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Abstract—Hidden Markov models (HMMs) are applied to
many problems of computational Molecular Biology. In a
predictive task, the HMM is endowed with a decoding algorithm
in order to assign the most probable path of states, and in
turn the class labelling, to an unknown sequence. In this paper
we introduce a novel decoding algorithm Log-posterior-best
(LPB) which combines the log-odd posterior probability and
1-best algorithms. LPB is a two steps process: first the Log odd
probability of each state is computed and then the best allowed
label path through the model is evaluated by a 1-best algorithm.
We show that our LPB decoding performs better than other
existing algorithms in some computational biological problems
such as gene finding in prokaryotes.

Index Terms—Hidden Markov Model; LPB decoding algo-
rithm; DNA sequences.

I. INTRODUCTION

AHIDDEN Markov Model consists of two stochastic pro-
cesses. The first stochastic process is a Markov chain

that is characterized by states and transition probabilities [1].
The states of the chain are externally not visible, therefore
”hidden”. Another stochastic process will generate emissions
which is observable at every instant. It is dependent on state
probability distribution [2]. In case of Hidden Markov Model,
the term “hidden” doesn’t indicate a parameter of the model,
but it indicates the state of the Markov Chain [3], [4], [5],
[6].

A Hidden Markov Model is a generalization of a Markov
chain, in which each ”internal” state is not directly observ-
able (hence the term hidden) but produces ”emits” an observ-
able random output ”external” state, also called “emission”,
according to a given stationary probability law [8]. In this
case, the time evolution of the internal states can be induced
only through the sequence of the observed output states.

If the number of internal states is N, the transition proba-
bility law is described by a matrix with N times N values; if
the number of emissions is M, the emission probability law
is described by a matrix with N times M values. A model
is considered defined once given these two matrices and the
initial distribution of the internal states. The study by Rabiner
[9], [10] is widely well appreciated for clarity in explaining
HMMs. It is a powerful class of model used in many fields
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including gene finding, profile searches, error correction
coding, multiple sequence alignment, speech recognition and
regulatory site identification.

One of the important goals is to find genes in a genome
sequences of prokaryote organisms. Finding or predicting
a gene in prokaryote is needed for knowing the function,
activity, and characteristics of cells. Also finding genes
will provide an important way for identifying diseases that
could have occurredin animals, plants and humans, and aid
scientists to discover a useful drugs.

Gene Finding: The term ”gene finding” indicates the
action of finding genes within a DNA sequence, but is
often used with a more general meaning of labeling DNA
tracts [11], for example labeling them as coding, intergenic,
introns, etc. In this last sense gene finding can be considered
a special case (the most important in bioinformatics) of
the more general action known as sequence labeling (also
for non-DNA sequences). Determining the DNA and RNA
sequences are relatively cheaper than determining protein
sequences. One of the most successful class of techniques for
analyzing biological sequences has been the use of HMM.
HMM are mainly used for predicting protein sequences since
it provides a good probabilistic framework for the same
[12], [25]. Considering the work done, there are mainly
two tasks for bioinformatics: Deducing the protein DNA
sequence and Comparing protein sequences to an existing
database of protein sequences, both of which utilize Hidden
Markov Models. In [13], the authors introduced the use of
HMMs for discriminating coding and intergenic regions in
E. coli genome. The program GeneMark [19] finds genes in
E. coli DNA using a Markov model for the coding region.
It is a parser with a complex intergenic model. The more
complex HMM, intergenic model consists of several parts in
addition to the start and stop codon models. After generating
the stop codon, the model chooses either the transition to
the long intergenic HMM or the short intergenic HMM, with
appropriate probabilities. The short intergenic HMM tends to
generate intergenic regions of lengths from 1 to 14 or so, with
statistics determined from examples of such short intergenic
regions in actual E. coli contigs. Similarly, the parameters
of the long intergenic model are adjusted to capture the
statistics of longer intergenic regions. The parameters of
the two intergenic models were estimated from a set of
known intergenic regions by a learning procedure known as
the forward-backward algorithm. As a result of the training
process, the long intergenic region develops patterns, without
having to explicitly encode them. The complex parser has a
better accuracy.

Generally, there are two principal methods for finding
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genes in prokaryotes (e.g, E. coli), both of which have
been incorporated into systems that analyse eucaryotic DNA.
The first approach locates signals in DNA like promoter
sequences and splice junctions using techniques such as
neural networks [25], [26] or statistical methods [27]. The
second approach scores a certain window of DNA in various
ways in order to decide whether the window belongs to a
coding (where coding regions represent a gene) or anon-
coding region (reviewed in [29]). Staden and McLachlan
[23], [30] proposed deviation from average codon usage as a
way of determining the probability that the window is coding
or not. Later, Gribskov et al. [31] used a similar measure as
a part of their ’codon preference plot’, but their measure
did not require the knowledge of an average codon usage
from other sources. Most other scoring methods are related to
codon usage in some way [23]. Recently, the most powerful
machine learning techniques such as neural networks [34]
and HMM [37] have been used to analyze coding (and non-
coding) regions. In particular, the GeneMark Model [19]
finds genes in E.coli DNA using a HMM for the coding
region related to the one discussed in this paper.

When HMMs are implemented for Gene prediction prob-
lem, a decoding algorithm is needed. Decoding phase is
the process of finding the most suitable path of states that
represent a given sequence and in turn the class labelling, to
an unknown sequence.

There are many argued decoding algorithms such as
Viterbi, 1-best, posterior. The decoding algorithm takes
the observation sequence as input and return the best path
of states that represent it in the model. The Viterbi and
the Posterior decoding algorithms are the most common
algorithms used in decoding. The former is very efficient
when one path dominates, while the second, even though
does not guarantee to preserve the automaton grammar, is
more effective when several concurring paths have similar
probabilities. The third alternative is 1-best, which was
shown to perform equal or better than Viterbi for getting
most probable label path.

II. RELATED WORK

Many extensions to the original “pure” HMM have been
developed for gene finding. For example, [14] designed
separate HMM modules, each one appropriate for a specific
region of DNA. Separate HMM modules were designed and
trained for specific regions of DNA: exons, introns, intergenic
regions and splice sites. In order to form a biologically
viable topology, the models were coupled. Additionally,
the integrated HMM was trained on a set of eukaryotic
DNA sequences and then tested by using an unknown DNA
sequence. [15], [16] used a Generalized HMM (GHMM or
“hidden semi-Markov Model”) that allows more than one
emission for each internal state. Gene finding has many
applications regarding to human health [44], [45], [46], [47],
[48], [49].

A pair HMM [2] is having large no of similarity with
standard HMM. Basic difference is that it emits pairwise
alignment, where as standard HMM emits a single sequence.
This method provides parse only alignments between two
sequences but, with suitable enhancements, it is sometimes
applied to gene finding. For example, [17] presented a new

method that predicts the gene structure starting from two
homologous DNA sequences, identifying the conserved sub-
sequences. A useful open-source implementation is described
[18]. [19] proposed a new algorithm (GeneMark.hmm) that
improves the gene finding performance of the old GeneMark
algorithm by means of a suitable coupling with an HMM
model. [19] introduced an Evolutionary Hidden Markov
Model (EHMM), based on a suitable coupling of an HMM
and a set of evolutionary models based on a phylogenetic
tree.

In [33], the authors combined all methods for locating
or predicting genes (the search for initiation signals, the
scoring of possible coding regions, and the final dynamic
programming to get the best path of states) in a single simple
framework of Hidden Markov Models. The HMM we use
in this paper to find genes in E.coli is the one used in
Krogh [33]. Since only one strand is modelled, the HMM
is applied twice, once to the direct strand and then to the
complementary strand.

After the Model is built for E.coli DNA sequences, this
Model will be used to predict the genes in E. coli DNA
sequences. When performing a prediction task using HMMs,
the problem is endowed with a decoding algorithm in order
to assign the most probable state path, and in turn the
class labelling, to an unknown DNA sequence. The decoding
algorithm takes the unknown DNA sequence as input and
returns the best path of states that represents it in the model,
this path used to identify genes in this DNA sequence. In
E.coli gene finding problem discussed here, the Viterbi [33],
Posterior, and 1-best decoding algorithms were the most
common algorithms used in decoding process.

The Viterbi decoding is very efficient in determining the
best allowed path when one path dominates the rest, but the
disadvantage of Viterbi is that if two or more paths have the
similar probability for the DNA sequence, it lacks ability to
choose the best between them. While the Posterior decoding
in contrary is more effective when several concurring paths
have similar probabilities, but its disadvantage is that it does
not guarantee to preserve the automaton grammar, or in other
words it may get a path that might be not allowed. The third
alternative is 1-best, which is very efficient in determining
the best allowed label path when one label path dominates
the rest. Labels almost represent a particular signals in DNA
sequences. The disadvantage of 1-best is that if there are
two or more labels having the similar probability for the
DNA sequence, it doesn’t have the ability to choose the best
between them. 1-best was shown to perform equal or better
than Viterbi. This problem can be solved in case the data
sets are distributed among a number of sites which will be
our future work [50], [51], [52], [53], [54], [55], [56], [57],
[58], [59], [60], [61], [62], [63].

III. DECODING ALGORITHMS

• Viterbi Decoding: Viterbi decoding finds the path π
through the model which has the maximal probability
with respect to all the others [23], [27]. This means that
we look for the path which satisfies

πv = argmaxπP (π|O,M) (1)

where O = O1, . . . , OL is the observed sequence of
length L and M is the trained HMM model. Since the
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P (O|M) is independent of a particular path π, Equation
1 is equivalent to:

πv = argmaxπP (π,O|M) (2)

where P (π,O|M) can be easily computed as:

P (π,O|M) = (
L∏
i=1

aπ(i−1),π(i)eπ(i)(Oi))aπ(L),End

(3)
where by construction π(0) always is the Begin state.
Defining vk(i) as the probability of the most likely path
ending in state k at position i, and as the trace-back
Pi(k) pointer, πv can be obtained by running the fol-
lowing dynamic programming called Viterbi decoding.

– Initialization:
vBegin(0) = 1, vk(0) = 0 for k 6= Begin

– Recursion:
vk(i) = [ max{s}(vs(i− 1)as,k)]ek(Oi)

Pi(k) = argmax{s}(vs(i− 1)as,k)

– Termination:
P (O, πv|M) = max(s)[ vs(L)as,End]

πvL = argmax(s)[ vs(L)as,End]

– Traceback:
πvi−1 = Pi(π

v
i )

– Label assignment:
µi = Label(πvi ), for i = 1, . . . , L

• Posterior Decoding: The Posterior decoding finds the
path which maximizes the product of the Posterior
probability of the states [23], [27]. Using the usual
notation for forward fk(i) and backward bk(i) we have

P (πi = k|O,M) = fk(i).bk(i)/P (O|M) (4)

The path πP which maximizes the Posterior probability
is then computed as:

πPi = argmax{s} P (πi = s|O,M), for i = 1, . . . , L
(5)

The corresponding label assignment is:

µi = label(πPi ), for i = 1, . . . , L (6)

If we have more than one state sharing the same label,
labelling can be improved by summing over the states
that share the same label (Posterior sum). In this way
we can have a path through the model which maximizes
the Posterior probability of being in a state with label η
when emitting the observed sequence element , or more
formally:

µi = argmax{η}
∑

label(s)= η

P (πi = s|O,M) (7)

The drawback of Posterior-decoding is that the state
path sequences πPi or µ may be not allowed paths.
However, this decoding can perform better than Viterbi,
when more than one high probable path exits [23], [27].
In this case a post-processing algorithm that recasts the
original topological constraints is recommended [36].
In the sequel, if not differently indicated, with the term
Posterior we mean the Posterior sum.

• 1-best Decoding: The 1-best labelling algorithm de-
scribed here is the Krogh’s previously described variant
of the N-best decoding [32]. Since there is no exact
algorithm for finding the most probable labelling, 1-
best is an approximate algorithm which usually achieves
good results in solving this task [33]. Differently from
Viterbi, the 1-best algorithm ends when the most prob-
able labelling is computed, so that no trace-back is
needed.
For sake of clarity, we define Hi as the set of all
labelling hypothesis surviving as 1-best for each state s
up to sequence position i. In the worst case the number
of distinct labelling-hypothesis is equal to the number
of states. hsi is the current partial labelling hypothesis
associated to the state s from the beginning to the ith

sequence position. In general, several states may share
the same labelling hypothesis. Finally, we use

⊕
as

the string concatenation operator, so that ’AAAA’
⊕

’B’=’AAAAB’. 1-best algorithm can then be described
as follows:

– Initialization:
vBegin(0) = 1, vk(0) = 0 for k 6= Begin

vk(1) = aBegin,k.ek(Oi), H1 = {label(k) :
aBegin,k 6= 0}

Hi = ∅, for i = 2, . . . , L

– Recursion:
vk(i+ 1) =

max(h∈Hi)[
∑
s vs(i).γ(h

s
i , h).as,k].ek(Oi+1)

hki+1 =
argmax(h∈Hi)[

∑
s vs(i)γ(h

s
i , h).as,k]

⊕
label(k)

Hi+1 ←− Hi+1 ∪ {hki+1}
– Termination:

µ = argmaxh∈HL

∑
s vs(L).γ(h

s
L, h).as,End

where γ(a, b)=1 when a =b, 0 otherwise, also as,k = 0
when there is no transition between states s and k, none-
zero otherwise. We must note that in 1-best decoding
we do not need to keep trace-back matrix since it is
computed during the forward steps.

Contribution: In this paper, we introduce a novel decoding
algorithm Log-Posterior-best(LPB) which combines the log-
odd Posterior probability and 1-best algorithms. LPB is a
two steps process: first the Log odd probability of each state
is computed and then the best allowed label path through the
model is evaluated by a 1-best algorithm.

We show that our LPB performs better than other existing
algorithms in some computational biological problems such
as predicting coding regions in prokaryotic’s DNA.

IV. LOG-POSTERIOR-BEST DECODING ALGORITHM
(LPB)

Most computational molecular biology prediction prob-
lems endowed to decoding of most probable path, so it’s
great to develop in decoding algorithms. Approximately in
all prediction problems such as gene prediction, protein
structure prediction, protein, gene classifications, and more
others include dealing with labels. Labels almost represent
a biological properties in DNA or protein sequences. As a
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result in the decoding process we aim to find the decoding
of most probable label path more than most probable state
path.

In this paper, we introduce a novel decoding algorithm
called Log-Posterior-best algorithm (abbreviated as LPB).
In our LPB we combined 1-best decoding algorithm with
Posterior decoding algorithm.

Advantage of LPB algorithm is that it solves the problem
in 1-best algorithm when there are several label paths for
single unknown sequence by including Posterior probability.
Another advantage of LPB algorithm is that it solves the
problem of Posterior decoding algorithm by selecting a path
that might be not allowed, including 1-best.

Log-Posterior-Best (LPB) algorithm is two process:
1) firstly, we compute the log-odd of Posterior probability

for each state at each position in the unknown query
sequence.

2) secondly, we apply 1-best decoding algorithm to get
the most probable label path.

We must note that, in our LPB, we take log-odd to avoid
the problem of underflow, that may occur with very long
sequences as we stated above and also compute the Posterior
probability in more accurate manner. finally the LPB is
compute πLPB performed as follows:
• Initialization:

vBegin(0) = 1, vk(0) = 0 for k 6= Begin

vk(1) = aBegin,k.ek(O1), H1 = {label(k) :
aBegin,k 6= 0}

Hi = ∅, for i = 2, . . . , L

• Recursion:
vk(i+ 1) = max(h∈Hi)[

∑
s vs(i).γ(h

s
i , h).as,k] ·

logit(P (πi = k|O,M)))

hki+1 =
argmax(h∈Hi)[

∑
s vs(i)γ(h

s
i , h).as,k]

⊕
label(k)

Hi+1 ←− Hi+1 ∪ {hki+1}
• Termination:

µ = argmaxh∈HL

∑
s vs(L).γ(h

s
L, h) · as,End

where log-odd of Posterior probability is computed as:

P (πi = k,O) = P (πi | O,M)× P (O |M). (8)

fk(i)× bk(i) = P (πi | O,M)× P (O |M). (9)

P (πi | O,M) =
fk(i)× bk(i)
P (O |M)

. (10)

logit(P (πi|O,M)) = logit(
fk(i)× bk(i)
P (O |M)

). (11)

logit(P (πi|O,M)) = logit(fk(i)×bk(i))−logit(P (O |M)).
(12)

logit(P (πi|O,M)) = log(
fk(i)× bk(i)

1− (fk(i)× bk(i))
)−

log(
P (O |M)

P (O | NullModel)
) (13)

V. RESULTS AND DISCUSSIONS

A. Data Sets

The data used to score our algorithm LPB with other
decoding algorithms (Viterbi, 1-best, Posterior) are:
Some DNA sequences which are available at
(http://www.ncbi.nlm.nih.gov/sites/entrez) for dUTPase
coli, in which we use a set that includes 400 DNA
sequences whose length range from 800 bp to 1250 bp.
Aligning these DNA sequences show that their conserved
region represent less than 25% of their total length, in other
words these DNA sequences are less than 25% identical.
Among these 400 DNA sequences (300 were used randomly
to train the HMM, the other 100 DNA sequences are used
as test set). Here our focus is to test the ability of Viterbi,
Posterior, 1-best, and LPB decoding algorithms to solve
the problem of the coding regions prediction in these DNA
sequences.

B. Accuracy’s Measures

The measures used here to test the accuracy of predictions
will be at nucleotide level:
in which each nucleotide of a test sequence is classified as
predicted positive (PC) if it is in a predicted coding region,
predicted negative (PN) otherwise, and also as actual positive
(AC) or actual negative (AN) according to annotation of
the DNA sequence. These assignments are then compared to
calculate the number of true positives (TC), false positives
(FC), true negatives (TN) and false negatives (FN). Accuracy
is then measured by:

Sensitivity (SEN) =
TC

TC + FN

Specificity (SPE) =
TC

TC + FC
(14)

C. Testing

We use 400 DNA sequences with their labels, the re-
sults obtained using the four different decoding algorithms
(i.e., Viterbi, Posterior, 1-best, LPB) are evaluated, where
the performance of the four algorithms are tested on 300
DNA sequences (cross validations), and the latter 100 DNA
sequences are used for blind-test to reconstruct the correct
labelling. Figures 1 and 2 give the performance of the
decoding algorithms in terms of average sensitivity and
specificity as obtained in cross-validation and blind test. The
results indicate that the proposed LPB scheme provides better
performance than the other decoding algorithms. In addition,
Figures 3 and 4 illustrate the quality of predictions of the
decoding algorithms at the nucleotide level. By combining
1-best decoding algorithm with Posterior decoding algorithm,
LPB algorithm solves the limitation of 1-best algorithm that
occurs when there are several label paths for single unknown
sequence. Moreover, LPB algorithm solves the drawback of
Posterior decoding algorithm that selects a path that might be
not allowed by including 1-best. When comparing the LPB
algorithm with Viterbi, Posterior and 1-Best, it is clear that
the LPB provides a great improvement to the prediction and
provides better quality prediction. The obtained summary of
results is tabulated in Table 1. It is obvious that, the Viterbi
decoding and the 1-best are unreliable, since the blind test
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is less than 20%. On the other hand, Posterior decoding is
more efficient and can correctly assign more than 50 % and
25 % of the DNA sequences, in cross-validation and blind
test, respectively. Our proposed LPB decoding has the best
performance since its decoding achieving 90 % and 81 %
in cross-validation and blind test, respectively. We must note
that LPB is perform better than Viterbi Posterior and 1-best
because it solves the problem of similar probabilities for two
state paths or label paths by including Posterior probability
and also solves the problem of selecting not allowed path
that occurred in Posterior by including 1-best.

Fig. 1. The performance of the decoding algorithms in terms of average
sensitivity.

Fig. 2. the performance of the decoding algorithms in terms of average
specificity.

We must note that LPB performs better than Viterbi and
1-best because it solves the problem of similar probabilities
for two state paths or label paths by including Posterior
probability.

Also, it performs better than Posterior because it solve the
problem of not allowed path that occurred in Posterior by
including 1-best.

Fig. 3. The quality of predictions of the decoding algorithms at the
nucleotide level-Specificity.

Fig. 4. The quality of predictions of the decoding algorithms at the
nucleotide level-Sensitivity.

Table 1: The Performance of the four Decoding Algorithms
on DNA sequences

Viterbi Posterior 1-Best LPB
algo.

Meas.

Cross

    V.

Cross

    V.

Cross

    V.
Cross

    V.

Blind

Test

Blind

Test

Blind

Test

Blind

Test

SEN

SPE

0.39

0.51

0.430.50 0.92

0.880.550.53

0.800.110.290.05

0.10 0.30 0.19 0.82
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D. Complexity

• Time Complexity: the time complexity for Viterbi, 1-
best, and Posterior are [O(N2. L)], although LPB takes
a time longer than other algorithms where it combines
the time complexity of log-odd Posterior probability
plus 1-best algorithm, but its time-complexity still
remains the same as other decoding algorithms which
is [O(N2. L)].
where L and N are the DNA sequence length and the
number of states respectively.

time (V iterbi) ≤ time (Posterior) ≤
time (1−Best) ≤ time (LPB) (15)

• Space Complexity: the space-complexity of Viterbi
and Posterior algorithms, while 1-best requires less
memory space [33], LPB is the same as 1-best, in
which both of LPB and 1-best have less memory
space is that there is no tracking back and they depend
on length of coding regions rather than total DNA
sequences.

space (1− best) ≤ space (V iterbi) ≤
space (Posterior) ≤ space (LPB) (16)

VI. CONCLUSION

We proposed a new decoding algorithm called Log-
Posterior-best (LPB). LPB decoding algorithm is applicable
to all the possible HMMs with an arbitrary number of
labels, we show that LPB perform better than other decoding
algorithms, especially when dealing with biological problems
that needs labelling such as gene finding in prokaryote.
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