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Abstract—With the rapid development and effective 

promotion of renewable energy, the application of renewable 

energy in distributed energy systems has also increased, and the 

diversification of demand side has brought great influence to 

distributed energy systems. To achieve economic dispatch and 

optimal operation of integrated energy systems, accurate 

calculations of the load of integrated energy systems are needed. 

Firstly, the topology and mathematical expression of the 

distributed energy system are summarized. Then, considering 

the comprehensive influencing factors of demand response, 

radial neural network (RBF-NN) short-term load forecasting 

model is constructed. The semi-trapezoidal membership 

function is employed to eliminate the user response fuzzy 

attribute, and the result of the demand response precision 

quantization is introduced into the RBF-NN model. Through 

the comparison of the results of the three cases in the actual 

example analysis, the method proposed in this paper can be 

validated to effectively consider the coupling relationship 

between various conformities, with high prediction accuracy. A 

certain theoretical basis can be provided by short-term load 

forecasting studies that take into account demand side 

responses. 

Index Terms—Distributed Energy System; Demand Side 

Response; RBF-NN Neural Network; Short-term Load 

Forecasting 

I. INTRODUCTION 

ITH the rapid development of smart grid technologies 

such as distributed generation, energy storage, smart 

meters, and electric vehicles, demand side response is an 

important means of grid security for energy regulation and 
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support for new energy access. The demand side response[1-2] 

aims to change the power usage of traditional users by using 

incentives, penalty mechanisms or real-time electricity price 

mechanisms to balance power demand and ensure system 

security[3-4]. The integrated energy system is an important 

part of the new generation energy system. The different links 

of the Netherlands and the Netherlands have realized the 

coupling of different types of energy, effectively optimized 

the energy structure, and improved the comprehensive 

utilization of energy. Accurate prediction of electrical 

thermal cooling load is the premise of integrated energy 

system optimization design, operation scheduling and energy 

management, and has important practical value. 

At present, China's demand response pilot project mainly 

adopts the electricity price policy. Through the 

implementation of peak-to-valley time-of-use electricity 

price, the user is guided to transfer the controllable load 

during the peak period, so as to achieve the peak-filling effect 

of the load curve. At present, most of the demand response 

theory research is devoted to the demand response 

mechanism analysis or model construction, and there are few 

studies on the load forecasting problem that takes into 

account the demand response. The literature [5] uses the 

alternative and price-based demand response methods to 

establish an optimal scheduling model for the electric-gas 

integrated energy system considering the demand side load 

response and dynamic natural gas flow. The literature[6] 

analyzes the electricity consumption data of grid users, uses 

consumer psychology and least squares method, established a 

demand response model based on time-of-use electricity 

price and corrects the model parameters, and successfully 

applies economic principles to load forecasting. But it 

ignores the psychological response factors of users who are 

too big or too small in electricity price difference. The 

literature [7] is aimed at maximizing social welfare, and 

establishes a real-time electricity price response model 

suitable for home users under the constraints of satisfying 

users' needs. However, real-time electricity prices require 

high technology and equipment support, so it is not suitable 

for China's electricity market.  

The implementation of the demand response strategy has 

alleviated the tension of power supply and demand to a 

certain extent, optimized the resource allocation of the power 

market, and increased the revenue of power users 

participating in the demand response, but at the same time, 

this is also brought some challenges to the short-term load 

forecast of the power system. Based on the above problems, 

this paper summarizes the topology structure and 
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mathematical expression of distributed energy systems, and 

then constructs a short-term load forecasting model of radial 

nerve network that considers the comprehensive influencing 

factors of demand response. The semi-trapezoidal 

membership function is used to eliminate the user response 

fuzzy attribute, and the result of quantifying the demand 

response precision is introduced into the RBF-NN model. 

Through the comparison of the results of the three cases in 

the actual example analysis, it is verified that the proposed 

method can effectively consider the coupling relationship 

between various loads and has higher prediction accuracy. 

The method used in this paper provides a theoretical basis for 

the short-term load forecasting study that takes into account 

the demand side response. 

II. ENERGY HUB CONVERSION MODEL  

A. Topology 

The topology of the distributed energy system changes as 

shown in Figure 1. The traditional distributed energy system 

that uses cogeneration and output of cold, heat and electricity 

has begun to transform into a new distributed energy system. 

Table 1 summarizes the research status of distributed energy 

system topologies in recent years. It can be seen that most of 

the research involves renewable energy. This characteristic 

can be clearly seen in the typical structure of the literature 
[9].This study considers both energy storage and even electric 

heating. This characteristic can be clearly seen in the typical 

structure of the literature [10]; Therefore, the enrichment and 

diversification of distributed energy system elements can be 

directly grasped by the study of its topology [11-12]. Basic 

configuration and elemental representation through topology 

have also become the auxiliary expression tools commonly 

used in the research of new distributed energy systems. 
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Fig. 1.  Change of topological structure of distributed energy system 

 

TABLE I 

RESEARCH STATUS OF STRUCTURE OF DISTRIBUTED ENERGY SYSTEM 

Year  2018 2018 2017 2017 

Author  
Li H.Z. 

etc. 

Zhang 

Y.N.  etc. 

Liu Y. 

etc. 

Zhang 

T.F. etc. 

Power 

side 

elements 

Gas   △  

PV △   △ 

Power grid △ △ △ △ 

Heat supply 

network 
 △   

Supply 

side 

elements 

CHP △   △ 

Electricity 

storage 
△ △ △ △ 

Heat 

accumulation 
△    

Demand 

side 

elements 

Heat   △ △ 

Electricity △ △ △ △ 

 

B. Input Output Model 

Traditional distributed energy system energy balance [13] 

can be expressed as  

1 11 12 1 1

2 21 22 2 2

1 2
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    (1) 

Where: L is the load matrix; P is the energy supply matrix, 

which contains conventional energy and renewable energy; C 

is the performance parameter matrix of the energy supply 

system, which is a matrix of performance curve coefficients 

for each subsystem. The left side of the formula (1) is the load 

side, and the right side is the energy supply side. With the 

development of distributed energy systems, energy storage 

devices have emerged, and the energy balance of energy 

storage devices in the system can be expressed as 
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         (2)

 
Where: M is the energy output matrix of the energy storage 

device; A is the energy storage supply matrix; S is the 

performance parameter matrix of the energy storage device, 

which is a matrix composed of the performance curve 

coefficients of each energy storage. 

The supply, transportation, and utilization of energy in a 

distributed energy system can be expressed as 

          
( )L S

 
  

 

P
C

A    

                    (3) 

The above progress indicates that matrix mathematical 

expression is a commonly used mathematical tool in the field 

of distributed energy research. The change of expression is 

actually a numerical representation of the new features of 

distributed energy systems. 
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III. USER ACTUAL DEMAND RESPONSE MODEL 

A. Demand Response Mechanism 

Considering the user's psychological response to too small 

or too large electricity price difference, and the smoothness 

of the change of the response curve between different 

electricity price segments, according to the principle of 

consumer psychology, a user demand response mechanism 

model based on Logistic function is established. In view of 

this, the fuzzy attribute of the demand response mechanism is 

given, that is, the true demand responsiveness is between the 

positive estimate of the demand responsiveness and the 

negative estimate.  

The fuzzy demand response mechanism based on Logistic 

function fully considers the psychological response state of 

power users to different power prices. When the 

peak-to-valley electricity price difference is too small, it is 

not enough to attract users to adjust the electricity 

consumption mode. The peak-filling effect is very small, 

called “dead zone”; when the peak-valley electricity price 

difference is too large, the user load elasticity potential is 

completely excavated, and the load is cut. The rate reaches 

the limit, which is called “saturation zone”; when the 

electricity price difference is within a reasonable range, the 

user responds obviously with the electricity price difference, 

which is called “response zone”. In addition, the Logistic 

function is continuously steerable at different power price 

differential segment points pva and pvb which is more in line 

with objective facts than the segmentation function 

describing the demand response mechanism. When the 

electricity price difference is zero, that is, when the 

peak-to-valley time-sharing electricity price is not used, the 

user is only random under the influence of external factors, 

and may even have a negative load-carrying rate. 

In order to improve the fitting accuracy of the demand 

response mechanism to the peak load and the post-load load, 

the variable parameter of the Logistic function is extended to 

increase the degree of freedom of change. The function form 

is shown in equation (4). 

       
( )/

( )
1 e p d

c
p b




  
  


               (4) 

Where: p represents the electricity price difference;  

 represents the load-shedding rate; c represents the 

function threshold span; d  is the abscissa corresponding to 

the function value  c/ 2+b  , which can approximate the 

midpoint of the “response zone” electricity price difference; 
b  is the increased variable parameter , used to translate the 

logistic curve up and down. 

By extending the Logistic function by equation (4), the 

positive response estimation curve and the negative response 

estimation curve can be fitted with higher precision, and the 

user actual response curve is located between the two with 

fuzzy attributes. 

 

B. Demand Response Model 

The demand response mechanism has fuzzy attributes, 

which can easily affect the short-term load forecasting 

accuracy that takes into account the demand response. In this 

paper, the user response randomness and the positive 

response membership degree are combined with the "dead 

zone", "response zone" and "saturation zone" in the fuzzy 

demand response mechanism of the logistic function to 

probabilistically constrain the precise demand response 

mechanism.  

The linear part of the large semi-trapezoidal membership 

function is selected to obtain the user's positive response 

membership degree under different power price differences 

in the "response area"[14], which is the probability constraint 

of the accurate demand response mechanism. Among them, 

the large semi-trapezoidal membership function is shown in 

Figure 2; the probability constraint of the precise demand 

response mechanism is shown in Figure 3. 

 

pva
pvb pvP

m

1

 
Fig. 2.  Partial large semi-trapezoidal membership function 
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Fig. 3.  Probabilistic constraints on the accurate demand response mechanism 

 

In Figure 2: pvp  represents the difference between the 

peak and valley time price; pva and pvb represent the demand 

response mechanism; m represents the positive response 

membership degree, which is used to characterize the 

probability that the user's actual response meets the positive 

response estimate under a certain peak-valley electricity price 

difference. In the fuzzy demand response mechanism, the 

"response area" positive response membership degree can be 

obtained by equation (5). 

pv pv

pv pv pv

pv pv

,
p a

m a p b
b a

 
   


           (5) 

In Figure 3, when the electricity price difference 

is pv pvp a   , the positive response membership degree of the 

user's actual response is 0, that is, the responsivity is the 

average of the positive response estimate and the negative 

response estimate; when the electricity price difference is 

pv pv pva p b   , the user response enthusiasm is opened with 
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the electricity price difference. Gradually, the accurate 

demand response gradually moves from the average value to 

the positive response estimate; when the electricity price 

difference is pv pvp b  , the user response is consistent with 

the positive response estimate, and at the same time meets the 

"saturation zone" characteristic. The positive response 

membership degree corresponding to the difference between 

the peak and valley electricity price is used as the probability 

constraint to represent the degree to which the actual 

response of the user tends to positively respond to the 

estimation, and the actual demand response mechanism of the 

user is determined. The exact load-shedding rate is as shown 

in equation (6). 
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pv pv pv
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       (6) 

Where: pv  represents the exact load-carrying rate of the 

peak-to-valley;
 

max

pv  and min

pv  represent the clipping load rate 

of the positive and negative response estimates, respectively;  
max min

pv pv pv     represents the span of the fuzzy 

load-carrying rate under a certain peak-valley electricity 

price difference. 

Using the same method, the exact load-carrying rates and 

of the user's peak-to-flat and flat-turn valleys can be obtained 

separately. Then, the amount of load transfer generated by 

the user's actual demand response is as shown in equation (7). 
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               (7) 

Where: t  represents the point of load sampling; p fT T、  and 

Tv
respectively represent the peak period, the flat period and 

the valley period corresponding to the time-sharing 

electricity price;
av av

p fL L、 and Lav

v respectively represent the 

peak-to-valley time-sharing electricity price before the 

implementation of the peak period, the flat period and the 

valley period The average value of the load; DRt  represents 

the amount of load transfer due to the demand response at the 

point of the first load sampling. This is called the DR signal. 

IV. RBF-NN PREDICTION MODEL BASED ON ENERGY HUB 

A. RBF-NN Model 

RBF-NN is a multi-input and single-output forward neural 

network model [15], which includes input layer, hidden layer 

and output layer. The model structure is shown in Figure 5. 

The input layer is used to receive multiple elements with 

strong correlation with the output result and pass to the 

hidden layer; the hidden layer performs multivariate 

nonlinear transformation on the input vector for feature 

extraction; the output layer determines the hidden by model 

training The output weights of the layered neurons are 

linearly combined and output. 

In Figure 5:  1 2 mx x x x   represents the 

m-dimensional input vector; ci represents the center of the 

i-th hidden layer neuron transfer function, 1 i n   ; 

n represents the number of hidden layer neurons;  l l x c  

represents the i-th hidden layer neuron transfer function, A 

Gaussian function is usually selected, as shown in equation 

(8);   represents the connection weight of each linear 

combination part at the output; y represents a 

single-dimensional output of the model. 

 
2

1
exp

2

i

i i

i

x c
x c



   
      
   

          (8) 

Where 
i represents the distribution width of the Gaussian 

function of  the  i-th hidden layer neuron. 
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 n nx c 

Input layer

Hidden layer

Output layer

 Fig.4.  Architecture of RBF-NN model 

 

Compared with the traditional BP-NN, RBF-NN has good 

global optimization performance, and does not appear to be 

non-converged or fall into local optimum. It is more suitable 

for power system load time series prediction. 

 

B. RBF-NN Model Considering The Comprehensive 

Influencing Factors of Demand Side Response 

In the short-term load forecasting problem of traditional 

power systems, the demand response is not involved. The 

load influencing factors usually only include external factors 

such as temperature, weather conditions and day types. The 

time interval of the load time series is set to 15 min. Taking 

the load power at d day k as an example, the traditional input 

composition of the neural network can be as shown in Fig.5. 
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Fig. 5.  Traditional input component of neural network 

 

In Fig.5, d indicates the number of days, that is the date; k   

indicates the number of points at the time of load,1 96k   ; 
d

kL  indicates the historical load value at k on day d;  

max v

d d

a eT T、 and min

dT indicate the maximum temperature, 

average temperature, and minimum temperature quantified 

value of d day respectively; 
dw  represents the daytime 
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weather condition quantified value;
 

dg  represents the day 

type quantized value of d day. The traditional input of neural 

network consists of 29 dimensions, including 9-dimensional 

historical load data and 20-dimensional external influence 

factors. 

Regardless of the electricity price policy type or the 

incentive policy type demand response project, the user load 

curve will change due to the demand response and tend to cut 

the peak and fill the valley. The traditional input composition 

of the neural network is bound to continue to work accurately, 

and the traditional neural network model is needed. Make 

adjustments or improvements. The next day load transfer 

amount, that is, the DR signal, can be fitted by the user's 

actual demand response mechanism model. In the RBF-NN 

model, this paper treats it by external influence factors to 

reflect the effect of the electricity price mechanism on 

demand response. The input composition of the RBF-NN 

model considering the DR comprehensive influencing factors 

is shown in Fig.6. 

 
3

1

d

kL 



3d

kL  3

1

d

kL 


3

max

dT  3d

aveT  3

min

dT 

1

min

dT 

m in

dTd

a v eT

1d

aveT 1

max

dT 

max

dT

3dW 

1dW 

dW dg

1dg 

3dg 

1

1

d

kL 



1d

kL  1

1

d

kL 



?  
Fig. 6.  Input component with DR of RBF-NN model 

 

In Fig.6, the shaded box has a corresponding meaning 

according to its specific location, and d

kDR represents the 

amount of load transfer at k  on day d. The input component 

of the RBF-NN model considering the comprehensive 

influencing factors of DR contains 38 dimensions, including 

9-dimensional historical load data, 20-dimensional external 

influence factors, and 9-dimensional DR signals. 

In order to prove the important role of considering the 

comprehensive influencing factors of demand response in the 

RBF-NN prediction model, this paper will combine the actual 

grid load data to form the RBF-NN model input with the two 

structures of Figure 6 and Figure 7, respectively. At the same 

time, the prediction performance of the model in both cases is 

compared. 

 

C. Forecast Evaluation  

Mean absolute percentage error (MAPE) is used as an 

evaluation index for prediction accuracy 

1

~

1
= 100 %

J
jj

MAPE

j j

Y Y

J Y





                  (9) 

Where:
 

~

jjY Y、  is the predicted value and the true value 

respectively; J is the quantity of all predicted values. 

 

V. CASE ANALYSIS 

This paper selects the data of the regional integrated 

energy system of a demonstration operation in Shanghai from 

November 1st to December 19th, 2018 as an example. 

Training modeling was performed using data from 

November 1 to December 18 to predict various types of loads 

on December 19. 

In order to verify the effect of the RBF-NN model based 

multi-energy supply system load forecasting method 

proposed in this paper, the following three cases are set: 

Case 1: Considering the coupling of electricity, gas and 

heat load, using RBF-NN model for prediction; 

Case 2: Regardless of the coupling between electricity, gas 

and heat load, the RBF-NN model is used to predict the 

electrical load, air load and heat load respectively; 

Case 3: Considering the coupling of electricity, gas and 

heat load, BP-NN model is used for prediction. 

The short-term prediction results of electricity, gas and 

heat load in the three cases are shown in Figure 7, Figure 8 

and Figure 9, respectively. The prediction accuracy is shown 

in Table 2. 

It can be seen that the MAPE of Case 1 is smaller than 

Case 2, whether it is electric load, gas load or heat load, that is, 

considering the coupling between electricity, gas and heat 

load can significantly improve the prediction accuracy. In 

addition, the electric, gas and heat load error values of Case 1 

are smaller than Case 3, and the difference is large, indicating 

that the prediction effect of the RBF-NN model is 

significantly better than the BP-NN model. This means that 

the RBF-NN model has strong tracking ability for various 

loads, and the prediction error is small, which can effectively 

improve the prediction accuracy. 

 

 
Fig. 7. Power load forecasting 

 
Fig.8. Gas load forecasting 

 
Fig.9. Heating load forecasting 
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TABLE 2 

PREDICTION ACCURACY IN MAPE 

Case 1 
Electrical load Gas load Thermal load 

3.563 5.125 5.957 

 

The load curve containing the DR signal is randomly 

selected for prediction for three days. The error of the DR 

signal factor load prediction model and the DR signal factor 

prediction model are not shown in Table 3. 

 
TABLE 3 

ERROR ANALYSIS RESULTS BEFORE AND AFTER IMPROVING THE 

FORECASTING MODEL 

Demand 

response serial 

number 

No DR factor DR factors 

Mean relative 

error 1% 

Mean relative 

error 1% 

1 2.33 1.47 

2 2.25 1.35 

3 2.12 1.20 

 

It can be seen from Table 3 that the prediction error of the 

prediction model is large when the DR signal factor is not 

taken into account, and the range of the average relative error 

and the maximum relative error respectively reach 

2.32%-2.52% and 7.52%-8.68%, respectively. After 

considering the DR signal factor in the input of the prediction 

model, the prediction performance is effectively improved. 

The maximum fluctuation limit of the average relative error 

does not exceed 1.69%, and the fluctuation range of the 

maximum relative error does not exceed 5.81%. The above 

analysis fully demonstrates the importance of demand 

response factors for load forecasting. 

 

VI. CONCLUSION 

Radial neural network (RBF-NN) short-term load 

forecasting model is constructed considering the 

comprehensive influencing factors of demand side response 

Combined with practical examples, the main conclusions are 

as follows: The peak-filling effect of peak-to-valley 

electricity price is revealed in the constructed user demand 

response mechanism model, which can effectively identify 

the user's response parameters to peak-to-valley time-of-use 

electricity price based on peak-to-valley time-of-use 

electricity price and user psychology. The RBF-NN model 

has better predictive performance when considering the 

demand-side response load; Analytical modeling of the 

coupling relationship between multiple loads of energy 

systems has high prediction accuracy and provides a 

theoretical basis for short-term load forecasting studies that 

take into account the demand side response. 
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