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Abstract—In this article a robust multivariable adaptive
control technique is proposed for time varying AutoRegressive
Moving Average systems with exogenous inputs considering
identification and auto-tuning of the proposed model reference
controller. The proposed method is validated for linear
multivariable systems with time-varying parameters under
noise conditions. The results are evaluated in terms of tracking
error, and robustness to time-varying parameters. The proposed
method is compared with an adaptive approach named the
multivariable model reference adaptive control based on an
AutoRegressive Moving Average model where the proposed
robust multivariable approach improved the performance of the
adaptive method. In addition, the proposed estimation methods
for ARMA and ARMAX structures are evaluated over an
electric arc model and a real system implemented with an
analog computer.

Index Terms—Adaptive, Multivariable, Control, Nonlinear,
Time-varying.

I. INTRODUCTION

THE control of multivariable nonlinear systems is a
task that requires the application of high mathematical

techniques, specially if the multivariable system has
inherent time-varying parameters. AutoRegressive Moving
Average (ARMA) models can be used to describe the
systems under a deterministic domain. In the other hand,
AutoRegressive Moving Average models with exogenous
inputs (ARMAX) can include the robustness of the
system into the identification approach [1] which turn the
adaptive controllers into robust controllers. For example,
in [2] a variable structure approach is applied for a
multivariable nonlinear system but considering only time
invariant parameters. Several systems that involve electric
and mechanical elements can be modeled as systems with
time-varying parameters where the nominal value change
during the normal operation. That systems required the
application of time-varying control techniques, as proposed
in [3]. Several techniques can also be applied to fulfill the
requirement of complex multivariable nonlinear systems by
using nonlinear [4] and deep learning techniques [5], [6].

In this work, a robust multivariable adaptive control
technique is proposed for time varying ARMAX model
considering identification and auto-tuning of the proposed
model reference controller. The model is compared with
an ARMA model by using a model reference adaptive
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controller. The results are evaluated for estimation and
control of simulated systems under ARMA and ARMAX
structures. In addition, the proposed estimation methods for
ARMA and ARMAX structures are evaluated over an electric
arc model and a real system implemented with an analog
computer. The paper is organized as follows: in section II is
shown the identification and adaptive control of multivariable
systems under ARMA and ARMAX approaches and in
section III the experimental results based on simulated
and real models under several operational conditions are
presented and discussed.

II. THEORETICAL FRAMEWORK

A. Multivariable identification
A discrete multivariable (multiple-input multiple-output

MIMO) system with m outputs and p inputs with delay
operator q can be defined as [1]:

A
(
q−1
)
y (k) = B

(
q−1
)
u (k) (1)

where A is given by

A
(
q−1
)
= A0 +A1

(
q−1
)
+ · · ·+An1

(
q−n1

)
(2)

and B is given by

B
(
q−1
)
= (B1

(
q−1
)
+ · · ·Bn2

(
q−n2

)
) (3)

with n1 ≥ n2 and where Ai is m×m and Bi is p× p, and
the input vector u is p× 1 and output vector y is m× 1 as
follows:

y (k) =

 y1 (k)
...

ym (k)

 , u (k) =

 u1 (k)
...

up (k)

 (4)

By defining A0 = I with I the identity matrix, the
following equation is obtained:

y (k) = B1u (k − 1) + · · ·+Bn2
u (k − n2)

−A1y (k − 1)− · · · −An1
y (k − n1) (5)

where Ai and Bi are given by

Ai =

 ai11 · · · ai1m
...

. . .
...

aim1 · · · aimm

 , Bi =

 bi11 · · · bi1p
...

. . .
...

bim1 · · · bimp

 (6)

From (5) and (6) the output yi can be described in terms
of past inputs and outputs as:

yi(k) = b1i1u1 (k − 1) + · · ·+ b1ipup (k − 1)

+ · · ·
+bn2

i1 u1 (k − n2) + · · ·+ bn2
ip up (k − n2) (7)

−a1i1y1 (k − 1)− · · · − a1imym (k − 1)

− · · ·
−an1

i1 y1 (k − n1)− · · · − an1
imym (k − n1)
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By considering (7), and (1), the following equation can be
obtained:

y (k) = θTφ (k − 1) ; k ≥ 0 (8)

being θT the transpose of θ, and with θ a matrix of
dimension (mn1 + pn2)×m that holds the matrix parameters
Ai and Bi as follows:

θT =
[
B1 · · · Bn2

A1 · · · An1

]
(9)

and being φ (k − 1) a vector of dimension (mn1 + pn2)×1
that holds the past inputs and outputs as follows:

φ (k − 1) =



u (k − 1)
...

u (k − n2)
−y (k − 1)

...
−y (k − n1)


(10)

In [1] a class of identification algorithms is presented,
where θ̂ (k) is computed from θ̂ (k − 1), as follows:

θ̂ (k) = θ̂ (k − 1) +M (k − 1)φ (k − 1) e (k) (11)

being θ̂ (k) the estimated parameter matrix at sample k,
M (k − 1) the gain matrix, φ (k − 1) the vector with past
inputs and outputs, and e (k) the estimation error, as follows:

e (k) = y (k)
T − ŷ (k)

T (12)

being ŷ (k) given by:

ŷ (k) = θ̂ (k − 1)
T
φ (k − 1) (13)

As described in [1] the multivariable least squares
algorithm can be defined as:

e (k) = y (k)
T − φ (k − 1)

T
θ̂ (k − 1)

M (k) = P(k−2)
1+φ(k−1)TP(k−2)φ(k−1)

θ̂ (k) = θ̂ (k − 1) +M (k)φ (k − 1) e (k) (14)

and

P (k − 1) = P (k − 2)− P(k−2)φ(k−1)φ(k−1)TP(k−2)
1+φ(k−1)TP(k−2)φ(k−1) (15)

with initial estimate θ̂ given and P (0) a positive diagonal
matrix.

1) MIMO 2 × 2 system: Consider a system of second
order (n1 = n2 = 2) with 2 inputs and 2 outputs, where the
estimated output can be defined by

ŷ (k) = θ̂ (k − 1)
T



u1 (k − 1)
u2 (k − 1)
u1 (k − 2)
u2 (k − 2)
−y1 (k − 1)
−y2 (k − 1)
−y1 (k − 2)
−y2 (k − 2)


(16)

and where the least squares algorithm of (14) results in:

[e (k)]1×2 =
[
y (k)

T − φ (k − 1)
T
θ̂ (k − 1)

]
1×2

(17)

[C (k)]8×1 =
[P (k − 2)φ (k − 1)]8×1

1 +
[
φ (k − 1)

T
P (k − 2)φ (k − 1)

]
1×1

(18)

[
θ̂ (k)

]
8×2

=
[
θ̂ (k − 1)

]
8×2

+ [C (k)]8×1 [e (k)]1×2(19)

where P is matrix of 8× 8.
By using Ai and Bi it is possible to obtain the transfer

matrix as follows:

y (k) =
[
I+A1

(
q−1
)
+ · · ·+An1

(q−n1)
]−1
m×m[

B1

(
q−1
)
+ · · ·+Bn2 (q

−n2)
]
m×p u (k) (20)

where the transfer matrix T(z) is m× p and is defined as

T (z) =
[
I+A1

(
z−1
)
+ · · ·+An1

(z−n1)
]−1
m×m[

B1

(
z−1
)
+ · · ·+Bn2

(z−n2)
]
m×p (21)

B. Robust ARMAX Identification

Consider an ARMAX model with m outputs, p inputs and
r exogenous inputs with delay operator q can be defined
as [1]:

A
(
q−1
)
y (k) = B

(
q−1
)
u (k) +C

(
q−1
)
w (k) (22)

where C is given by

C
(
q−1
)
= C0 +C1

(
q−1
)
+ · · ·+Cn3

(
q−n3

)
(23)

with n1 ≥ n2, n1 ≥ n3, and where Ai is m × m, Bi is
p × p, Ci is m × m, and the input vector u is p × 1, the
output vector y is m× 1, and exogenous vector w is r × 1
as follows:

y (k) =

 y1 (k)
...

ym (k)

 , u (k) =

 u1 (k)
...

up (k)


w (k) =

 w1 (k)
...

wr (k)

 (24)

By defining A0 = I with I the identity matrix, the
following equation is obtained:

y (k) = B1u (k − 1) + · · ·+Bn2
u (k − n2)

−A1y (k − 1)− · · · −An1
y (k − n1)

+C0w (k) +C1w (k − 1) + · · ·+Cn3
w (k − n3) (25)

where Ci is given by

Ci =

 ci11 · · · ci1r
...

. . .
...

cir1 · · · cirr

 (26)

From (25) and by defining C0 = I the input w can be
estimated in terms of past inputs and outputs as:

ŵ (k) = y (k)−B1u (k − 1)− · · · −Bn2
u (k − n2)

+A1y (k − 1) + · · ·+An1
y (k − n1)

−C1w (k − 1)− · · · −Cn3
w (k − n3) (27)
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By considering (27), and (22), the following equation can
be obtained:

ŵ (k) = y (k)− ŷ (k) = y (k)− θTφ (k − 1) (28)

being θT the transpose of θ, and with θ a matrix of
dimension (mn1 + pn2 + rn3) × m that holds the matrix
parameters Ai, Bi, and Ci as follows:

θT =
[
B1 · · · Bn2

A1 · · · An1
C1 · · · Cn1

]
(29)

and being φ (k − 1) a vector of dimension
(mn1 + pn2 + rn3) × 1 that holds the past inputs and
outputs as follows:

φ (k − 1) =



u (k − 1)
...

u (k − n2)
−y (k − 1)

...
−y (k − n1)
ŵ (k − 1)

...
ŵ (k − n3)


(30)

In [1] a class of identification algorithms is presented,
where θ̂ (k) is computed from θ̂ (k − 1), as follows:

θ̂ (k) = θ̂ (k − 1) +M (k − 1)φ (k − 1) e (k) (31)

being θ̂ (k) the estimated parameter matrix at sample k,
M (k − 1) the gain matrix, φ (k − 1) the vector with past
inputs and outputs, and e (k) the estimation error, as follows:

e (k) = y (k)
T − ŷ (k)

T (32)

being ŷ (k) given by:

ŷ (k) = θ̂ (k − 1)
T
φ (k − 1) (33)

As described in [1] the multivariable least squares
algorithm can be defined as:

e (k) = y (k)
T − φ (k − 1)

T
θ̂ (k − 1)

M (k) = P (k − 1)

θ̂ (k) = θ̂ (k − 1) +M (k)φ (k − 1) e (k) (34)

and

P (k − 1) = P (k − 2)− P(k−2)φ(k−1)φ(k−1)TP(k−2)
1+φ(k−1)TP(k−2)φ(k−1) (35)

with initial estimate θ̂ given and P (0) a positive diagonal
matrix.

C. Multivariable Adaptive Control

A model reference adaptive control structure is selected
for control of the multivariable system as described in [1].
Consider a system with a reference model defined by:

yr (k) = E−1(q−1)H(q−1)r (k) (36)

being E and H defined as

E(q−1) = E0 + E1q
−1 + E2q

−2 + · · · (37)
H(q−1) = H1q

−1 +H2q
−2 + · · · (38)

where E(q−1) is stable and the transfer matrix in steady state
is E−1(1)H(1) = I the identity matrix. Therefore, the closed
loop system can be defined by the following equations:

E(q−1)yr (k) = α(q−1)y(k) + β(q−1)u(k) (39)
H(q−1)r (k) = α(q−1)y(k) + β(q−1)u(k) (40)

(41)

being F and G the polynomials of order 0 and n1−1 defined
as

α(q−1) = G(q−1)β(q−1) = F(q−1)B′(q−1) (42)
(43)

that satisfy

E(q−1) = F(q−1)A(q−1) + q−1G(q−1) (44)

1) MIMO 2×2 system: Consider a system of second order
(n1 = n2 = 2) with 2 inputs and 2 outputs as follows:

A(q−1) = I +A1q
−1 +A2q

−2

B(q−1) = q−1(B1 +B2q
−1) (45)

E(q−1) = I + E1q
−1 + E2q

−2 (46)
H(q−1) = q−1(H1 +H2q

−1) (47)
(48)

with polynomials F and G defined as

F (q−1) = F0

G(q−1) = (G1 +G2q
−1) (49)

(50)

where the resulting control signal is defined as:

u (k) = B−11 (H(q−1)r(k)−G(q−1)y(k)−B2q
−1u(k)) (51)

A pole placement approach can also be defined as an error
driven controller:

E(z) = KgR(z)− Y (z) (52)
U(z) = C(z)E(z) (53)

being C(z) the transfer matrix of the controller defined as
follows:

C(z) = P−1(z)L(z) (54)

and Kg the direct matrix defined as

Kg = (B(1)L(1))1(A(1)P (1) +B(1)L(1)) (55)

being the closed loop representative equation defined as

PCL(z) = A(z)P (z) +B(z)L(z) (56)

By defining a desired closed loop set of roots Pd(z) the
following equation can be defined

Pd(z) = PLC(z) (57)
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2) MIMO 2×2 system: Consider a system of second order
(n1 = n2 = 2) with 2 inputs and 2 outputs as follows:

A(q−1) = I +A1q
−1 +A2q

−2

B(q−1) = q−1(B1 +B2q
−1) (58)

P (q−1) = I + P1q
−1 + P2q

−2 (59)
L(q−1) = q−1(L1 + L2q

−1) (60)
(61)

with

Pd(z) = Iz4 + α1Iz
3 + α2Iz

2 + α3Iz + α4I (62)

The following equation can be defined
I 0 0 0
A1 I B1 0
A2 A1 B2 B1

0 A2 0 B2



P1

P2

L0

L1

 =


α1I −A1

α2I −A2

α3I
α4I

 (63)

III. RESULTS AND DISCUSSIONS

The performance of the described adaptive multivariable
model reference control are evaluated for simulated and
real systems in order to evaluate the tracking performance
and also the effectiveness of the estimation multivariable
technique.

A. Simulation results

A simulated system defined by[
Y1(z)
Y2(z)

]
=

[ 0.2z
z2−1.6z+0.64

0.3z
z2−1.6z+0.64

0.1z
z2−1.6z+0.64

0.5z
z2−1.6z+0.64

] [
U1(z)
U2(z)

]
(64)

is used to validate the results of the robust multivariable
identification and control.

In this case, the parameter matrix θ is given by:

θT =
[
B1 A1 A2

]
(65)

θT =

[
b111 b112 a111 a112 a211 a212
b121 b122 a121 a122 a221 a222

]
(66)

By considering the input signals shown in Fig. 1, the
estimated output signals of Fig. 2 are obtained.

Fig. 1. Inputs for a 2× 2 simulated multivariable system

Fig. 2. Real and estimated outputs for a 2 × 2 simulated multivariable
system

The estimated parameters θ after 10 seconds are:

θ =


0.2 0.1
0.3 0.5
1.599 0.0004176

0.000412 1.6
−0.6394 −0.0003961

−0.0004024 −0.6397

 (67)

It is noticeable that the elements of B1 from (67) are the same
coefficients of each numerator of (64). Also, the elements
of A1 and A2 are the coefficients of the denominator (64)
multiplied by identity 2× 2 matrices. In Fig. 3 is presented
the evolution of the estimated parameters θ.

Fig. 3. Evolution of estimated parameters for the simulated 2× 2 system

By using the model reference control defined in (51)
combined with the identification stage of (17), a model
reference adaptive control is obtained for multivariable
systems. A reference model defined by the following
equations is selected:

E(q−1) = I − 1.8Iq−1 + 0.81Iq−2 (68)
H(q−1) = 0.01Iq−1 (69)
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which is stable (two poles at z = 0.9) and has steady unity
state gain.

In Fig.4 are presented the outputs and their corresponding
references. The initial value of parameters θ is set to zero,
and the initial value of P is set to the identity matrix.
The simulation is performed during 50 seconds. It can be
seen that the first reference change is not followed since
the identification system is still tracking the parameters, but
the second reference change is followed according to the
reference model with zero tracking error. That phenomenon
can be observed for each output.

Fig. 4. Outputs and their corresponding references for the simulated 2×2
system using the model reference approach

The corresponding control signals for the simulation
presented in Fig. 4 are shown in Fig. 5. It is noticeable that
during the first samples the control signals for both channels
shown high values since the parameters of the system θ are
still been estimated. However, after the 2 seconds, it can be
seen that the control signals are in an adequate range, which
correspond to a successful tracking, as shown in Fig. 4.

Fig. 5. Control signals for the simulated 2× 2 system

In Fig. 6 are presented the corresponding evolution of the
estimated parameters. It is noticeable that the parameters are
consistent with the estimation shown in (67).

Fig. 6. Evolution of estimated parameter for the simulated 2× 2 system

In order to evaluate the pole placement method, a desired
closed loop roots equal to zero are designed PLC(z) = z4.
Therefore, in Fig. 7 are presented the outputs and their
corresponding references, and in Fig. 8 are presented the
control signals. It can be seen that the system has a tracking
error equal to zero in almost four samples. However, it can
be seen that the control signal effort is higher than the one
required for the model reference approach.

Fig. 7. Outputs and their corresponding references for the simulated 2×2
system using the pole placement approach

In addition, the direct gain matrix Kg is computed as:

Kg =

[
1.1161 0.0
0.0 1.1161

]
(70)

B. Robust identification and control

In this case, the parameter matrix θ is given by:

θT =
[
B1 A1 A2 C1 C2

]
(71)

By using the pole placement approach combined with the
ARMAX identification stage of (34), a desired closed loop
roots equal to zero are designed PLC(z) = z4 and a white
noise at the output system with variance of 0.5. Therefore,
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Fig. 8. Control signals for the simulated 2 × 2 system using the pole
placement approach

in Fig. 9 are presented the outputs and their corresponding
references, and in Fig. 10 are presented the control signals.
The initial value of parameters θ is set to zero, and the initial
value of P is set to the identity matrix. The simulation is
performed during 50 seconds. Only the parameters θ that
are involved in pole placement approach is taken. It can be
seen that the first reference change is not followed since
the identification system is still tracking the parameters,
but few samples after the reference is followed according
to the closed loop roots in presence of white noise. That
phenomenon can be observed for each output.

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-50

0

50

100

0 5 10 15 20 25 30 35 40 45 50
-100

-50

0

50

100

r
1
[k]

Time [s]

y
1
[k]

r
2
[k]

y
2
[k]

y 1
[k

]
y 2

[k
]

Fig. 9. Outputs and their corresponding references for the simulated 2×2
system using the pole placement approach

In Fig. 10, it is noticeable that during the first samples the
control signals for both channels shown high oscillate values
since the parameters of the system θ are still been estimated.
However, after the 2 seconds, it can be seen that the control
signals are in an adequate range, with peak values associated
to the reference changes, as shown in Fig. 9.

C. Real system evaluation

A real system of second order with 2 inputs and 2 outputs
is simulated with an analog computer COMDYNA GP-6

0 5 10 15 20 25 30 35 40 45 50
-100

-50

0

50

100

0 5 10 15 20 25 30 35 40 45 50
-100

-50

0

50

100

u
1
[k

]
u

2
[k

]

Time [s]

Time [s]

Fig. 10. Control signals for the simulated 2× 2 system

according to the following model:

[
ẋ1
ẋ2

]
=

[
−2 −1
1 0

] [
x1(t)
x2(t)

]
+

[
0 0.5
0.4 0.6

]
u(t)

y(t) =

[
1 0.5
0 0.3

] [
x1(t)
x2(t)

] (72)

The system is sampled at h = 0.1 seconds.

In this case, the parameter matrix θ is given by:

θT =

[
b111 b112 b211 b212 a111 a112 a211 a212
b121 b122 b221 b222 a121 a122 a221 a222

]
(73)

Estimation results are presented in Fig. 11 and Fig. 12.

Fig. 11. Inputs and outputs for a 2× 2 real multivariable system
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Fig. 12. Parameter estimation of θ using MIMO least squares algorithm

D. Electric arc model

The electric arc model is described by the following
non-linear differential equation [7], based on the energy
conservation principle,

vi = k1r
2 + k2r

dr

dt
(74)

where the state variable r represent the radius of the electric
arc. The relation between the voltage and the current is given
by

v =
k3
r2
i (75)

The parameters k1, k2, and k3, can be estimated as follow.
From the above equation, it is possible to demonstrate that

r
dr

dt
= k3

i′v − v′i

v2

√
v

4i
(76)

replacing (76) in (74), and multiplying both sides of the
resulting equation by v2, we have

v3i = k1k3(vi) + k2k3(i
′v − v′i)

√
v

4i
(77)

the above equation can be written in the form

y = ax1 + bx2 (78)

where


a = vi
b = (i′v − v′i)

√
v
4i

y = v3i
x1 = k1k3
x2 = k2k3

(79)

By considering N samples of the real voltage and current,
the parameters of the linear model given by (78) can be
estimated each half cycle of the real measurements, using the
least squares method. In this paper, the value of the parameter
k3 has been set in 30, then, once the vector x is calculated,
it is possible to determine the values of parameters k1 and

k2. In Fig. 13 are shown the estimated parameters by using
the least squares method. It is noticeable that the parameters
are oscillating and do not tend to a fixed value.

Fig. 13. Estimated parameter of the electric arc using least squares method

Based on the estimated parameters of Fig. 13 it is possible
to reconstruct the voltage and current signals. The currents
and voltage of the electric arc system and their corresponding
estimated or reconstructed signals are shown in Fig. 14.

Fig. 14. Real and estimated signals of the electric arc system by using the
least squares

By considering the ARMA representation of (5) and the
ARMAX representation of (25), an estimation of the electric
arc model of (78) can be obtained. In Fig. 15 is presented
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Fig. 15. Real and estimated signals for ARMA and ARMAX models

Fig. 16. Estimation of k2 parameters by using ARMA and ARMAX models

a comparison of the real and estimated solutions for (78).
It is noticeable that the ARMAX estimated signal describes

a better approximation of the real signal than the ARMA
estimated signal.

An additional result is presented in Fig. 16 related to the
estimation of the k2 parameter. As shown in Fig. 16 the k2
parameter estimated by using an ARMA model describes
small oscillations. In the other hand, the k2 parameter
estimated by using an ARMAX model tends to steady state
without oscillations which implies that the exogenous input
of the ARMAX model allows a better estimation of the
parameters.

IV. CONCLUSIONS

In this paper, a robust multivariable adaptive model
reference control is presented for linear systems with time
varying parameters based on an ARMAX model. It can be
seen that the model parameters are continuously adjusted
which increase the robustness of the method to time varying
parameters in comparison with the ARMA model. Also,
it can be seen that a tracking performance is obtained
effectively for the proposed method for simulated and real
systems. In addition, since the selected reference model is
decoupled, a decoupled response is obtained which reduce
the variability of the system to the internal coupling.
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