.93 10.35 6.95 5.50 

Rocks1 2.77 3.96 3.92 2.71 2.79 

Rocks2 2.17 3.38 3.14 2.05 2.19 

Wood1 4.42 10.86 6.33 4.70 4.17 

Avg. Error 5.31 8.01 7.12 5.34 5.02 

Avg. Time(s) 1.02 1.54 1.33 1.01 1.25 
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