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Abstract—In this article, a novel implementation in discrete
time of a fractional-order PID control is presented. The
system is evaluated over a real third-order single input single
output system where the proposed implementation of the
fractional-order PID is compared with a classical integer-order
PID. The fractional-order operator’s response for positive
and negative constants is evaluated for a simulated square
signal. Additional results are obtained by comparing the
closed-loop response of integer and fractional order PIDs over
the simulated system. The closed-loop response of the real
system is evaluated under two types of reference signals:
square signal and sinusoidal signal. It can be seen that the
proposed implementation results in a more efficient response
by using the same parameters in terms of steady-state error
and settling-time.

Index Terms—Fractional order control, discrete PID,
real-time.

I. INTRODUCTION

THE fractional-order calculus is a generalization of
the integer calculus for derivatives and integrals of

non-integer order [1]. Fractional-order controllers has been
widely used to control linear and nonlinear systems where
they have proved their effectiveness by increasing the
controllers’ flexibility. Several fractional-order controllers
have been designed from integer-order controllers, which
included PID, lead-lag compensator, state feedback, among
others and where the improvement of fractional-order
controllers in comparison to integer-order controllers is
verified for several applications [2], [3], [4], [5], [6], [7].

It is noticeable that the PID controller has been improved
by using the fractional order calculus in several linear and
nonlinear applications [8], where optimization techniques
have been used for tuning the controller parameters, as
described in [9], [10], [11]. Moreover, variations of PID
controllers such as Fuzzy PIDs have also been modified by
using fractional calculus [12].

On the other hand, it is noticeable that control strategies
over real systems require discrete-time versions to be
implemented in computers and micro-controllers. Several
controllers can be applied over discrete-time systems by
using robust control techniques [13] and also sliding
mode controllers [14]. Intelligent controllers have also been
applied over discrete-time multivariable systems in discrete
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time [15], [16]. In addition, fractional-order controllers in
discrete time are also implemented over real systems for
several applications, as described in [17].

In this work, a novel implementation in discrete-time
fractional-order PID control is presented. The system
is evaluated over a real third-order single input single
output system where the proposed implementation of
the fractional-order PID is compared with a classical
integer-order PID. The response of the fractional-order
operator for integral and derivative cases is evaluated for a
simulated square signal. A simulated system’s closed-loop
response is also considered by comparing integer and
fractional order PIDs by using a unitary step reference
signal. In addition, the closed-loop response of the real
system is evaluated under two types of reference signals:
square signal and sinusoidal signal. It can be seen that the
proposed implementation results in a more efficient response
by using the same parameters in terms of steady-state
error and settling-time. This paper is organized as follows:
in section II is presented the mathematical foundation of
the fractional-order PID control and the proposed discrete
implementation of the fractional operator. In section III
the evaluation of the fractional operator over a simulated
squared signal is presented, as well as the performance of
the proposed approach over a real system with constant and
time-varying reference signals. And finally, in section IV the
conclusions and final remarks are presented.

II. THEORETICAL FRAMEWORK

A. Fractional calculus

Fractional calculus is an extension of calculus to integrate
non-integer operators in derivation and integration. This
was born with the calculation itself, but it was not widely
developed, until the 24th century along, with the advances
of control theory [18].

To give a definition of fractional integrals we can start with
the definition of the first integral of a function as shown in
(1):

∇−1f(t) =

∫ t

0

f(x)dx (1)

Applying the integral operator again, the second integral
is obtained, in the form:

∇−2f(t) =

∫ t

0

∫ x

0

f(y)dydx (2)

By reversing the order of integration and making the
respective limit changes, we obtain:

∇−2f(t) =

∫ t

0

∫ t

y

f(y)dxdy (3)

IAENG International Journal of Computer Science, 48:1, IJCS_48_1_06

Volume 48, Issue 1: March 2021

 
______________________________________________________________________________________ 



Since f(y) is constant with respect to x, the second integral
would be of the form:

∇−2f(t) =

∫ t

0

(t− y)f(y)dy (4)

In a similar way, the third integral can be obtained as (5):

∇−3f(t) =
1

2

∫ t

0

(t− y)2f(y)dy (5)

In general, for an operator of order n, following the
previous procedure, we obtain:

∇−nf(t) =
1

(n− 1)!

∫ t

0

(t− y)n−1f(y)dy (6)

Now, making use of the Γ function shown in (7) and (8)
applied in (6), the Riemann-Liouville equation presented in
(9) for fractional integrals is obtained as follows:∫ ∞

0

e−ttz−1dt = Γ(z) (7)

Γ(z) = (n− 1)!, z ∈ R+ (8)

The Γ function allows us to evaluate the factorial operator
not only on positive integers, but also on all positive real
numbers:

∇−nf(t) =
1

Γ(n)

∫ t

0

f(y)(t− y)n−1dy, n ∈ R+ (9)

In the beginning of (6) it is possible to also obtain the
Riemann-Liouville definition for derivatives of non-integer
order, as shown in (10), in that case it is necessary to
introduce a new variable m.

∇αf(t) = ∇I1−αf(t) =
1

Γ(m− α)

d

dt

m ∫ t

α

f(y)

(t− y)α−m+1
dy

(10)
where m− 1 < α < m, m ∈ N.

Another way of realizing non-integer derivatives is
proposed in [1], which does not require the initial conditions
of fractional order of the function.

∇αf(t) =
1

Γ(m− α)

∫ t

0

fm(τ)

(t− τ)α−m+1
dt (11)

B. Fractional-order PID

There are several controllers that use the fractional
calculation, where one of the first developed is the
fractional-order PIλDµ control proposed by [2] for
commensurable order systems using an integral action of
order λ and a derivative action of order µ. For this, we start
from the fact that a differential equation of fractional order,
linear and invariant with time can be defined as:

m∑
k=0

akD
αky(t) =

l∑
k=o

bkD
βk (12)

The previous equation would be of a commensurable order if
it is true that all the orders of derivation are integer multiples
of a base order, therefore:

αk, βk = nα, α ∈ R, n ∈ Z (13)

In this way, (12) would be as follows:

m∑
k=0

akD
nαy(t) =

l∑
k=o

bkD
nα (14)

If that is also true α = 1
q , q ∈ Z+, then the system is said

to be of a rational order.
The transfer function of the PID controller can be defined
in terms of the error as follows:

C(s) = Kp +
Ki

s
+Kds (15)

On the other hand, the transfer function of a PIλDµ can be
expressed as:

C(s) = Kp +
Ki

sλ
+Kds

µ (16)

The main advantage of the fractional control is the possibility
of giving more degrees of freedom the order of the integral
(λ) and derivative (µ) actions.

A discrete implementation of the fractional-order PID
is proposed in [17]. In this work, by using a backwards
operator, the following equivalence is used:

s =
1− z−1

T
(17)

being T the sample time. Therefore, the application of (17)
on (15) results in the discrete difference equation of the
PID, as follows:

ei[k] = Te[k] + ei[k − 1]

u[k] = Kpe[k] +Kd
e[k]− e[k − 1]

T
+Kiei[k]

(18)

with ei the integral error and ei[0] = 0.
In [19] a discrete fractional operator is defined as

sµ =

(
1− z−1

T

)µ
(19)

By applying a binomial expansion of (19), the discrete time
fractional order operator can be obtained

Dµ = T−µ
∞∑
j=0

bjz
−j (20)

being bj defined as

bj =

(
1− 1 + µ

j

)
bj−1 (21)

with j = 1, 2, . . . and b0 = 1.
By considering (21) and (16) the following fractional-order

PIλDµ is proposed:

u[k] = Kpe[k]

+KdT
−µ

L∑
j=0

bje[k − j] +KiT
λ

L∑
j=0

cje[k − j]
(22)

being L the number of samples of the window and being bj
and cj defined as

bj =

(
1− 1 + µ

j

)
bj−1 (23)

cj =

(
1− 1− λ

j

)
cj−1 (24)
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Fig. 1. Closed-loop system with a fractional-order PID

with b0 = 1 and c0 = 1. The resulting closed-loop system
with a fractional-order PIλDµ is shown in Fig. 1, being
H(z) the discrete transfer function of the system to be
controlled.

III. RESULTS

In order to evaluate the performance of the discrete
fractional-order PID, a comparison analysis is performed.
This evaluation is achieved using simulated and real systems
where the real system is implemented using operational
amplifiers and a USB Data AcQuisition (USB-DAQ) card.
Initially, the fractional operator’s evaluation is performed
over a simulated square signal with unitary amplitude, µ =
0.2, λ = 0.6, and sample time T = 50 milliseconds. In Fig. 2
is presented the fractional operator (integral and derivative)
with a window length of L = 200.

Fig. 2. Evaluation of fractional order operator (integrative and derivative)
with a simulated square signal

An additional evaluation is performed over a closed-loop
control system by using a simulated discrete transfer function
with a sample time of 0.1 seconds defined by

H(z) =
0.004837z + 004679

z2 − 1.905z + 0.9048
(25)

By using (25) a a comparison analysis by using integer
and fractional-order controllers is performed by considering
a unitary step reference signal. In Fig. 3 is presented a
comparison between a integer-order PID with parameters
Kp = 1, Kd = 1 and Ki = 1, and a fractional-order PID
with the same Kp, Ki and Kd parameters and λ = 0.5 and
µ = 0.5.

Fig. 3. Comparison analysis by using an integer and fractional order PID
with λ = 0.5 and µ = 0.5

It can be seen from Fig. 3 that the fractional-order
PID outperform the integer-order PID by using the same
parameters. An additional comparison is performed by
modifying exclusively the λ and µ parameters. In Fig. 4
is presented a comparison between a integer-order PID
with parameters Kp = 1, Kd = 1 and Ki = 1, and
a fractional-order PID with the same Kp, Ki and Kd

parameters and λ = 0.3 and µ = 0.7.

Fig. 4. Comparison analysis by using an integer and fractional-order PID
with λ = 0.3 and µ = 0.7

From Fig. 4, it can be seen that the closed-loop response
of the integer-order PID is also outperformed by using the
fractional-order PID in terms of settling-time and maximum
peak. In addition, by comparing the closed-loop responses
of the fractional-order PIDs presented in Fig. 3 and Fig. 4,
it can be seen that the fractional-order PID of Fig. 4 shows
a lower maximum peak as well as a lower settling-time.

The performance of the proposed PIλDµ method is
compared for an integer-order PID and evaluated over a
real third-order single input single output system [20], for
constant and time-varying references. It is worth noting that
the third-order real system is implemented with operational
amplifiers. In order to obtain the comparison analysis,
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the proposed PIλDµ method is implemented according to
(22) with L = 1000. The discrete-time control system is
implemented over LabV IEWTM 2013 with a NI-DAQ USB
6009 and a sample time T = 50 milliseconds. The control
signal is saturated in 0 ≤ u[k] ≤ 5 volts range.

In Fig. 5 is presented the closed loop response of the
PIλDµ with a square signal.

Fig. 5. PIλDµ with µ = 0.8 and λ = 0.9, Kp = 0.8, Kd = 5.9,
Ki = 1.8

In Fig. 6 is presented the corresponding control signal of
the closed loop of Fig. 5.

Fig. 6. Control signal of the PIλDµ with µ = 0.8 and λ = 0.9,
Kp = 0.8, Kd = 5.9, Ki = 1.8

In Fig. 7 is presented the closed-loop response of the PID
with a square signal.

Fig. 7. PIλDµ with µ = 0.7 and λ = 0.9, Kp = 0.8, Kd = 5.9,
Ki = 1.8

In Fig. 8 is presented the corresponding control signal of
the closed-loop of Fig. 7.

Fig. 8. Control signal of the PIλDµ with µ = 0.7 and λ = 0.9,
Kp = 0.8, Kd = 5.9, Ki = 1.8

In Fig. 9 is presented the closed-loop response of the PID
with a square signal. It can be seen that the closed-loop
response has a higher settling-time for the same parameters.
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Fig. 9. PID with Kp = 0.8, Kd = 5.9, Ki = 1.8

In Fig. 10 is presented the corresponding control signal of
the closed-loop of Fig. 9.

Fig. 10. Control signal of the PID with Kp = 0.8, Kd = 5.9, Ki = 1.8

By increasing the time before a reference change, it can be
seen that the closed loop response of Fig. 9 achieves steady
state, as presented in Fig. 11.

Fig. 11. PID with Kp = 0.8, Kd = 5.9, Ki = 1.8

In Fig. 12 is presented the corresponding control signal of
the closed-loop of Fig. 11.

Fig. 12. Control signal of the PID with Kp = 0.8, Kd = 5.9, Ki = 1.8

The real system is evaluated for a time varying reference
signal by using a sinusoidal signal. In Fig. 13 is presented
the closed-loop response of the PIλDµ with a sinusoidal
reference signal.
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Fig. 13. PIλDµ with µ = 0.7 and λ = 0.9, Kp = 0.8, Kd = 5.9,
Ki = 1.8

In Fig. 14 is presented the corresponding control signal of
the closed-loop of Fig. 13.

Fig. 14. Control signal of the PIλDµ with µ = 0.7 and λ = 0.9,
Kp = 0.8, Kd = 5.9, Ki = 1.8

In Fig. 15 is presented the closed-loop response of the
PID with a sinusoidal reference signal.

Fig. 15. PID with Kp = 0.8, Kd = 5.9, Ki = 1.8

In Fig. 16 is presented the corresponding control signal of
the closed-loop of Fig. 15.

Fig. 16. Control signal of the PID with Kp = 0.8, Kd = 5.9, Ki = 1.8

IV. CONCLUSIONS

In this work, a novel implementation in discrete-time
of a fractional-order PID control is presented. The system
is evaluated over a real third-order single input single
output system where the proposed implementation of
the fractional-order PID is compared with a classical
integer-order PID. It can be seen that the closed-loop
response is more efficient by using the same parameters
in terms of steady-state error and settling-time for constant
reference signals and for time-varying reference signals.
Also, it can be seen that a reduction in high-frequency
noise is diminished by decreasing the µ value of the
differential operator. As future work, a multivariable adaptive
fractional-order PIλDµ will be developed where the
automatic tuning of parameters can be obtained.
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