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Abstract—The approximation theory for non-decaying sig-
nals in Lp,q(Rd+1) is studied recently. In this paper, we prove
that Pφ,h is a bounded projector with the norm estimation
from Lp,q

−α(R
d+1) onto V p,q

−α,h(φ) if φ belongs to an appropriate
mixed Wiener amalgam space W (L1,1

α )(Rd+1). This gives the
reconstruction of signals which belong to V p,q

−α,h(φ).

Index Terms—Mixed Lebesgue spaces, Bounded projector,
Sampling, Approximation, Wiener amalgam spaces.

I. INTRODUCTION

THE sampling and reconstruction theory plays an impor-
tant role in signal processing since it bridges the modern

digital world and the analog world of continuous functions.
The sampling states that during conversion of signals, it need
to take values at some discrete points. The standard problem
in sampling is to recover a signal f ∈ V ⊂ L2(R) from
a sequence of sample values {f(xi) : i ∈ Λ}, where Λ is
a countable indexing set. In other words, sampling converts
the continuous signal f(x) into discrete signal c(k).

Reconstruction is the inverse process of sampling. It refers
to the process of converting the sampled discrete-time signals
into the continuous-time signals. In practical application,
we always consider the reconstructed signal which has the
translation invariant formula

f̃(x) =
∑
k∈Zd

c(k)φ (x/h− k) .

Here φ is the generating kernel that satisfies some certain
conditions. This form is very popular in spline theory [1],
[2], [3], [4]. Recently, many scholars have done more in-
depth research work on sampling and reconstruction [5], [6],
[7].

In 1970s, Strang and Fix extended the work of Schoenberg
[2] by considering the compactly supported function on Rd

and its multiple integer transformations. In [8], [9], Strang,
Fix and Jia gived the concept of controlled approximation.
Then they successfully proved that the Strang-Fix condition
(SF-condition, for brief) of order k is equivalent to the
controlled L2-approximation property of order k. Strang and
Fix gave several equivalent forms of this condition in [9],
and their results have been extended in different directions
[10], [11], [12], [13]. In [14], [15], Nguyen and Unser
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extended the classical Strang-Fix theory to two common
types: projection and (direct) interpolation in shift-invariant
spaces. They proved that if φ has the SF-condition of order k,
then the weighted Lp-norm of the error function is bounded
when φ belongs to a suitable hybrid-norm space.

The mixed Lebesgue spaces(MLS for brief) are the natural
extension of classical Lebesgue spaces. They were first
introduced by Benedek and Panzone in [16].When a func-
tion which depends on independent quantities with different
properties, it may be belong to the MLS. Later in [17], [18]
further research was done by Robio de Francia et al. The
integrability of each variable can be considered separately
when a function belongs the MLS [19]. Under this property
assumption, the multi-dimensional non-decaying functions in
weighted Lp,q(Rd+1) can be studied well. Wiener amalgam
spaces(WAS for brief) [20] and mixed WAS [21] both were
introduced for controlling the local-analytical property of a
signal.

In this paper, we mainly give the approximation properties
for non-decaying functions in MLS Lp,q(Rd+1).

We prove that Pφ,h is a bounded surjective projector from
Lp,q
−α(Rd+1) to V p,q

−α,h(φ) if φ belongs to an appropriate
mixed WAS W (L1,1

α )(Rd+1). This gives reconstruction for-
mula for signals which belong to V p,q

−α,h(φ).

II. PRELIMINARIES

First we introduce the definitions of the important MLS
Lp,q(Rd+1) and its discrete version ℓp,q(Zd+1) ([22]).

Definition 2.1: Let p, q ∈ [1,+∞). Then f ∈ Lp,q(Rd+1)
if

∥f∥Lp,q

=

[∫
R

(∫
Rd

|f(t1, t2)|qdt2
) p

q

dt1

] 1
p

< +∞.

The discrete version ℓp,q(Zd+1) is defined as following

ℓp,q(Zd+1) = {c :

∥c∥pℓp,q =
∑
n1∈Z

 ∑
n2∈Zd

|c(n1, n2)|q


p
q

< +∞

 .

The weighting function is given in the following.
Definition 2.2: Let a weighting function ω on Rd+1 be

continuous, symmetric and positive. If there is a constant
Cω satisfying that for any s1, t1 ∈ R, s2, t2 ∈ Rd, we have

ω(s1 + t1, s2 + t2) ≤ Cω ω(s1, s2)ω(t1, t2). (1)

then it is called (weakly) submultiplicative.
The definitions of weighted MLS Lp,q(Rd+1) and ℓp,q(Zd+1)
are shown in the below.
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Definition 2.3: For p, q ∈ [1,+∞), a function f and a
weighting function ω, if fω ∈ Lp,q(Rd+1), then we call
f ∈ Lp,q

ω (Rd+1). For a sequence {c(n1, n2)}n1∈Z,n2∈Zd , if
{c(n1, n2)ω(n1, n2)}n1∈Z,n2∈Zd ∈ ℓp,q(Zd+1), then we call
{c(n1, n2)}n1∈Z,n2∈Zd ∈ ℓp,qω (Zd+1). Their weighted norms
are defined as follows

∥f∥Lp,q
ω

:= ∥fω∥Lp,q ;

∥c∥ℓp,qω
:= ∥cω∥ℓp,q .

Definition 2.4: [21] For p, q ∈ [1,+∞), the mixed WAS
W (Lp,q)(Rd+1) consists of all functions f which satisfy

∥f∥pW (Lp,q) :=
∑
k∈Z

ess supt1∈[0,1]∑
l∈Zd

ess supt2∈[0,1]d |f(t1 + k, t2 + l)|q
p/q

< ∞.

(2)

Its weighted norm is defined by

∥f∥W (Lp,q
ω ) := ∥fω∥W (Lp,q).

We write ⟨·⟩ as Sobolev weighting function
(
1 + ∥ · ∥2

)1/2
.

When ω = ⟨·⟩α for some α ∈ R, we write Lp,q
α (Rd+1) for

Lp,q
ω (Rd+1), ℓp,qα (Zd+1) for ℓp,qω (Zd+1), and W (L1,1

α )(Rd+1)
for W (L1,1

ω )(Rd+1). Now we introduce two important prop-
erties of this weighting function ω. When α ≥ 0, according
to [14], the weighting function ω = ⟨·⟩α satisfies

⟨s+ t⟩α ≤ Cα ⟨s⟩α⟨t⟩α, ∀s, t ∈ Rd+1,

where Cα is a constant. This condition is equivalent to

⟨s+ t⟩−α ≤ Cα ⟨s⟩α⟨t⟩−α, ∀s, t ∈ Rd+1.

The other property of this weighting function ω is that
when α ≥ 0, it has the Gelfand-Raikov-Shilov(GRS) condi-
tion [23]

lim
n→∞

ω(nl)
1
n = 1, ∀ l ∈ Zd+1.

Definition 2.5: Let α ≥ 0, and h > 0 as a verying scale.
The weighted non-decaying shift-invariant subspaces(SIS for
brief) V p,q

−α,h(φ) in mixed WLS are defined by

V p,q
−α,h(φ)

:=

f =
∑
n1∈Z

∑
n2∈Zd

c(n1, n2)φ
( ·
h
− n1,

·
h
− n2

)
: c ∈ ℓp,q−α(Zd+1)

}
.

Note that, when h = 1, we write V p,q
−α (φ) for

V p,q
−α,1(φ); when α = 0, we write V p,q

h (φ) for V p,q
0,h (φ).

So we write V p,q(φ) for V p,q
0,1 (φ). It is easy to see that,

V p,p(φ) = V p(φ). According to [24], the SIS is well-
defined in Lp,q

−α(Rd+1) and V p,q
−α (φ) is a closed subspace of

Lp,q
−α(Rd+1).
In the rest of the paper we call σh the scaling operator

defined by σhf := f(·/h) with h > 0.

III. THE MAIN RESULT

We assume that the kernel φ ∈ W (L1,1
α )(Rd+1) and its

shifts {φ(· − n1, · − n2)}n1∈Z,n2∈Zd is a Riesz basis of
V 2(φ). According to [26], the dual kernel φd exists and is
determined by the Fourier domain as following

φ̂d(ω) =
φ̂(ω)∑

k∈Zd+1 |φ̂(ω + 2πk)|2
.

Let us define the operator

Pφ,hf :=
∑
n1∈Z

∑
n2∈Zd

c(n1, n2)φ
( ·
h
− n1,

·
h
− n2

)
,

where c(k1, k2) is given by

c(k1, k2)

=
1

hd+1

∫
R

∫
Rd

f(y1, y2)φd

(y1
h

− k1,
y2
h

− k2

)
dy2dy1.

Note that, we write Pφ for Pφ,1.
The main result proves that the projector Pφ,h is bounded

and surjective from Lp,q
−α(Rd+1) to V p,q

−α,h(φ), then we can
approximate f by Pφ,hf .

Theorem 3.1: Let p, q ∈ [1,+∞) and α ≥ 0. If φ ∈
W (L1,1

α )(Rd+1) and {φ(·−n1, ·−n2)}n1∈Z,n2∈Zd is a Riesz
basis for V 2(φ), then, for each h > 0, V p,q

−α,h(φ) is a
closed subspace of Lp,q

−α(Rd+1) and Pφ,h is a projector from
Lp,q
−α(Rd+1) onto V p,q

−α,h(φ). Furthermore, there is a constant
Cφ,α such that for any f ∈ Lp,q

−α(Rd+1) and h ∈ (0, 1),

∥Pφ,hf∥Lp,q
−α

≤ Cφ,α ∥f∥Lp,q
−α

. (3)

Proof: See section VI.

IV. EXAMPLE

In this section, we give an example to show the recon-
struction of function.

Let x = (x1, · · · , xd+1) ∈ Rd+1,

φ(x) = φ(x1, · · · , xd+1)

= χ[0,1](x1)χ[0,1](x2) · · ·χ[0,1](xd+1)

= χ[0,1]d+1(x),

then φ ∈ W (L1,1
α )(Rd+1) and its shift {φ(· − n1, · −

n2)}n1∈Z,n2∈Zd is a Riesz basis of V 2(φ). Since∑
k∈Zd+1

|φ̂(ω + 2πk)|2

=
∑

k∈Zd+1

∣∣∣∣∫
Rd+1

φ(x)e−ix·(ω+2kπ)dx

∣∣∣∣2

=

d+1∑
i=1

∑
ki∈Z

∣∣∣∣∣
d+1∏
i=1

(∫
R
φ(xi)e

−ixi(ωi+2kiπ)dxi

)∣∣∣∣∣
2

=
d+1∑
i=1

∑
ki∈Z

d+1∏
i=1

∣∣∣∣∫ 1

0

e−ixi(ωi+2kiπ)dxi

∣∣∣∣2

=
d+1∑
i=1

∑
ki∈Z

d+1∏
i=1

∣∣∣∣e−i(ωi+2kiπ) − 1

ωi + 2kiπ

∣∣∣∣2

=

d+1∏
i=1

∑
ki∈Z

∣∣∣∣e−i(ωi+2kiπ) − 1

ωi + 2kiπ

∣∣∣∣2
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=
d+1∏
i=1

∑
ki∈Z

∣∣∣∣∣e
−i
2 (ωi+2kiπ)(e

−i
2 (ωi+2kiπ) − e

i
2 (ωi+2kiπ))

ωi + 2kiπ

∣∣∣∣∣
2

=
d+1∏
i=1

∑
ki∈Z

∣∣∣∣sin(ωi

2 + kiπ)
ωi

2 + kiπ

∣∣∣∣2
= 1

we have the dual kernel

φ̂d(ω) =
φ̂(ω)∑

k∈Zd+1 |φ̂(ω + 2πk)|2
= φ̂(ω).

Let f = e
−∥x∥2

2 , then f ∈ Lp,q
−α(Rd+1) when α ≥ 0.

c(k) =
1

hd+1

∫
Rd+1

f(x)φd

(x
h
− k

)
dx

=
1

hd+1

∫
Rd+1

e
−∥x∥2

2 χ[0,1]d+1

(x
h
− k

)
dx.

Let d = 1. Figure 1 and Figure 2 are the graphs of the
functions f = e

−∥x∥2
2 , Pφ,0.1f, Pφ,0.05f and Pφ,0.01f .

V. CONCLUSION

The reconstruction of a signal from the sampling is very
important in signal processing. As a result, the sampling is
studied in various spaces and the approximation theory of
sampling is also concerned. In this paper, we consider the
approximation property for non-decaying signals in MLS.
We prove that Pφ,h is a bounded projector from the MLS
onto mixed shift-invariant space when the generator belongs
to an appropriate mixed WAS. This gives the reconstruction
of signals which belong to mixed shift-invariant space.

VI. PROOFS OF THEOREM 3.1
Proof: First, we prove that V p,q

−α,h(φ) is a subspace of
Lp,q
−α(Rd+1), for each h > 0. Let f ∈ V p,q

−α,h(φ), then

σ1/hf =
∑
n1∈Z

∑
n2∈Zd

c(n1, n2)φ(· − n1, · − n2) ∈ V p,q
−α (φ).

According to Theorem 3.7 in [24], V p,q
−α (φ) is a closed

subspace of Lp,q
−α(Rd+1). Thus, σ1/hf ∈ Lp,q

−α(Rd+1). For the
convenience of writing, let ⟨x⟩α = ⟨x1, x2⟩α, where x1 ∈ R,
x2 ∈ Rd, then

∥f∥p
Lp,q

−α

=

∫
R

(∫
Rd

|⟨x1, x2⟩−αf(x1, x2)|qdx2

) p
q

dx1

=

∫
R

(∫
Rd

∣∣⟨hx1, hx2⟩−αf(hx1, hx2)
∣∣q d(hx2)

) p
q

×d(hx1)

=

∫
R

(∫
Rd

⟨hx1, hx2⟩−αq
∣∣(σ1/hf

)
(x1, x2)

∣∣q d(hx2)

) p
q

×d(hx1)

= h
dp
q +1 ×∫
R

(∫
Rd

⟨hx1, hx2⟩−αq
∣∣(σ1/hf

)
(x1, x2)

∣∣q dx2

) p
q

dx1

≤ h
dp
q +1 ·max

(
1, h−αq

)
×
∫
R

(∫
Rd

⟨x1, x2⟩−αq
∣∣(σ1/hf

)
(x1, x2)

∣∣q dx2

) p
q

dx1

= h
dp
q +1 ·max

(
1, h−αq

)
·
∥∥σ1/hf

∥∥p
Lp,q

−α

. (4)

(a)

(b)

Fig. 1. (a) is the graph of the function f = e
−∥x∥2

2 . (b) is the graph of
the function Pφ,0.1f .

Thus, f ∈ Lp,q
−α(Rd+1). This implies that V p,q

−α,h(φ) is a
subspace of Lp,q

−α(Rd+1).
Second, we prove that V p,q

−α,h(φ) is closed under the norm
of Lp,q

−α(Rd+1), when h > 0. Assume that {fn} is a sequence
in V p,q

−α,h(φ) which satisfies fn → f in Lp,q
−α(Rd+1) as n →

∞. Then∥∥σ1/hfn − σ1/hf
∥∥
Lp,q

−α

=

[∫
R

(∫
Rd

∣∣⟨x1, x2⟩−α

× (fn(hx1, hx2)− f(hx1, hx2))|q dx2)
p
q dx1

] 1
p

=

[∫
R

(∫
Rd

∣∣⟨x1/h, x2/h⟩−α
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(c)

(d)

Fig. 2. (c) is the graph of the function Pφ,0.05f . (d) is the graph of the
function Pφ,0.01f .

× (fn(x1, x2)− f(x1, x2))|q d (x2/h))
p
q d (x1/h)

] 1
p

= h−d/q−1/p

[∫
R

(∫
Rd

∣∣⟨x1/h, x2/h⟩−α

× (fn(x1, x2)− f(x1, x2))|q dx2)
p
q dx1

] 1
p

≤ h−d/q−1/p ·max(1, hα) ·
[∫

R

(∫
Rd

∣∣⟨x1, x2⟩−α

× (fn(x1, x2)− f(x1, x2))|q dx2)
p
q dx1

] 1
p

= h−d/q−1/p ·max(1, hα) · ∥fn − f∥Lp,q
−α

, (5)

which shows that σ1/hfn → σ1/hf in Lp,q
−α(Rd+1) as

n → ∞. Since {σ1/hfn} is a sequence in V p,q
−α (φ), it is

known from the Theorem 3.7 in [24] that σ1/hf ∈ V p,q
−α (φ)

(i.e.f ∈ V p,q
−α,h(φ)). This implies that V p,q

−α,h(φ) is closed in
Lp,q
−α(Rd+1) norm.
Third, we prove that Pφ,h is a projector mapping

Lp,q
−α(Rd+1) to V p,q

−α,h(φ), for each h > 0. Inequality (4)
implies that σ1/h maps Lp,q

−α(Rd+1) to itself. According to
the definition of V p,q

−α,h(φ), σh maps V p,q
−α (φ) to V p,q

−α,h(φ).
We can known from Theorem 3.5 in [24] that Pφ maps
Lp,q
−α(Rd+1) to V p,q

−α (φ). Since Pφ,h = σhPφσ1/h, we have
Pφ,h maps Lp,q

−α(Rd+1) to V p,q
−α,h(φ), then we get

P 2
φ,h = σhPφσ1/hσhPφσ1/h

= σhP
2
φσ1/h = σhPφσ1/h = Pφ,h.

Finally, we prove the bound (3). Let

ωh(x1, x2) := ⟨hx1, hx2⟩α,

using the submultiplicative of ωh, one has for each x1, y1 ∈
R, x2, y2 ∈ Rd and h > 0,

ωh(x1 + y1, x2 + y2) ≤ Cα ωh(x1, x2)ωh(y1, y2). (6)

Then

∥Pφ,hf∥Lp,q
−α

=
∥∥σhPφσ1/hf

∥∥
Lp,q

−α

=

[∫
R

(∫
Rd

∣∣⟨x1, x2⟩−α

×
(
σhPφσ1/hf

)
(x1, x2)

∣∣q dx2

) p
q dx1

] 1
p

=

[∫
R

(∫
Rd

∣∣⟨hx1, hx2⟩−α

×
(
σhPφσ1/hf

)
(hx1, hx2)

∣∣q d(hx2)
) p

q d(hx1)
] 1

p

= hd/q+1/p

[∫
R

(∫
Rd

∣∣∣∣ 1

ωh(x1, x2)

×
(
Pφσ1/hf

)
(x1, x2)

∣∣q dx2

) p
q dx1

] 1
p

= hd/q+1/p
∥∥Pφ(σ1/hf)

∥∥
Lp,q

1/ωh

≤ hd/q+1/p C2
α ∥φ∥W (L1,1

ωh
)

×∥φd∥W (L1,1
ωh

)

∥∥σ1/hf
∥∥
Lp,q

1/ωh

(7)

= hd/q+1/p C2
α ∥φ∥W (L1,1

ωh
)

×∥φd∥W (L1,1
ωh

)

[∫
R

(∫
Rd

∣∣⟨hx1, hx2⟩−α

×
(
σ1/hf

)
(x1, x2)

∣∣q dx2

) p
q dx1

] 1
p

= C2
α · ∥φ∥W (L1,1

ωh
)∥φd∥W (L1,1

ωh
)

×
[∫

R

(∫
Rd

∣∣⟨hx1, hx2⟩−α

×
(
σ1/hf

)
(x1, x2)

∣∣q d(hx2)
) p

q d(hx1)
] 1

p

= C2
α · ∥φ∥W (L1,1

ωh
)∥φd∥W (L1,1

ωh
)

×

[∫
R

(∫
Rd

∣∣⟨x1, x2⟩−αf(x1, x2)
∣∣q dx2

) p
q

dx1

] 1
p
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= C2
α · ∥φ∥W (L1,1

ωh
)

×∥φd∥W (L1,1
ωh

) ∥f∥Lp,q
−α

, (8)

where Cα is a constant in (6), φd is the dual generator of φ
and (7) follows by the proof of Theorem 3.5 in [24].

According to Lemma 3.6 in [24], φ and φd are both in
W (L1,1

α )(Rd+1). Since h ∈ (0, 1),

∥φ∥W (L1,1
ωh

)

=
∑
n1∈Z

ess supx1∈[0,1]

∑
n2∈Zd

ess supx2∈[0,1]d

|φ(x1 + n1, x2 + n2)ωh(x1 + n1, x2 + n2)| ,

and

∥φ∥W (L1,1
α )

=
∑
n1∈Z

ess supx1∈[0,1]

∑
n2∈Zd

ess supx2∈[0,1]d

|φ(x1 + n1, x2 + n2)⟨x1 + n1, x2 + n2⟩α| .

Then

∥φ∥W (L1,1
ωh

) ≤ ∥φ∥W (L1,1
α ) < ∞, (9)

and

∥φd∥W (L1,1
ωh

) ≤ ∥φd∥W (L1,1
α ) < ∞. (10)

Combining (8)-(10), one has

∥Pφ,hf∥Lp,q
−α

≤ C2
α · ∥φ∥W (L1,1

α )∥φd∥W (L1,1
α )︸ ︷︷ ︸

Cφ,α

×∥f∥Lp,q
−α

.

Therefore, one completes this proof.
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