
 

  

Abstract—This paper explores a problem whether a portfolio 

should contain a riskless asset in fuzzy environment based on 

credibility theory. From a novel perspective, we use the fuzzy 

deviation together with value function (value-deviation) as a 

novel portfolio risk measurement. In the light of credibility 

theory in this paper, three credibilistic expected value-deviation 

models with fuzzy returns are proposed for the first time. In 

addition, genetic algorithm is adopted to solve our presented 

fuzzy nonlinear portfolio models. Furthermore, a comparative 

numerical example with or without a riskless asset is given to 

verify the validity of our presented portfolio models. The final 

results present that no matter how much return investors want 

to realize, the maximum value deviation of portfolio with a 

riskless asset is more than the maximum value deviation of 

portfolio without a riskless asset forever. That enriches 

portfolio contents in theory and provides investors with more 

choices in practice. 

 

Index Terms—Credibility theory; Deviation; Portfolio 

selection; Riskless asset; Value function 

I. INTRODUCTION 

he key problem of portfolio selection is to consider the 

trade-off between return and risk according to investors’ 

preference. Portfolio management is a key and important 

component in finance. In 1952, the well-known 

mean-variance model (M-V model) was put forward by 

Markowitz [1]. In his M-V model, the mean is used as the 

measure of portfolio return. The variance is adopted to 

quantify portfolio risk. As a milestone in modern finance 

theory, Markowitz initially combined portfolio selection with 

mathematics in his M-V model.  

However, the M-V model is rather difficult for calculating 

the covariance with the increasing of dimensionality. 

Meanwhile, compared with the expected value, the different 

influences from gain and loss are ignored when the variance 

is adopted to measure portfolio risk. On the one hand, several 

means were proposed to improve the effectiveness of the 
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M-V models by using different approximation schemes by 

Sharpe and Stone in [2, 3, 4]. On the other hand, several 

researchers proposed some other measures of risk such as 

semi-variance by Huang in [5] and deviation by Konno et al. 

in [6]. Yet the semi-variance only considers those risks below 

the expected value and overlooks the ‘compensation’ from 

those risks above the expected value. Konno et al. [6] put 

forward a new portfolio model in which the mean absolute 

deviation was adopted to quantify risk instead of variance. 

Compared to variance, the mean-absolute deviation can 

remove most of the difficulties. Because it removes the 

complex calculation of covariance and replaces with a linear 

program. Meanwhile, it maintains the advantages of the M-V 

model. For the sake of making up for the drawbacks of 

previous distance measures and pursuing more accuracy and 

effectiveness, Chen and Deng [7] put forward a new 

inclusion relation of IFSs and a new definition called strict 

distance measure. On the basis of traditional M-V models, 

some practical approaches were presented by Deng and Zhao 

[8], who derived more exact results about risk value ranges. 

Daniel Kahneman and Tversky [9] proposed prospect theory, 

which considered different attitudes of investor towards gain 

and loss. They used value function to measure different 

attitudes towards gain and loss based on prospect theory. 

Denault et al. [10] presented simulation-and-regression 

methods and compared value function recursion with 

portfolio weight recursion. Gong et al. [11] combined 

cumulative prospect theory to deeply explore portfolio 

problem and solved it by coupling scenario generation 

techniques with a genetic algorithm. 

In the M-V model, Markowitz assumed that the future 

return of each security could be predicted by historical data, 

which would surely generate great inaccuracy. In order to 

reduce the inaccuracy, we adopted fuzzy numbers to 

characterize the security returns. Since the possibility 

measurement of fuzzy numbers is not self-dual in [12], we 

proposed three new credibilistic fuzzy portfolio models. 

II. PRELIMINARIES  

A. Credibility Theory 

The triangular fuzzy variable   is a kind of common fuzzy 

numbers.  It generally described by a triplet ( , , )a b c , where 

c b a  . Additionally, the membership function is adopted 

to describe the distribution of fuzzy numbers. Specially, the 

specific membership function formula of triangular number 

  is as follows. 
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We let r  be a real number. The possibility of a fuzzy event 

{ }r   is given a calculation formula Pos{ }r  =  

sup ( )x r x
. However, the possibility measure mentioned 

above is not self-dual, which means a theoretically inevitable 

event may not happen. From the example above, we can 

obtain Pos{ } 1r  =  when r b , but the event { }r   is 

not a certain event. To seek the solution to this problem, a 

self-dual credibility measure was by defined Liu [13] in 

2002.  

Definition 1: We assume   is a fuzzy variable, then Liu 

[13] assigned the credibility value calculation formula of  

{ }r   as follows. 

1
Cr{ } sup ( ) 1 sup ( ) .

2 x r x r

r x x  
 

 
 = + − 

 
                           (2) 

Example 1: We assume fuzzy triangular variable   as 

( , , )a b c . From the definition 1, the credibility of r   is  
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                         (3) 

When using the credibility measure, the credibility of 

r  ranges from 0 to 1. More importantly, the credibility 

value drops as the probability of an event decreases, and the 

credibility value of an event is 0 if and only if it is an 

impossible event, and vice versa. Therefore, we stipulate 

credibility as the measurement to quantify happening odds of 

a fuzzy event. 

Definition 2: We assume   is a fuzzy variable. Then we 

can compute the expected value by 
0

0
[ ] Cr{ }d Cr{ }d .E r r r r  

+

−
=  −                           (4) 

Supposed that one of the two parts is convergent at least. 

Example 2: According to Definition 2, we obtain   

[ ] ( 2 ) / 4E a b c = + +  easily if   is a triangular variable. 

Definition 3: We assume   is a fuzzy variable, and Liu 

[15] defined the expected value of a function about fuzzy 

variable as 
0

0
[ ( )] Cr{ ( ) }d Cr{ ( ) }d .E f f r r f r r  

+

−
=  −         (5) 

Definition 4: With the definition of the expected value of 

fuzzy variables, the distance between fuzzy variables   and 
  is given by Liu in [14] as

 

( , ) [ ].d E   = −                                                          (6)  

It has the following properties: 

 

B. Absolute Deviation: 

Definition 4: If we regard returns as random variable X , 

then the absolute deviation of X was defined by Konno in [6] 

as 

( ) d .E X m f x X m x− = −                                             (7) 

Where the function f  is on behalf of the probability function, 

and m  is on behalf of the mean of X .  

Definition 5: If    is a fuzzy variable whose [E   exists. 

Then we define the fuzzy absolute deviation of   as 

[ ] [ [ ] ]AD E E  = − .                                                      (8) 

Theorem 1: We let   and   be two uncertain variables, 

which are independent. If [E  and [E   exit, then for real 

numbers a  and b , we can derive the theorem from Liu [16] 

[ ]  [ ]  [ ].E a b aE bE   + = +                                         (9) 

Theorem 2: Let ( , , , ), ( , , , )a b c d a b c d        = = . 

Then according to Liu in [11], we have  

( , , , )a a b b c c d d        + = + + + + .                             

C.  Value Function 

As is mentioned in Section 1, people regard gain and loss 

differently. More importantly, people tend to have loss 

aversion, which means people pay more attention to loss 

rather than gain. From the Prospect Theory by Kahneman et 

al. in [8], the first step of choice process is editing phase. We 

have to define ir , which can be regarded as the “pure risk” 

for investors. It can be defined as i i ir r r= − , where ir  is the 

reference of return rate of security iS . In this paper, we 

suppose that the reference of return is the expected return 

namely, [ ]i ir E r= . Then the “pure risk” can be described as 
' [ ]i i ir r E r= − . The second step is the evaluation. It can be 

measured as the value function, which shows the difference 

of subjective evaluation between gain and loss from the 

investors. Now there are three common value functions given 

in [17,18,19]: 

( )
( ) ,    0,

,     0.

i i i

i

i i i

ar c r r

f r

br d r r




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                                     (10) 

where are constants, and 0, 0,a b b a   . 
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                               (11) 

where , , , ,a b c d  are constants, and 0, 0,a b b a   . 

( )
( )ln ,    0,

ln ,     0.

i i

i

i i

m pr p r
f r

n qr q r

  +  = 
 − − 

                                  (12) 

where , , ,m n p q  are constants, and 0, 0,m n n m   . 

And in the real world, a bigger deviation means a smaller 

risk (which is different from absolute deviation), therefore we 

regard minus value deviation ( )if r−  as risk. (Here we 

assume the value deviations of investors are direct additive, 

then the total deviation is ( )1

nv

i ii
R f r x

=
=  ). 
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III. FUZZY EXPECTED VALUE-DEVIATION MODEL 

A. The Fuzzy Expected Value-Absolute Deviation Model 

In a portfolio selection, investors always pursue the largest 

return and the least risk, which can be described as a 

bi-objective model. Hence, a single objective model is 

presented with a minimum return constraint.  

We use 
i  to denote the fuzzy return rate of security

iS . 
ix  

represents the percentage of security 
iS  in portfolio without 

considering the transaction fee. Then we have 

1

1

1

min   

s.t.      ,  

          1,

          0 1, 1,2, , .
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





                                  (13) 

  denotes the lowest return rate the investor required, u  

is the maximum permitted amount of buying security i. And 

here we stipulate 0ix  , which means there is no oversell. 

Besides, there is no transaction fee.  

In fact, there are also some other assets like bank deposit, 

which have low return but nearly no risk. Considering that, 

let fR
 
be the return rate of a riskless asset, whose percentage 

is fx . Related to actual life, it is obvious that the riskless 

asset will reduce risk. Here we can obtain a better model: 

 

1

1

1
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s.t.     ,    

          1,

          0 1, 1,2, , ,

          0 1.

n
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n
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n

i fi

i i

f

AD x

E x R x

x x

x u i n

x


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



                      (14) 

All marks are the same as in model (13). 

B. The Fuzzy Absolute-Value-Deviation-Based Model 

With the basis of model (14), now we take the influences 

from gain and loss into account, which are described by the 

absolute value deviation applying value function.  

We regard   as a fuzzy variable whose [ ]E   exists. Then 

the absolute value deviation of   is defined by 

[ ] [| ( ) |]AVD E f  = , and we obtain model (15) (where 

[ ]E   = − ).  

Marks are the same as model (14). Model (15) is an 

improvement of (14). Here we used the value function to 

describe the investors’ different attitudes towards gain and 

loss. 
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C. The Fuzzy Max-Value-Deviation-Based Model 

 Model (15) really reflects different weights from gain and 

loss, but it ignores the fact that people have a predilection 

towards gain and an aversion towards loss. In other words, 

loss can be compensated by gain. Based on this, we proposed 

a better model.  

 We set   to be a fuzzy variable. And its Value Deviation 

is defined by [ ] [ ( )]VD E f  = − , where [ ]E   = −
.
 

Here is a minus because [ ( )]E f   is better as it grows 

while variance is worse when it grows. The variables are the 

same as model (14). We can obtain models (16) and (17) 
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and  
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 Obviously, model (16) and (17) used a different measure 

of risk from model (15). In model (15), we expect the total 

absolute value deviation to be minimum. In comparison, we 

consider the minus value deviation and the plus one to ensure 

the former be the largest and the latter be the lowest in model 

(16). It can be seen that model (16) is more appropriate.
 

IV. SOLUTION METHOD AND ALGORITHMS 

A. The Basic Ideas of Tolerantly Complete Layering Method  

To simplify the calculation, we chose the third function 

from Section 2.4 (assuming 1, 2m p q n= = = = ) and applied 

it to model (16) and (17) and stipulated that i  is a group of 

independent triangular fuzzy variables determined by the 

triplets ( , , )i i ia b c . The object function turns to 

be
1

[ ( ( [ ]))]
n

i ii
E f E 

=
− − . According to Definition 3, we 

can simplify the object function as: 

 

1
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0
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Cr{ ( [ ]) } .

n

i ii
VD E f E

E f E

f E r dr

f E r dr
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



                                 (18) 

Apparently,
0

Cr{ ( [ ]) }d 0f E r r 
−

−  = , so we have: 

0
[ ] Cr{ ( [ ]) }d ,VD f E r r  

+

= − −                              (19) 

where ( [ ]) 0f E −  . 

And at the same time, we suppose 
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where 1, 2.m p q n= = = =  

Then when 0ir we have ( ) 0f r  , so 

( [ ])= ln( [ ] 1)f E E   − − + , we obtain 
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Where
1

n

ii
 

=
=  ,

1

n

i ii
a a x

=
=  ,

1

n

i ii
b b x

=
=  ,

1

n

i ii
c c x

=
=  , [ ] ( 2 ) / 4e E a b c= = + + . Meanwhile, the 

constraints condition
1

[ ] 
n

i i f fi
E x R x 

=
+  can be 

simplified as 
1

[ ] 
n

i i f fi
x E R x 

=
+  . And according to the 

Theorem 1, the former formula be rewritten as 

1

2
.

4

n i i i

f f ii

a b c
R x x 

=

+ +
+                         (24) 

Then we have simplified models (16) and (17) to models (25) 

and (26). 

In this paper we solve the models (25) and (26) with 

Genetic Algorithm (GA).  
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GA was firstly proposed by Holland in [20] to deal with 

the complex calculating problems. Then it was developed by 

Koza [21], Gen and Cheng [22], Li [23] and Li [24]. A hybrid 

intelligent algorithm was proposed by Huang for fuzzy 

variables. 

GA initially generates many chromosomes (solutions) 

until there are popsize  feasible chromosomes (solutions meet 

the constraints). And with a comparison among different 

objective values, the chromosomes are ranked, selected and 

updated with crossover and mutation. After 

generation cycles, the chromosome that ranks the first is 

regarded as the more satisfactory solution. Here the GA 

toolbox in Matlab is used to seek the solution to the problem. 

Step 1:  Generate popsize  feasible chromosomes, set  

20popsize = ;  

Step 2:  Compute the objective value in initial group; 

Step 3:  Pick out the chromosomes and update the population     

with crossover and mutation operation. The crossover 

When [ ]b E  , we have 
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The situation [ ]b E   can be deduced in the same way. Then the objective function can be simplified as: 
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1 1 1 1
ln( ) ln(1 ) , when ,

2( ) 1 2
[ ]

1 ( )
2ln(1 ) ln(1 ) 1

1 1 1
ln( ) ln(1 )

1 2( ) 2

e a b e
e b e b

b a b a

e c e c e a a e
e a b e

b c e b b a b a
VD

e b e c
e b e b

b c b c

e a e a c e c e
e c

b a e b b c



− − −
− − + + − + +

− −

− − − + + − −
− + + + − + 

− − + − −
=

− + −
+ − + + + − −

− −

+ − + − + − −
+ + − + −

− + − −
,  when .    

( )
b e

b c











 
 −

                                                              (23) 
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probability 
cP  is valued as 0.8. The mutation 

probability 
mP  is valued 0.2; 

Step 4:  It is not until generation  times that we repeat Step 2 

to Step 3. Additionally we set  2000generation = ; 

Step 5:  Take the chromosome ranking first at last as the   

solution. 

V. NUMERICAL EXAMPLES 

To see whether the max value deviation can really be a 

measure of risk, we assume 10 fuzzy returns of securities as 

shown in Table I.  
TABLE I 

FUZZY RETURNS OF 10 SECURITIES 

Security i   Fuzzy return Security i   Fuzzy return 

1 ( 0.2,2.1,2.5)−
 

6 ( 0.2,2.5,3.0)−
 

2 ( 0.1,1.9,3.0)−
 

7 ( 0.2,3.0,3.5)−
 

3 ( 0.4,3.0,4.0)−
 

8 ( 0.4,2.5,4.0)−
 

4 ( 0.1,2.0,2.5)−
 

9 ( 0.3,2.8,3.2)−
 

5 ( 0.6,3.0,4.0)−
 

10 ( 0.3,2.0,2.5)−
 

Also we assume 1.7 , 0.3 and 1fu R = = = , then we 

have the following model from model (16): 

     

            
10

1

10

1

10

1

min    [ ] [ ( ( [ ]))]

2
s.t.     1.7,    

4

          1,

          0 0.3, 1,2, , ,

          0 1.

i ii

i i i

f ii

i fi

i

f

VD E f E

a b c
x x

x x

x i n

x

  
=

=

=

 = − −

 + +

+ 



+ =


  =
  







                      (27) 

Where we take an example from model (25) to give a 

specific numerical form (where 
10

1
1f ii

x x
=

= −  ) 

 

10

1

10

1

10

1

min    [ ] [ ( ( [ ]))]

2
s.t.     1.7,    

4

          1,

          0 0.3, 1,2, ,10.

i ii

i i i

ii

ii

i

VD E f E

a b c
x

x

x i

  
=

=

=

 = − −

 + +





=
   =







                    (28)   

In order to maximize the max value deviation and ensure 

the total expected value is higher than 1.7, the investors 

should allocate money as Table 2 according to the results of 

GA. With this allocation, the max value deviation is 0.1932. 

Obviously, the result meets the definition of the max value 

deviation. When the max value deviation is above zero, it 

means there is a return that exceeds its value at risk. 

Keep and u unchanged and then we get the following 

model from model (17) 

10

1

1 2 3 4 5 6 7

8 9 10

10

1

min [ ] [ ( ( [ ]))]

s.t.  0.625 0.675 1.4 0.6 1.35 0.95 1.325

       1.15 1.125 0.55 1.7,

      1,

      0 0.3, 1, ,10.

i ii

i

i

i

f VD E f E

x x x x x x x

x x x

x

x i

  
=

=


 = = − −


+ + + + + +


+ + + 

 =



  =





     (29) 

Also, the result is shown in Table 3 after running GA. In 

this model, the max value deviation is 0.2260. Compared 

with model (25), we can see that when adding the riskless 

asset, the max value deviation increased by 0.0327. There is 

no doubt that adding riskless asset to the portfolio can 

increase the max value deviation.

 

Now we select a series of  for different situations and run 

them in both model (25) and model (26). The results are in 

Table IV and Table V. Then we draw a figure with its x-axis 

the lowest return rate the investor required and its y-axis the 

max value deviation as Fig. 1. 
 

From the results in Tables II-IV, we can see that with the 

growth of  , the max value deviation continues decreasing 

whatever with a riskless asset or not, which means that the 

risk grows with a higher required return. 
TABLE II 

THE OPTIMAL PORTFOLIO WHEN 1.7 , 0.3 AND 1fu R = = =  

WITH RISKLESS ASSET FROM MODEL (27) 

Security i  Investment  Security i  Investment  

1x
 0.173 

6x
 0.192 

2x
 

0.139 
7x

 
0.178 

3x
 

0.055 
8x

 
0 

4x
 

0 
9x

 
0.001 

5x
 

0.002 
10x

 
0 

      fx
 

0.260 

TABLE III 

THE OPTIMAL PORTFOLIO WHEN 1.7 , 0.3 AND 1fu R = = =  

WITHOUT RISKLESS ASSET FROM MODEL (28) 

Security i  Investment 

proportion 

Security i  Investment 

proportion 
1x  0.262 

6x  0.049 

2x  0.049 
7x  0.089 

3x  0.049 
8x  0.049 

4x  0.300 
9x  0.049 

5x  0.057 
10x  0.049 

TABLE IV 
THE OPTIMAL PORTFOLIO FOR 6 DIFFERENT   VALUES WITH A 

RISKLESS ASSET ( 0.3u = ) IN MODEL (25) 

  1.7 1.8 1.9 2.0 2.1 2.2 
*VD−

 

0.1932 0.2011 0.2208 0.2335 0.2397 0.2522 

1x  0.173 0 0.124 0.001 0 0.032 

2x  0.139 0 0 0.109 0.004 0.03 

3x  0.055 0.099 0.04 0.297 0.272 0.3 

4x  0 0.076 0.106 0.037 0.053 0.027 

5x  0.002 0.004 0.058 0.084 0 0.015 

6x  0.192 0.205 0.025 0.075 0.269 0.005 

7x  0.178 0.207 0.289 0.164 0.068 0.298 

8x  0 0 0.045 0.014 0 0.085 

9x  0.001 0.079 0.091 0.062 0.3 0.184 

10x  0 0.095 0.116 0 0 0 

fx  0.260 0.235 0.106 0.157 0.034 0.024 

TABLE V 
THE OPTIMAL PORTFOLIO FOR 6 DIFFERENT   VALUES 

WITHOUT A RISKLESS ASSET ( 0.3u = ) IN MODEL (26) 

       1.7 1.8 1.9 2.0 2.1 2.2 
*VD−

 

0.2260 0.2314 0.2355 0.2404 0.2512 0.2596 

1x  0.262 0.278 0.3 0.296 0.3 0.221 

2x  0.049 0.127 0.077 0.039 0 0 

3x  0.049 0.069 0.079 0.123 0.193 0.3 

4x  0.3 0.078 0.076 0.019 0 0 

5x  0.057 0.082 0.079 0.117 0.172 0.3 

6x  0.049 0.077 0.078 0.071 0.006 0 

7x  0.089 0.119 0.079 0.114 0.162 0.179 

8x  0.049 0 0.078 0.043 0.089 0 

9x  0.049 0.091 0.078 0.153 0.079 0 

10x

 

0.049 0.078 0.076 0.025 0 0 
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Note that, in Tables IV and V, *VD  refers to the optimal 

VD  value. According to the data in Tables IV and V, we can 

draw the line of the lowest required return and max value 

deviation.  

Fig.1: The lowest required return and the max value deviation in 

models (25) and (26) 

There are two significant features in Fig. 1. The green line 

is to the left of the blue line. That means the portfolio with a 

riskless asset is better than the one without forever. Besides, 

both the two broken lines showed an upward trend. This is in 

line with the equilibrium principle of return and risk. That 

means our proposed value deviation function is a reasonable 

measurement to risk.  

VI. CONCLUSION 

The portfolio selection is a balancing problem between 

return and risk. This paper proposes a new measure of risk 

with a combination of absolute deviation, credibility theory 

and value function.
 
Based on this measure, several models 

are given. After running GA to solve the models, a series of 

results show that the models proposed are robust enough for a 

portfolio selection. From Fig. 1 we can find out that the 

corresponding max value deviation will increases with the 

increase of the lowest required return. On the other hand, 

when the lowest required return is fixed, the max value 

deviation of portfolio with a riskless asset is less than the max 

value deviation of portfolio without a riskless asset at the 

same lower required return. That means portfolio with a 

riskless asset can improve investors’ investment status. These 

conclusions have important empirical significance for 

investors to make portfolio decisions. 
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