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Abstract—Due to Naive Bayes algorithm has good in-
terpretability and performance, it is widely used to deal
with classification problems. Naive Bayes assumes that the
attributes are independent of each other. But the phenomenon
of the correlations between attributes is always exists in
fact. In most case the result of the classification will be
strong influenced by these correlations. Thus, minimum the
correlation among attributes has been deemed as a challenge
for the Naive Bayes research community. In this work,
we proposed an improved Naive Bayes method which uses
the Laplacian matrix to reconstruct the dataset, since the
laplacian matrix can describe the spatial relationship between
data attributes well. Experiment results are shown that our
method can greatly reduce the correlation between attributes.

Index Terms—Naive Bayes, Laplacian matrix, classifica-
tion, attribute weighting.

I. Introduction

CLASSIFICATION method is an important data
analysis technique which is widely used in com-

modity image recognition, spam short message retrieval,
biomedical category judgment, object recognition and
data mining[1][2][3][4][5]. As based on the Bayesian
theorem, Naive Bayes method has strong mathematical
interpretability especially on model building. So Naive
Bayes method is very popular to deal with classification
problems[6], and it is identified as one of the top ten
data mining algorithms [7][8].

Naive Bayes algorithm assumes that the attributes are
independent of each other, that is, Naive Bayes method
deems that there is no correlation among data features[9].
Obviously, it is not true in real world applications.
Furthermore, the correlation between attributes restricts
the performance of Naive Bayes algorithm. Thus, an
important research area of Naive Bayes algorithm is to
reduce the influence of correlation between attributes
using different strategies. The main research directions
are as follows. The first is feature selection, which selects
the best subset of features to reduce the interference
of correlation between attributes. And the other is
assigning weights to attributes to weaken the correlation.
In these ways, there are a large number of Naive Bayes
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improvement methods have been proposed[10][11][12]
[13][14][15][16].

We noticed that those proposed Naive Bayes improve-
ment based on feature selection will cut off the relation-
ship between the best feature subset and the non-optimal
subset. It ignored the impact of non-optimal subset,
thereby limiting the overall classification performance.
The mechanism for assigning weights to attributes is that
if an attribute is related to multiple other attributes, it
may be unilaterally exaggerated its important. The little
weight could reduce the importance of this attribute.
Then we can get good results. In this way, the problem
evolves into how to find the suitable weights.

In graph theory, the Laplacian matrix is a formal
expression of the graph structure [17][18], which is always
used to discover some of the properties of the graph[19].
Therefore, it is widely applied to dimensionality re-
duction and clustering[20][21][22][23]. Due to Laplacian
matrix is a semi-positive definite matrix with convexity,
it has very good properties. When data is mapped
from the high-dimensional space to the low-dimensional
space by using the Laplacian matrix, the new data set
maintains the structure of the original data set. Inspired
by this, we consider that the Laplacian matrix can be
used to find the structure of attributes in dataset. Then,
we can use this structural information to guide the
adjustment of the weight of each attribute. Based on this
idea, we proposed a new Naive Bayes method, which is
called LPNB, to deal with the classification problems.
The main contributions of this paper are summarized as
follows:

• We improved the performance of Naive Bayes algo-
rithm by introducing a Laplacian matrix to recon-
struct the dataset to reduce the correlation between
the attributes of samples.

• After we use the Laplacian matrix to represent the
structure of sample attributes, we propose a method
to optimize the weights of each attribute of samples.

• We conduct experiments on fifteen datasets and
compared the results with six competitive methods.
The experimental results indicate that the proposed
method is superior to the others.

The remaining organization of the paper is as follows.
In Section 2, we introduce the related work of Naive
Bayes classification method. In Section 3, we propose our
improvement on basic Naive Bayes method. In Section 4
we applies our proposed method to classify data, describe
the processing steps and analysis the experiment results,
and sum up in Section 5.
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II. Related Work
The Naive Bayes classification method has excellent

characteristics, such as simplicity, high efficiency and
interpretability, but it is limited by the assumption
that the attributes are independent of each other, so
that its performance will be greatly affected in complex
applications. Most of the current research is to improve
performance by reducing the interference of features.
There are two main categories: One is to improve the
Naive Bayes classification method by selecting the best
feature subset; The second is the weight of attribute
method, which is to improve the performance of clas-
sification results by assigning weights to change the
relationship between attributes.

A. improved method based on feature selection
The Naive Bayes method can be improved by feature

selection, which can effectively reduce feature size and
accelerate the learning process of classifier[24][25][26].
Correlation-based feature selection (CFS) is a commonly
used feature selection method[14]. The core ideal of CFS
is that a good feature subset contains features highly
related to class variables but they are orthogonally re-
lated to each other. CFS searches for feature subset space
using the best priority strategy and uses the following
equation to evaluate the advantages and disadvantages
of feature subset s containing k features:

Merits =
krcf√

k + k(k − 1)rff
(1)

where rcf is the average value of the correlation between
features and classes. rff is the average value of the
correlation between features and features. Merits is a
heuristic data to delete irrelevant features to find a
feature subset with larger rcf . Meanwhile, it is also
search for a feature subset with smaller rff by removing
redundant features.

Then, the feature i’s weight Wi is allocated as follows:

Wi =

{
1, if feature Ai is selected
0, otherwise (2)

In this way, CFS performs feature selection. When it
is applied to Naive Bayes method, Naive Bayes method
based on feature selection (CFSNB)[14] is built. Formula
(3) is used to calculate classification results.

c(x) = argmax
c∈C

P (x)
m∏
i=1

P (ai|c)Wi (3)

B. Improved method based on feature weighting
As feature weighting can weaken the correlation be-

tween features, it is often used to improve the classifica-
tion performance. Then, many methods is proposed to
optimal feature weighting to improve the performance
of Naive Bayes method[15] [16]. For example, Jiang et
al. [27] proposed a very effective deep feature weighting
for Naive Bayes method (DFWNB). First, they use the
weights obtained from the CFS to the attributes as the
common feature weighting methods. Then, they applied

these weights to the conditional probability formula to
further improve the results:

P (ai|c,Wi) =

∑n
j=1 Wiδ(aji, ai)δ(cj , c) + 1∑n

j=1 Wiδ(cj , c) + ni
(4)

c(x) = argmax
c∈C

P (x)
m∏
i=1

P (ai|c,Wi)
Wi (5)

where ni is the number of features i. As the main idea
of DFWNB is feature weighting, it does not use CFS
to delete redundant features. Its weight allocation is as
follows.

Wi =

{
2, if feature Ai is selected
1, otherwise (6)

In the above two methods, the CFSNB method selects
the best characteristic subset and then carries out the
Naive Bayes classification. The DFWNB method assigns
the weight by selecting the best characteristic subset
based on CFSNB method, and applies them into condi-
tional probability formula to improve the Naive Bayes
method. They all achieved good results.

Fig. 1: Laplacian matrix process

C. Laplacian matrix
Laplacian matrix has the property of maintaining the

structure of data set in dimensionality reduction. Using
this property, many researchers have done a good job.
He [21] proposed an algorithm based on laplacian matrix
for local feature projection. Dittrich [23] proposed a
spectral clustering algorithm based on this characteristic
of the Laplacian matrix. He [28] noticed that the two
attributes in a dataset have a great correlation if their
values in different samples are very close. And then
He used the Laplacian matrix to do feature selection.
Generally speaking, if the correlation between two fea-
ture attributes is higher, the correlation between their
corresponding predictions will be higher [29].

In graph theory [17][18], a matrix is often used to rep-
resent a graph as it can carry a lot of useful information.
Given a graph G with n vertices, its Laplacian matrix
is obtained by subtracting the degree matrix from the
superposition matrix.

Wi =

{
1, if i ̸= j and i and j are adjacent
0, if i = j, or i ̸= j and i is not adjacent j

(7)
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L = D −W (8)

Where the adjacency matrix W = [wij ], the degree
matrix D = diag{d1, . . . , dn}, di =

∑
j=1 wij .

xTLx = xTDx− xTWx =
1

2

m∑
i,j=1

wij(xi − xj)
2 (9)

When we calculate the distance between two nodes with
weights, we can get the equation (9). From it, we can
know that the original structure will still be maintained.

III. Approach

In this paper, we propose a Laplacian matrix based
Naive Bayes method (LPNB) to deal with classifying
problem. This proposal is based on the following con-
siderations. An important assumption of Naive Bayes
method is that the attributes are independent of each
other. However, in real classification problem, some
attributes and even the entire attributes are related, they
are not completely independent. Therefore, we need to
find a suitable weight allocation method to adjust the
attributes to reduce the impact aforementioned. Here we
use Laplacian matrix to describe the attributes’ structure
of the dataset to be classified, and then optimize to
find the appropriate weights to reconstruct the dataset.
Finally, Naive Bayes is applied for classification.

A. Naive Bayes

Given an instance x, attributes vector<
a1, a2, . . . , am >, and label set C, Naive Bayes
method uses the following formula to classify x:

c(x) = argmax
c∈C

P (x)

m∏
i=1

P (ai|c) (10)

where P (c) is a prior probability and P (ai|c) is a
conditional probability. Their calculation formulas are
as follows:

P (c) =

∑n
j=1 δ(cj , c)

n
(11)

P (ai|c) =
∑n

j=1 δ(aji, ai)δ(cj , c) + 1∑n
j=1 δ(cj , c) + ni

(12)

where n is the number of training instances, and δ(·) is
a binary function, which takes 1 if its two parameters
are identical, otherwise it takes zero.

B. Laplacian matrix process

In Laplacian matrix processing, we first need to con-
struct a Laplacian matrix from the data set which will
be classified, and then assign weights to each attribute
accordingly. The process is shown in Fig1.

1) construct Laplacian matrix: We construct an ad-
jacency graph G, where each node is an attribute in
the dataset. That is, the kNN method is used to find
the adjacency attributes of a specified attribute node.
We set the k of kNN is refer to the literature [30], i.e.
k =

√
n. Here, n is the number of attributes. Then, we

can build an adjacency graph G. For detailed methods,
please refer to the literature [31].

Furthermore, we get the adjacency matrix N and
degree matrix D from G. Then, the Laplacian matrix
can be obtained from the following formula.

L = D −N (13)

2) Get weight matrix: The Naive Bayes method re-
quires attributes to be independent of each other, but
it is very common to have attribute correlation in the
actual datasets. The Laplacian matrix can represent
the attribute relationship well, which means that it is
possible to reduce the influence of attribute correlation
on the Naive Bayes method by adjusting the data in
Laplacian matrix. It is generally believed that the more
related the attributes are in the data set, the greater the
correlation degree of the adjacency matrix. Therefore, we
consider the adjacency matrix N as an expression of the
weights between attribute relationships. Then, we adjust
N to get the weight matrix W . And L can be obtained
by the following formula.

L = D −W (14)

We obtain W by randomly adjusting the non-zero
values in N . Namely, we use {aij |aij ∈ N, aij ̸= 0} as
the initial position to randomly generate particles, and
use the classification accuracy as the target function.
Then the particle swarm optimization algorithm (PSO)
in literature [32] is used to iterate 1000 times to get the
result. Herein, we constrain the search space of aij to
(−cs, cs), for example (−1, 1). Each particle updates its
position and velocity according to the following equations
(parameter value: w = 1, c1 = 0.49, c2 = 1.49):

{
vi+1 = wvi + c1r1(pbesti − xi) + c2r2(gbesti − xi)
xi+1 = xi + vi

(15)
Next, we reconstruct the dataset T using the equation

16. Hereafter, the new dataset T ′ is classified by the
Naive Bayes to obtain the final result.

T ′ = TL (16)

Herein, the main consideration is that Naive Bayes
method requires that attributes be independent of each
other. Therefore, we use PSO to optimize the weight of
each side on N to obtain the weight matrix W . Ideally,
the weight matrix W makes the attributes approximately
independent, and also expresses the importance of each
attribute in the classification problem. In this way, the
classification of the transformed T ′ will have a better
result.
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Algorithm 1 Pseudo of LPNB
Input: training samples T , test samples X,
control parameter cs, the number of iteration C
Output: Class labels of X
1. Use kNN method to calculate and generate laplacian
matrix L
2. For i = 1, C:
3. Control each valued element of the Laplacian matrix,
conduct particle swarm search in the search space controlled
by the search parameter cs, then obtain the new laplacian
matrix L
4. Multiply L and data T to get new data set T ′

5. Apply T ′ to NB, get the prediction result,
and feed back to the particle swarm optimization
6. End for
7. Apply the obtained L to NB algorithm of test dataset X

TABLE I: Experimental datasets

Dataset Abbr. instances attributes categories
abalone abal 4177 8 3

balance-scale bala 625 4 3
glass glass 214 10 7
heart heart 270 13 2

hepatits hepa 155 20 2
ionosphere iono 351 34 2

iris iris 150 5 3
lymphography lymp 148 18 4
primary-tumor prim 339 18 21
segmentation segm 210 19 7

sonar sonar 208 60 2
spect spect 187 23 2
wave wave 5000 22 3
wdbc wdbc 569 31 2
wpbc wpbc 198 34 2

IV. Experiments
In the experiments, we evaluate the performance of

our method from two aspects. One is to verify the
performance of LPNB from different data dimensions.
Secondly, it is compared with the classic classification
algorithms, Naive Bayes and its latest improvement
method.

A. Experimental data and evaluation criteria
In our experiment, we used 15 datasets which come

from UCI machine learning repository. In order to eval-
uate the performance of the algorithm adequately, the
data sets we choose have various types. Their dimensions
are covered from low to high and the number of classes
ranges is from 2 to 21. And for missing values in these
datasets, we replaced it with 0. The detail description is
provided in Table I.

For benchmark, we chose the standard Naive Bayes
method, the latest Naive Bayes improved methods CF-
SNB and DFWNB and the classic classification method,
such as kNN, SGD and Decision Tree[33][34][35][36]. At
the same time, accuracy, recall and f1_score are used to
evaluate each method[37]. Their parameters are defined
with reference to Table II, and the formulas are as
follows.

recall =
true positive

true positive+ false negative
(17)

TABLE II: The output of classification

1 0
1 true positive false positive
0 false positive true positive

TABLE III: Accuracy of methods with different cs
parameters in LPNB

(-1, 1) (-2, 2) (-3, 3) (-4, 4) (-5, 5)
abalone 55.28 55.54 55.81 55.78 55.76

balance-scale 91.68 93.12 92.96 92.80 92.64
glass 71.96 71.03 72.90 72.90 72.43
heart 86.30 86.67 87.78 86.30 88.15

hepatits 87.10 87.74 89.03 89.03 89.68
ionosphere 96.30 95.73 94.87 96.87 95.44

iris 99.33 99.33 99.33 99.33 99.33
lymphography 93.24 92.57 93.24 93.92 95.27
primary-tumor 64.01 65.19 65.49 63.72 65.19
segmentation 87.14 89.05 89.52 86.19 88.09

sonar 94.23 93.75 92.31 90.87 92.31
spect 96.26 95.72 95.19 96.26 95.72
wave 86.38 86.76 86.28 86.60 86.52
wdbc 95.96 95.43 95.25 95.25 95.61
wpbc 77.27 77.27 76.77 76.26 76.26

TABLE IV: Recall of methods with different cs param-
eters in LPNB

(-1, 1) (-2, 2) (-3, 3) (-4, 4) (-5, 5)
abalone 55.41 56.11 56.40 56.21 56.26

balance-scale 91.72 92.77 92.65 92.53 92.42
glass 71.80 64.98 69.94 72.40 69.33
heart 85.75 86.42 87.25 85.83 87.83

hepatits 82.62 85.34 85.00 88.47 83.09
ionosphere 96.30 95.10 94.60 96.51 94.70

iris 99.33 99.33 99.33 99.33 99.33
lymphography 96.31 95.90 96.31 96.51 97.43
primary-tumor 73.64 72.58 76.27 75.12 72.76
segmentation 87.14 89.05 89.52 86.19 88.09

sonar 94.14 93.62 92.21 90.79 92.27
spect 91.88 88.55 85.21 91.88 95.72
wave 86.35 86.74 86.25 86.56 86.49
wdbc 95.44 95.44 94.40 94.21 95.61
wpbc 68.25 71.91 70.11 71.98 69.05

precision =
true positive

true positive+ false positive
(18)

f1_score = 2
recall × precision

recall + precision
(19)

In order to evaluate the quality of the methods from
the m datasets in the experiments, we sort the results
obtained by each method in the same dataset. Then
accumulate the rankings in different datasets. At this
point, the smallest is best. That is, for the dataset Ti,
the result of the method j is ranked as k, then recorded as
rij = k. In this way, the evaluation score of the method
j in the entire datasets can be expressed by the following
formula.

scorej =
m∑
i=1

rij (20)
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Fig. 2: The accuracy of each method in different data sets

TABLE V: f1_score of methods with different cs param-
eters in LPNB

(-1, 1) (-2, 2) (-3, 3) (-4, 4) (-5, 5)
abalone 53.36 54.06 54.21 54.3 54.21

balance-scale 92.47 93.42 93.33 93.33 93.17
glass 70.61 70.06 71.94 72.96 72.29
heart 86.23 86.65 87.72 86.25 88.14

hepatits 87.37 88.17 89.21 89.50 89.55
ionosphere 96.30 95.71 94.88 96.86 95.42

iris 99.33 99.33 99.33 99.33 99.33
lymphography 93.23 92.54 93.23 93.88 95.27
primary-tumor 63.76 64.09 64.37 62.97 64.42
segmentation 86.30 89.03 89.35 85.11 87.26

sonar 94.23 93.74 92.30 90.86 92.31
spect 96.41 95.84 95.26 96.41 95.95
wave 86.31 86.68 86.23 86.51 86.51
wdbc 95.94 95.40 95.23 95.22 95.58
wpbc 77.19 77.92 77.23 77.17 76.66

B. The selection of parameters cs

In our proposed LPNB, we introduce cs parameter
to control how to maintain the structure of the original
dataset as much as possible. The cs parameter is used to
control the range of weights, that is, the particle swarm
algorithm search range for each non-zero value in the
adjacency matrix N . In order to investigate the effect of
different values of cs on the results, cs were set as (-1, 1),
(-2, 2), (-3, 3), (-4, 4), (-5, 5), and iterated 10,00 times
to search for the optimal Laplacian matrix respectively.
From the results in Table [III-V], we found that the

difference is small when LPNB takes different cs ranges.
So we make the average of models and used the average
values as the final results.

C. The performance of LPNB in different number of
dimensions and class labels

1) The performance of different dimensions: In order
to evaluate the performance of the LPNB algorithm
in different dimensions, we illustrate the experimental
results in ascending order of the datasets’ dimensions in
Fig 5. Obviously, the LPNB performs better than the
others on the whole. This shows that LPNB has good
performance from low-dimensional to high-dimensional
data sets. At the same time, it can be seen that all
the algorithms performed poorly on the abalone dataset
(8-dimensional) and the primary-tumor dataset (18-
dimensional). For the abalone dataset, its last dimension
are discrete data, but the others   are continuous data.
Even worse, the last value of dimensional data is much
larger than the others. It can be considered that the
current algorithm is relatively poor in processing these
data sets where discrete data and continuous data are
mixed. It may be an important direction for future
research. As for the primary-tumor dataset, it has a lot
of incomplete data, and we replace these missing data
with 0. In addition, the primary-tumor data set has only
three values. Obviously, neither LPNB nor the methods
we used for comparison have a good way to deal with
this situation, so their results are poorly. For LPNB, the
reason is that the Laplacian matrix established by the
Euclidean distance cannot maintain the structure of the
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TABLE VI: The accuracy of each method in different data sets(acc means accuracy, r means rank)

LPNB NB CFSNB DFWNB SGD kNN DT
acc r acc r acc r acc r acc r acc r acc r

abalone 55.63 1 52.09 2 50.65 5 50.77 4 45.74 7 51.87 3 49.43 6
balance-scale 92.64 1 90.88 3 91.13 2 83.39 5 86.54 4 78.53 6 77.56 7

glass 72.24 1 55.14 4 53.81 5 53.33 6 22.64 7 60.38 3 64.15 2
heart 87.04 1 85.93 2 81.11 5 81.85 4 51.49 7 67.16 6 82.09 3

hepatits 88.52 1 76.77 4 80.67 3 82.00 2 58.44 7 68.83 6 72.73 5
ionosphere 95.84 1 89.46 2 81.43 6 81.14 7 86.86 4 82.86 5 88.00 3

iris 99.33 1 96.00 2 92.67 6 94.00 4 86.49 7 93.24 5 94.59 3
lymphography 93.65 1 84.46 2 80.71 5 83.57 3 80.82 4 68.49 7 72.60 6
primary-tumor 64.72 1 20.06 7 25.45 6 46.06 2 34.91 5 38.46 4 39.05 3
segmentation 88.00 1 83.81 2 44.76 7 50.95 6 55.77 5 74.04 4 81.73 3

sonar 92.69 1 73.08 3 57.50 6 53.50 7 75.73 2 71.84 4 66.02 5
spect 95.83 1 53.48 7 92.22 3 83.89 4 93.55 2 82.80 5 80.65 6
wave 86.51 1 80.92 3 73.16 6 75.42 5 82.47 2 80.23 4 73.07 7
wdbc 95.50 1 94.20 2 74.46 6 63.04 7 89.44 5 90.85 4 91.55 3
wpbc 76.77 2 73.74 5 75.78 3 76.84 1 74.49 4 67.35 7 70.41 6
score 16 50 64 67 72 73 68

TABLE VII: Recall of comparative method(rc means recall, r means rank)

LPNB NB CFSNB DFWNB SGD kNN DT
recall r recall r recall r recall r recall r recall r recall r

abalone 56.08 1 53.90 2 49.59 5 51.54 3 48.87 7 51.47 4 49.27 6
balance-scale 92.42 1 65.74 3 66.03 2 60.25 5 62.34 4 55.45 7 59.06 6

glass 69.69 1 61.58 3 53.81 4 38.25 6 28.85 7 48.96 5 64.96 2
heart 86.62 1 85.58 2 79.77 5 81.57 4 57.03 7 65.54 6 82.58 3

hepatits 84.90 1 79.59 3 80.67 2 73.65 4 43.80 7 50.36 6 71.26 5
ionosphere 95.36 1 86.19 2 81.43 5 81.71 6 82.67 4 76.93 7 85.84 3

iris 99.33 1 96.00 2 92.67 6 94.08 4 88.27 7 93.77 5 94.68 3
lymphography 96.49 1 91.38 2 71.87 4 84.25 3 64.98 5 45.69 6 36.42 7
primary-tumor 74.07 1 47.89 2 8.44 7 34.33 3 19.05 6 19.81 5 24.20 4
segmentation 88.00 1 83.81 2 47.35 7 49.58 6 55.82 5 76.71 4 81.92 3

sonar 92.61 1 74.06 3 57.60 6 53.68 7 75.43 2 71.35 4 66.08 5
spect 90.65 2 74.71 6 92.22 1 86.84 3 81.03 5 83.05 4 74.14 7
wave 86.48 1 80.84 3 73.06 6 75.42 5 82.24 2 80.30 4 73.04 7
wdbc 95.02 1 93.17 2 72.02 6 63.03 7 85.29 5 90.27 4 91.68 3
wpbc 70.26 2 67.39 3 53.48 6 76.84 1 57.77 5 48.82 7 60.70 4
score 17 40 72 67 78 78 68

TABLE VIII: f1_score of comparative method(f1 means f1_score, r means rank)

LPNB NB CFSNB DFWNB SGD kNN DT
f1 r f1 r f1 r f1 r f1 r f1 r f1 r

abalone 54.03 1 47.73 6 50.68 3 49.76 4 36.61 7 51.92 2 49.53 5
balance-scale 93.14 1 65.74 4 87.45 2 83.39 3 62.34 5 55.45 7 59.06 6

glass 71.57 1 61.58 3 48.91 6 51.83 4 28.85 7 48.96 5 64.96 2
heart 87.21 1 85.58 2 80.54 5 81.96 4 57.03 7 65.54 6 82.58 3

hepatits 88.76 1 79.59 3 72.70 4 83.08 2 43.80 7 50.36 6 71.26 5
ionosphere 95.83 1 86.19 2 81.79 6 82.98 4 82.67 5 76.93 7 85.84 3

iris 99.33 1 96.00 2 92.67 6 93.92 4 88.27 7 93.77 5 94.68 3
lymphography 93.63 1 91.38 2 56.86 4 49.98 5 64.98 3 45.69 6 36.42 7
primary-tumor 63.98 1 47.89 2 10.89 7 44.73 3 19.05 6 19.81 5 24.20 4
segmentation 87.41 1 83.81 2 41.40 7 52.08 6 55.82 5 76.71 4 81.92 3

sonar 92.69 1 74.06 3 56.86 6 49.98 7 75.43 2 71.35 4 66.08 5
spect 95.97 1 62.90 7 88.60 3 72.50 6 93.97 2 86.67 4 85.01 5
wave 86.36 1 79.72 4 71.77 7 74.85 5 82.09 2 80.31 3 73.11 6
wdbc 95.44 1 94.16 2 74.12 6 48.98 7 88.93 5 90.86 4 91.61 3
wpbc 77.10 1 74.55 2 68.62 5 67.05 6 71.58 3 64.08 7 70.61 4
score 15 46 77 70 73 75 64
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Fig. 3: Recall of different methods

Fig. 4: f1_score of different methods

original dataset well in this case.
2) The performance of different numbers of class label:

In this section, we observe the performance of LPNB
from the perspective of different numbers of classes. In
Fig 6, we show the accuracy of each algorithm according
to the number of classes from small to large. It can be
seen that LPNB is superior to other methods in the case
of multiple classifications, though, the performance in
different dimensions is fluctuates. Then, we argue that
the LPNB method performs well in different class labels.

D. Competing methods
It can be seen from Table VI-VIII that the accuracy

score of LPNB is 16, the recall rate is 17, and the f1_score
score is 15. Namely, the rank of LPNB is highest among
every evaluation criteria. Therefore, we can conclude

that LPNB has the best performance among all the
compared algorithms. In addition, we compared and
analyzed the performance of the algorithm in three area:
1) comparison with Naive Bayes, 2) the latest improved
methods of Naive Bayes CFSNB, DFWNB, and 3) classic
classification algorithms kNN, SGD and Decision Tree.

First, from the comparison of LPNB and Naive Bayes,
the improvement of LPNB is very obvious. As shown in
Table VI, the classification performance of LPNB in   all
datasets is very good, its classification accuracy exceeds
Naive Bayes, and the average classification accuracy of
each LPNB dataset is increased by 11.65%. Similarly, the
comparison between the two results in the recall rate and
f1_score also supports this identification. Therefore, we
believe that LPNB implicitly improves the independence
between attributes by adjusting the weights of the
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Fig. 5: LPNB comparison of different dimensions in accuracy

Fig. 6: Different Category cs corresponds to accuracy

attributes.

Secondly, for Naive Bayes’s latest improved algo-
rithms, CFSNB and DFWNB, LPNB is still better
than them. It can be seen from Table VI that the
accuracy of LPNB is 15.29% and 15.01% better than
CFSNB and DFWNB methods in average, respectively.
For the evaluation of recall and f1_score, LPNB’s score is
significantly ahead of CFSNB and DFWNB (Table VII-
VIII). From Figs. [3-4], LPNB is intuitively superior to
the other two Naive Bayes methods. For example, in the
wdbc dataset, we have enhanced independence between
all attributes, so it is better than the two improved
methods of CFSNB and DFWNB. Similarly, it can be
seen from Fig 5-6 that under different dimensions and
different multi-classification problems, LPNB is better
than CFSNB and DFWNB. Because CFSNB selects

features, it ignores the impact of unselected attributes
on the final classification label. For DFWNB, it finds
the optimal feature subset of each class and weights
them separately. But, there is no weight distinction
for each different attributes, and DFWNB ignores the
relationship between the features in the two classes and
reduces the performance of the algorithm. So LPNB
performs better than CFSNB and DFWNB. Overall,
LPNB may only be slightly worse than DFWNB on
wpbc in all data sets. The wpbc is a very unbalanced
data set (positive example: negative example = 151: 47).
The DFWNB algorithm is shown the property that it
will be attracted by big classes on the wpbc data set,
so it is better than LPNB in the recall rate, but it
is worse than LPNB in the f1_score evaluation. This
shows that our method (LPNB) has better performance
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on unbalanced data sets, especially in those cases where
a small class require higher accuracy. In the rest of the
datasets, the classification results show that LPNB has
good performance.

Finally, we compared LPNB with other classic clas-
sification algorithms such as kNN, SGD, Decision Tree
to observe its performance. It can be seen from Table
VI-VIII and Fig 2-4 that LPNB has obvious advantages
over kNN, SGD, Decision Tree in the performance of
accuracy, recall, and f1_score. On the average accuracy
of 15 data sets, LPNB keeps ahead SGD 17.30%, is
exceeding kNN 13.87% and is better than Decision
Tree 12.09%. The number of iterations will affect the
parameter optimization of the SGD algorithm, and its
parameters are sensitive. Minor perturbations of the
parameters can cause large changes in its results. There-
fore, SGD needs to add regular terms to improve the
results. However, there are no standards for determining
the number of iterations and selecting an appropriate
regular term. For SGD in this paper, we refer to the
regular terms and iterations commonly used by most
researchers. They may not be the best match for our
dataset. Therefore, the results of SGD are worse than the
LPNB. The results of f1_score and recall show that the
LPNB has better classification stability than SGD. Since
kNN is unsupervised learning method and it is affected
by the k value. KNN is a distance-based classification
method. However, Euclidean distance which used in
this paper for kNN is difficult to describe the data
characteristics of different data sets. Furthermore, the
k value of kNN is difficult to set accurately, which
also affects the effectiveness of the algorithm. That is
why kNN is inferior to LPNB. For the Decision Tree
method, the results of LPNB are better than it from
the three evaluation indicators. We carefully analyze
the reason that the Decision Tree method also selects
a subset of features for classification. Although those
discarded attributes do not support the classification
results obviously, they are still effective supplements for
classification. Therefore, when the LPNB enhances the
independence between attributes through the laplacian
matrix, the LPNB using full attributes for classification
is better than the Decision Tree.

Overall, the experiments shows that LPNB performs
well in high-dimensional, multi-class situations. LPNB
also performs well compared with Naive Bayes method
and its recent excellent improvement approaches. It also
has advantages compared among the classic SGD, kNN
and Decision Tree methods. At the same time, it can be
seen from the experiment that there are two difficulties
in the current classification problem. Similar to other
existing classification method, if the dataset mixed the
discrete data with continuous data, or if there are large
orders of magnitude differences between data in the same
data set, LPNB does not perform well, but it is better
than other existing methods.

V. Conclusion
As a classic algorithm, Bayesian classification is an im-

portant research ad-hoc in this area. This work proposes
a new method to enhance the independence between

attributes in a dataset by using a Laplacian matrix to
improve Naive Bayes algorithm. The proposed method
can make Bayesian method running well: the attributes
are independent each other. We conducted experiments
on 15 datasets and compared the proposed method
with six competitive methods. The experimental results
are shown that the proposed method outperforms other
alternatives in most cases in terms of effectiveness.
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