# Performance Analysis of New Spectral and Hybrid Conjugate Gradient Methods for Solving Unconstrained Optimization Problems

Maulana Malik\*, *Member, IAENG*, Mustafa Mamat, Siti Sabariah Abas, Ibrahim Mohammed Sulaiman and Sukono, *Member, IAENG* 

Abstract—The spectral and hybrid conjugate gradient methods are part of the conjugate gradient methods. Conjugate gradient methods are among the iterative method for solving unconstrained optimization problems. In this paper, a new spectral and hybrid conjugate gradient methods are proposed. Based on some assumptions and strong Wolfe line search, the new spectral conjugate gradient method satisfies the global convergence properties. As well as the hybrid conjugate gradient method fulfill the global convergence properties under an exact line search. We also prove that the proposed methods fulfill the sufficient descent condition. Finally, based on some test problems, the numerical results of the proposed methods are very competitive and most efficient.

*Index Terms*—Strong Wolfe line search, spectral conjugate gradient method, global convergence properties, hybrid conjugate gradient method, exact line search, sufficient descent condition.

#### I. INTRODUCTION

THE new method in this paper is designed to solve unconstrained optimization problems, in which problems modeled as minimization problems:

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x}),\tag{1}$$

where  $f : \mathbb{R}^n \to \mathbb{R}$  is a smooth objective function and its gradient is available. The conjugate gradient method are an iterative method with generates a sequence  $\{\mathbf{x}_k\}$  by formula [1]

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k, \quad k = 0, 1, 2, ...,$$
 (2)

where  $\mathbf{x}_0$  is initial point,  $\mathbf{x}_k$  is point at *k*th iteration,  $\alpha_k$  is a positive step length, and  $\mathbf{d}_k$  is a search direction defined by:

$$\mathbf{d}_{k} = \begin{cases} -\mathbf{g}_{k}, & k = 0\\ -\mathbf{g}_{k} + \beta_{k} \mathbf{d}_{k-1}, & k \ge 1 \end{cases}.$$
 (3)

Manuscript is received on July 22, 2020; revised on Sept 9, 2020.

\*Maulana Malik is a Lecturer at Department of Mathematics, Universitas Indonesia (UI), Depok 16424, Indonesia and a Ph.D. student in Mathematics at Universiti Sultan Zainal Abidin (UniSZA), Terengganu 22200, Malaysia. (e-mail: m.malik@sci.ui.ac.id)

Mustafa Mamat is a Professor of Applied Mathematics at Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 22200, Malaysia. (e-mail: must@unisza.edu.my)

Siti Sabariah Abas is a Lecturer at Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 22200, Malaysia. (email: sabariahabas@unisza.edu.my)

Ibrahim Mohammed Sulaiman is a post-doctoral researcher at Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 22200, Malaysia. (e-mail: sulaimanib@unisza.edu.my)

Sukono is an Associate Professor at Department of Mathematics, Universitas Padjadjaran (Unpad), Jatinangor 45363, Indonesia. (e-mail: sukono@unpad.ac.id) Need to know that  $\mathbf{g}_k = \mathbf{g}(\mathbf{x}_k) = \nabla f(\mathbf{x}_k)$  is a gradient of f at point  $\mathbf{x}_k$ , and  $\beta_k$  is a scalar known as the conjugate gradient coefficient [2]. Some well-known formulas for coefficients of the conjugate gradient method are:

$$\begin{split} \beta_{k}^{HS} &= \frac{\mathbf{g}_{k}^{T}(\mathbf{g}_{k} - \mathbf{g}_{k-1})}{\mathbf{d}_{k-1}^{T}(\mathbf{g}_{k} - \mathbf{g}_{k-1})}, \\ \beta_{k}^{FR} &= \frac{\|\mathbf{g}_{k}\|^{2}}{\|\mathbf{g}_{k-1}\|^{2}}, \\ \beta_{k}^{CD} &= -\frac{\|\mathbf{g}_{k}\|^{2}}{\mathbf{d}_{k-1}^{T}\mathbf{g}_{k-1}}, \\ \beta_{k}^{LS} &= -\frac{\mathbf{g}_{k}^{T}(\mathbf{g}_{k} - \mathbf{g}_{k-1})}{\mathbf{d}_{k-1}^{T}\mathbf{g}_{k-1}}, \\ \beta_{k}^{DY} &= \frac{\|\mathbf{g}_{k}\|^{2}}{\mathbf{d}_{k-1}^{T}(\mathbf{g}_{k} - \mathbf{g}_{k-1})}, \\ \beta_{k}^{PRP} &= \frac{\mathbf{g}_{k}^{T}(\mathbf{g}_{k} - \mathbf{g}_{k-1})}{\|\mathbf{g}_{k-1}\|^{2}}, \\ \beta_{k}^{WYL} &= \frac{\mathbf{g}_{k}^{T}(\mathbf{g}_{k} - \mathbf{g}_{k-1})}{\|\mathbf{g}_{k-1}\|^{2}}, \\ \beta_{k}^{NPRP} &= \frac{\mathbf{g}_{k}^{T}(\mathbf{g}_{k} - \frac{\|\mathbf{g}_{k}\|}{\|\mathbf{g}_{k-1}\|} \mathbf{g}_{k-1})}{\|\mathbf{g}_{k-1}\|^{2}}, \end{split}$$
(4)

where  $\|.\|$  represent the Euclidean norm of vectors and  $\mathbf{g}_k^T$  is transpose  $\mathbf{g}_k$ . The proper naming of the methods above are Hestenes-Steifel (HS) method [3], Fletcher-Reeves (FR) method [4], Conjugate Descent (CD) method [5], Liu-Storey (LS) method [6], Dai-Yuan (DY) method [7], Polak-Ribiére-Polyak (PRP) method [8], Wei-Yao-Liu (WYL) method [9], and modified Wei-Yao-Liu (NPRP) method [10].

The value of step length  $\alpha_k$  can obtained by using any type of line search such as exact line search and inexact line search. The formula of exact line search is defined as:

$$f(\mathbf{x}_k + \alpha_k \mathbf{d}_k) = \min_{\alpha \ge 0} f(\mathbf{x}_k + \alpha_k \mathbf{d}_k),$$
(5)

and inexact line search that are; the strong Wolfe line search defined as follows:

$$\begin{cases} f(\mathbf{x}_{k} + \alpha_{k}\mathbf{d}_{k}) \leq f(\mathbf{x}_{k}) + \delta\alpha_{k}\mathbf{g}_{k}^{T}\mathbf{d}_{k} \\ \left| \mathbf{g}\left(\mathbf{x}_{k} + \alpha_{k}\mathbf{d}_{k}\right)^{T}\mathbf{d}_{k} \right| \leq -\sigma\mathbf{g}_{k}^{T}\mathbf{d}_{k} \end{cases}, \quad (6)$$

where  $0 < \delta < \sigma < 1$  and Armijo line search where the step size  $\alpha_k$  is obtained by  $\alpha_k = \max\{\rho^j, j = 0, 1, 2, ...\}$  satisfying

$$f(\mathbf{x}_k + \alpha_k \mathbf{d}_k) \le f(\mathbf{x}_k) - \delta \alpha_k^2 \|\mathbf{d}_k\|^2$$

with the constants  $\rho, \delta \in (0, 1)$  [11].

It is possible to classify the conjugate gradient method into many different types; the standard, hybrid, spectral, and three-term conjugate gradient methods. The methods mentioned above (HS, FR, CD, LS, DY, PRP, WYL, NPRP) are the standard conjugate gradient method.

The Spectral method was originally introduced by Barzilai and Borwein in 1988 [12] and Raydan developed the spectral method to solve the optimization problems [13]. In addition, Birgin and Martinez [14] suggested three kinds of spectral methods that are a mixture of spectral and gradient conjugate methods with the search direction as follows

$$\mathbf{d}_k = -\theta_k \mathbf{g}_k + \beta_k \mathbf{s}_{k-1},$$

where  $\theta_k$  is the spectral gradient parameter,  $\mathbf{s}_{k-1} = \alpha_{k-1}\mathbf{d}_{k-1}$ , and the coefficient  $\beta_k$  is determined by

$$\beta_{k} = \frac{\left(\theta_{k}\mathbf{y}_{k-1} - \mathbf{s}_{k-1}\right)^{T} \mathbf{g}_{k}}{\mathbf{s}_{k-1}^{T}\mathbf{y}_{k-1}},$$
  

$$\beta_{k} = \frac{\theta_{k}\mathbf{g}_{k}^{T}\mathbf{y}_{k-1}}{\alpha_{k-1}\theta_{k-1}\mathbf{g}_{k-1}^{T}\mathbf{g}_{k-1}},$$
  

$$\beta_{k} = \frac{\theta_{k}\mathbf{g}_{k}^{T}\mathbf{g}_{k}}{\alpha_{k-1}\theta_{k-1}\mathbf{g}_{k-1}^{T}\mathbf{g}_{k-1}},$$

where

$$\mathbf{y}_{k-1} = \mathbf{g}_k - \mathbf{g}_{k-1} \; , \; \mathbf{\theta}_k = rac{\mathbf{s}_{k-1}^T \mathbf{s}_{k-1}}{\mathbf{s}_{k-1}^T \mathbf{y}_{k-1}}$$

Zhang et al. [15] suggested modifying the FR method in 2006 with the name of the modified FR method (MFR). The MFR method's search direction is defined as follows:

$$\mathbf{d}_{k} = \begin{cases} -\mathbf{g}_{k}, & k = 0\\ -\theta_{k}\mathbf{g}_{k} + \beta_{k}\mathbf{d}_{k-1}, & k \ge 1 \end{cases},$$
(7)

where

$$\beta_k = \beta_k^{FR} \ , \ \theta_k = \frac{\mathbf{d}_{k-1}^T \mathbf{y}_{k-1}}{\|\mathbf{g}_{k-1}\|^2}.$$

It could easily be that the search direction of the MFR method can be written as follows:

$$\mathbf{d}_{k} = -\left(1 + \beta_{k}^{FR} \frac{\mathbf{g}_{k}^{T} \mathbf{d}_{k-1}}{\|\mathbf{g}_{k}\|^{2}}\right) \mathbf{g}_{k} + \beta_{k}^{FR} \mathbf{d}_{k-1}.$$
 (8)

The main difference between standard and spectral conjugate gradient methods lies in the compute of the search direction  $d_k$ . The search direction of the standard conjugate gradient method using formula (3), but the search direction of the spectral conjugate gradient method using formula (7).

As well as Liu and Jiang [16] proposed a spectral conjugate gradient method which is called the SCD method. The SCD method is run using the conjugate gradient coefficient  $(\beta_k)$  and spectral gradient parameter  $(\theta_k)$  as follows:

$$\beta_k = \begin{cases} \beta_k^{CD}, & \text{if } \mathbf{g}_k^T \mathbf{d}_{k-1} \le 0\\ 0, & \text{else} \end{cases}$$
$$\theta_k = 1 - \frac{\mathbf{g}_k^T \mathbf{d}_{k-1}}{\mathbf{g}_{k-1}^T \mathbf{d}_{k-1}}.$$

In 2020, Jian et al. [17] introduced a new approach for spectral gradient parameter formula, the formula was inspired by the  $\theta_k$  of the SCD method, which is written in form:

$$\theta_k^{JYJLL} = 1 + \frac{\left|\mathbf{g}_k^T \mathbf{d}_{k-1}\right|}{-\mathbf{g}_{k-1}^T \mathbf{d}_{k-1}},$$

and conjugate gradient coefficient formula as follows:

$$\beta_k^{JYJLL} = \frac{\|\mathbf{g}_k\|^2 - \frac{(\mathbf{g}_k^T \mathbf{d}_{k-1})^2}{\|\mathbf{d}_{k-1}\|^2}}{\max\left\{\|\mathbf{g}_{k-1}\|^2, \mathbf{d}_{k-1}^T (\mathbf{g}_k - \mathbf{g}_{k-1})\right\}}$$

The sufficient descent condition and global convergence properties are also investigated by several researchers while proposing new methods of standard, spectral, and hybrid conjugate gradient methods. The search direction in conjugate gradient method satisfies the sufficient descent condition if there exist a constant c > 0 such that

$$\mathbf{g}_k^T \mathbf{d}_k \le -c \|\mathbf{g}_k\|^2, \text{ for all } k \ge 0,$$
(9)

and the conjugate gradient method is global convergence if

$$\lim_{k \to \infty} \inf \|\mathbf{g}_k\| = 0 \tag{10}$$

(see [18]).

The MFR method fulfill the descent property  $(\mathbf{g}_k^T \mathbf{d}_k < 0)$ and with Armijo line search satisfies the global convergence properties even if the objective function is nonconvex. The SCD and JYJLL method satisfies the sufficient descent condition without depending any line search, and under strong Wolfe line search, the method fulfill the global convergence properties. For the NPRP method, Zhang has proven that method fulfill the sufficient descent condition with the strong Wolfe line search and converges globally for nonconvex minimization.

Besides the spectral conjugate gradient method, the hybrid conjugate gradient method can also be used to solve the problem (1). The hybrid conjugate gradient coefficient is a mixture of different parts of the standard conjugate gradient coefficient to give better performance.

Several hybrid conjugate gradient approaches have also been proposed in the literature. The most popular for hybrid conjugate gradient method are Touati-Ahmed and Storey (TS) method [19], Hu and Storey (HuS) method [20], Gilbert and Nocedal (GN) method [21], Dai and Yuan (hDY and LS-CD) method [22], Li and Zhao (P-W) method [23], and Hybrid-Jinbao, Han and Jiang (HJHJ) method [24]:

$$\begin{split} \beta_{k}^{TS} &= \begin{cases} \beta_{k}^{PRP}, & \text{if } 0 \leq \beta_{k}^{PRP} \leq \beta_{k}^{FR} \\ \beta_{k}^{FR}, & \text{otherwise} \end{cases}, \\ \beta_{k}^{HuS} &= \max \left\{ 0, \min \left\{ \beta_{k}^{PRP}, \beta_{k}^{FR} \right\} \right\}, \\ \beta_{k}^{GN} &= \max \left\{ -\beta_{k}^{FR}, \min \left\{ \beta_{k}^{PRP}, \beta_{k}^{FR} \right\} \right\}, \\ \beta_{k}^{hDY} &= \max \left\{ 0, \min \left\{ \beta_{k}^{HS}, \beta_{k}^{DY} \right\} \right\}, \\ \beta_{k}^{LS-CD} &= \max \left\{ 0, \min \left\{ \beta_{k}^{LS}, \beta_{k}^{CD} \right\} \right\}, \\ \beta_{k}^{P-W} &= \max \left\{ \beta_{k}^{PRP}, \beta_{k}^{WYL} \right\}, \\ \beta_{k}^{HJHJ} &= \frac{\left\| \mathbf{g}_{k} \right\|^{2} - \max \left\{ 0, \frac{\left\| \mathbf{g}_{k} \right\|}{\left\| \mathbf{g}_{k-1} \right\|} \mathbf{g}_{k}^{T} \mathbf{g}_{k-1} \right\}}{\max \left\{ \left\| \mathbf{g}_{k-1} \right\|^{2}, \mathbf{d}_{k-1}^{T} (\mathbf{g}_{k} - \mathbf{g}_{k-1}) \right\}}. \end{split}$$

The convergence properties and performance computational of the above methods have been studied by authors. The hybrid TS and HuS methods are known to fulfill the descent property and global convergence under the strong Wolfe line search, and computational results are more efficient than the FR and PRP methods. The hybrid GN method can be negative, since  $\beta_k^{FR}$  is always nonnegative, and when the HuS method jams, then the hybrid GN method is used

instead. The hDY method is a mixture of HS and DY methods in which the global convergence of the method was identified in the rules of the Wolfe line search. The hybrid LS-CD approach used for the exact line search has comparable performance to the HuS method. Under certain line search, the hybrid P-W approach has been shown to be a global convergent. Under the Wolfe line search, the HJHJ method fulfills the global convergence properties.

For good references for studies about the conjugate gradient method can be seen in [25]-[33].

Inspired by the work of Zhang et al. [15] and Zhang [10], we further propose and analyze a new spectral conjugate gradient method to solve the unconstrained optimization problems. The sufficient descent condition of the new method will be presented, and under some assumptions, the global convergence properties are established using the strong Wolfe line search.

In this paper, we also propose a new hybrid conjugate gradient coefficient in which the sufficient descent condition and global convergence properties were proven under exact line search and performance computational compared with the HuS, GN, HDY, LS-CD, and HJHJ methods.

The next part of the paper is structured as follows. We are giving a new parameter for the spectral and a new coefficient for the hybrid conjugate gradient methods in Section II. In Section III, we present the global convergence analysis of the new spectral conjugate gradient method and in Section IV we provide the convergence analysis for the new hybrid conjugate gradient method. In Section V, the numerical results are presented to illustrate the performance of our new methods. The conclusion in this paper is presented in Section VI.

#### **II. NEW PARAMETER AND COEFFICIENT**

Recently, Malik et al. [34] propose a new  $\beta_k$  which its inspired by the formula  $\beta_k^{NPRP}$ . The coefficient  $\beta_k$  is defined as follows:

$$\beta_k^{MMSIS} = \begin{cases} X & , \text{if } Y \\ 0 & , \text{otherwise} \end{cases}$$
(11)

where

$$X = \frac{\|\mathbf{g}_{k}\|^{2} - \frac{\|\mathbf{g}_{k}\|}{\|\mathbf{g}_{k-1}\|} |\mathbf{g}_{k}^{T}\mathbf{g}_{k-1}| - |\mathbf{g}_{k}^{T}\mathbf{g}_{k-1}|}{\|\mathbf{d}_{k-1}\|^{2}},$$
  

$$Y = \|\mathbf{g}_{k}\|^{2} > \left(\frac{\|\mathbf{g}_{k}\|}{\|\mathbf{g}_{k-1}\|} + 1\right) |\mathbf{g}_{k}^{T}\mathbf{g}_{k-1}|.$$

Based on formula (8), we propose a new spectral gradient parameter as follows:

$$\theta_k^{MMSIS} = 1 + \beta_k^{MMSIS} \frac{\mathbf{g}_k^T \mathbf{d}_{k-1}}{\|\mathbf{g}_k\|^2}, \qquad (12)$$

where MMSIS is denotes Malik, Mustafa, Sabariah, Ibrahim, Sukono.

In the following, we establish the new algorithm of the spectral MMSIS (SpMMSIS) method for solving unconstrained optimization problems.

# Algorithm 1. (SpMMSIS Method)

Step 1. Given any an initial point  $\mathbf{x}_0 \in \mathbb{R}^n$ , stopping criteria  $\epsilon > 0$ , parameters  $\sigma$ , and  $\delta$ . Suppose that  $\mathbf{d}_0 = -\mathbf{g}_0$ , set k := 1.

- Step 2. Calculate  $\|\mathbf{g}_k\|$ , if  $\|\mathbf{g}_k\| \leq \epsilon$  then stop. Otherwise, go to Step 3.
- Step 3. Calculate  $\beta_k^{MMSIS}$  using (11). Step 4. Calculate  $\theta_k^{MMSIS}$  using (12).
- Step 5. Calculate search direction  $\mathbf{d}_k$  using (7).
- Step 6. Calculate step length  $\alpha_k$  using the strong Wolfe line search (6).
- Step 7. Set k := k + 1 and calculate the next iterate  $\mathbf{x}_{k+1}$ using (2). Go to Step 2.

Secondly, we propose the new hybrid coefficient  $\beta_k$  which is known as  $\beta_k^{HMMSIS}$ . The new  $\beta_k^{HMMSIS}$  is motivated from HuS method, where the  $\beta_k^{FR}$  in HuS method substituted by  $\beta_k^{MMSIS}$ ,  $\beta_k^{PRP}$  is retained and expanded by multiplying with constant  $\mu$ . Hence the proposed new coefficient is defined as follows:

$$\beta_k^{HMMSIS} = \max\{0, \mu \min\{\beta_k^{PRP}, \beta_k^{MMSIS}\}\}$$
(13)

where  $\mu = 6$  and HMMSIS denotes Hybrid MMSIS. We now present our new HMMSIS algorithm.

### Algorithm 2. (HMMSIS Method)

- Step 1. Given  $\mathbf{x}_0 \in \mathbb{R}^n$ , stopping tolerance  $\epsilon > 0$ , set k = 0.
- Step 2. Compute  $\|\mathbf{g}_k\|$ . If  $\|\mathbf{g}_k\| \leq \epsilon$  then stop. Else, go to Step 3.
- Step 3. Calculate  $\beta_k$  using (13).
- Step 4. Calculate  $\mathbf{d}_k$  using (3).
- Step 5. Calculate  $\alpha_k$  using the exact line search (5).
- Step 6. Set k := k + 1 and use (2) to compute the next *iteration of*  $\mathbf{x}_{k+1}$ *. Just go to Step 2.*

#### **III. GLOBAL CONVERGENCE ANALYSIS NEW SPECTRAL** CONJUGATE GRADIENT METHOD

In this section, the sufficient descent condition and global convergence properties of the SpMMSIS method will be presented.

The following theorem shows that the SpMMSIS method possesses the sufficient descent condition without depending any line search.

**Theorem 1.** Suppose that the sequences  $\{\mathbf{g}_k\}$  and  $\{\mathbf{d}_k\}$ be generated by Algorithm 1, and let the step length  $\alpha_k$  be calculated by any line search, then

$$\mathbf{g}_k^T \mathbf{d}_k = -\|\mathbf{g}_k\|^2 < 0$$

holds for any  $k \ge 0$ .

*Proof:* We first prove for k = 0. From (7), we have  $\mathbf{d}_0 = -\mathbf{g}_0$ . Further we obtain  $\mathbf{g}_0^T \mathbf{d}_0 = -\mathbf{g}_0^T \mathbf{g}_0 = -\|\mathbf{g}_0\|^2 < 1$ 0. Now, we prove for  $k \ge 1$ . From (7), we get

$$\mathbf{d}_k = -\theta_k \mathbf{g}_k + \beta_k \mathbf{d}_{k-1}.$$

Substituting  $\theta_k$  by  $\theta_k^{MMSIS}$  and  $\beta_k$  by  $\beta_k^{MMSIS}$ , then we have

$$\mathbf{d}_{k} = -\theta_{k}^{MMSIS} \mathbf{g}_{k} + \beta_{k}^{MMSIS} \mathbf{d}_{k-1}.$$
 (14)

The proof is split into two cases based on the value of  $\beta_{k}^{MMSIS}$  as follows.

• Case 1. If  $\|\mathbf{g}_k\|^2 > \left(\frac{\|\mathbf{g}_k\|}{\|\mathbf{g}_{k-1}\|} + 1\right) |\mathbf{g}_k^T \mathbf{g}_{k-1}|$ , then from (11) and (14), we obtain

$$\mathbf{d}_k = -\mathbf{g}_k$$

Multiply both sides of equation above by  $\mathbf{g}_k^T$ , we get  $\mathbf{g}_k^T \mathbf{d}_k = -\|\mathbf{g}_k\|^2 < 0$ . Hence, the sufficient descent condition holds.

• Case 2. If  $\|\mathbf{g}_k\|^2 \le \left(\frac{\|\mathbf{g}_k\|}{\|\mathbf{g}_{k-1}\|} + 1\right) |\mathbf{g}_k^T \mathbf{g}_{k-1}|$ , then from (11), (12), and (14), we have

$$\mathbf{d}_{k} = -\left(1 + X \frac{\mathbf{g}_{k}^{T} \mathbf{d}_{k-1}}{\|\mathbf{g}_{k}\|^{2}}\right) \mathbf{g}_{k} + X \mathbf{d}_{k-1}$$

Multiply both sides by  $\mathbf{g}_k^T$ , we obtain

$$\mathbf{g}_{k}^{T}\mathbf{d}_{k} = -\left(1 + X\frac{\mathbf{g}_{k}^{T}\mathbf{d}_{k-1}}{\|\mathbf{g}_{k}\|^{2}}\right)\mathbf{g}_{k}^{T}\mathbf{g}_{k} + X\mathbf{g}_{k}^{T}\mathbf{d}_{k-1}$$
$$= -\|\mathbf{g}_{k}\|^{2} - X\mathbf{g}_{k}^{T}\mathbf{d}_{k-1} + X\mathbf{g}_{k}^{T}\mathbf{d}_{k-1}$$
$$= -\|\mathbf{g}_{k}\|^{2} < 0.$$

Hence, the sufficient descent condition holds for  $k \ge 1$ . The proof is completed.

The next lemma is needed to prove the global convergence properties of the SpMMSIS method.

**Lemma 1.**  $\beta_k^{MMSIS}$  satisfies

$$0 \leq \beta_k^{MMSIS} \leq \frac{\|\mathbf{g}_k\|^2}{\|\mathbf{d}_{k-1}\|^2}, \, \forall k \geq 0.$$

Proof: See [34].

In the global convergence analysis of the conjugate gradient methods, we will assume that

**Assumption 1.** (A1) The level set  $\mathcal{T} = {\mathbf{x} : f(\mathbf{x}) \leq f(\mathbf{x}_0)}$ is bounded. (A2) Let  $\mathcal{M}$  be some neighborhood of  $\mathcal{T}$ , then f is continuous and differentiable, and its gradient  $\mathbf{g}(\mathbf{x})$  is Lipschitz continuous on  $\mathcal{M}$  with Lipschitz constant L > 0; i.e.,

$$\|\mathbf{g}(\mathbf{x}) - \mathbf{g}(\mathbf{y})\| \le L \|\mathbf{x} - \mathbf{y}\|, \text{ for all } \mathbf{x}, \mathbf{y} \in \mathcal{M}.$$

The following lemma often called the Zoutendijk condition, is used to prove the global convergence properties of the conjugate gradient method, which has been proven by Zoutendijk in [35].

**Lemma 2.** Suppose that Assumption 1 holds. Consider any conjugate gradient method with (2), where  $\mathbf{d}_k$  satisfies the descent condition such that  $\mathbf{g}_k^T \mathbf{d}_k < 0$ , and step length  $\alpha_k$  determined by the exact line search (5) or strong Wolfe line search (6). Then

$$\sum_{k=0}^{\infty} \frac{(\mathbf{g}_k^T \mathbf{d}_k)^2}{\|\mathbf{d}_k\|^2} < \infty$$

The next theorem establishes the global convergence properties of SpMMSIS method under strong Wolfe line search.

**Theorem 2.** Suppose that Assumption 1 holds, and let the sequence  $\{\mathbf{x}_k\}$  be generated by Algorithm 1, where step length  $\alpha_k$  be calculated by the strong Wolfe line search (6). Then

$$\lim_{k \to \infty} \inf \|\mathbf{g}_k\| = 0. \tag{15}$$

Hence, the SpMMSIS method is global convergence.

*Proof:* Suppose by contradiction that (15) is not true. Then there exist constant W such that  $||\mathbf{g}_k|| \ge W$ , for all  $k \ge 0$ , further we have

$$\frac{1}{\|\mathbf{g}_k\|^2} \le \frac{1}{W^2}.$$
 (16)

By rewriting (14), we get

$$\mathbf{d}_k + \theta_k^{MMSIS} \mathbf{g}_k = \beta_k^{MMSIS} \mathbf{d}_{k-1}.$$

Squaring both sides yields:

$$\begin{aligned} \|\mathbf{d}_{k}\|^{2} &= (\beta_{k}^{MMSIS})^{2} \|\mathbf{d}_{k-1}\|^{2} - 2\theta_{k}^{MMSIS} \mathbf{g}_{k}^{T} \mathbf{d}_{k} - (\theta_{k}^{MMSIS})^{2} \|\mathbf{g}_{k}\|^{2}. \end{aligned}$$

Dividing both sides by  $(\mathbf{g}_k^T \mathbf{d}_k)^2$ , then we obtain

$$\frac{\|\mathbf{d}_{k}\|^{2}}{(\mathbf{g}_{k}^{T}\mathbf{d}_{k})^{2}} = \frac{\left(\beta_{k}^{MMSIS}\right)^{2}\|\mathbf{d}_{k-1}\|^{2}}{(\mathbf{g}_{k}^{T}\mathbf{d}_{k})^{2}} - \frac{2\theta_{k}^{MMSIS}}{\mathbf{g}_{k}^{T}\mathbf{d}_{k}} - \frac{\left(\theta_{k}^{MMSIS}\right)^{2}\|\mathbf{g}_{k}\|^{2}}{(\mathbf{g}_{k}^{T}\mathbf{d}_{k})^{2}}.$$

From Theorem 1, we have  $\mathbf{g}_k^T \mathbf{d}_k = -\|\mathbf{g}_k\|^2$ . So the above equation becomes

$$\begin{aligned} \frac{\|\mathbf{d}_{k}\|^{2}}{(\mathbf{g}_{k}^{T}\mathbf{d}_{k})^{2}} &= \left(\beta_{k}^{MMSIS}\right)^{2} \frac{\|\mathbf{d}_{k-1}\|^{2}}{\|\mathbf{g}_{k}\|^{4}} + \frac{2\theta_{k}^{MMSIS}}{\|\mathbf{g}_{k}\|^{2}} \\ &- \frac{\left(\theta_{k}^{MMSIS}\right)^{2}}{\|\mathbf{g}_{k}\|^{2}} \\ &= \left(\beta_{k}^{MMSIS}\right)^{2} \frac{\|\mathbf{d}_{k-1}\|^{2}}{\|\mathbf{g}_{k}\|^{4}} - \frac{1}{\|\mathbf{g}_{k}\|^{2}} \left(\left(\theta_{k}^{MMSIS}\right)^{2} - 2\theta_{k}^{MMSIS}\right) \\ &= \left(\beta_{k}^{MMSIS}\right)^{2} \frac{\|\mathbf{d}_{k-1}\|^{2}}{\|\mathbf{g}_{k}\|^{4}} - \frac{1}{\|\mathbf{g}_{k}\|^{2}} \left(\left(\theta_{k}^{MMSIS} - 1\right)^{2} - 1\right) \\ &= \left(\beta_{k}^{MMSIS}\right)^{2} \frac{\|\mathbf{d}_{k-1}\|^{2}}{\|\mathbf{g}_{k}\|^{4}} - \frac{\left(\theta_{k}^{MMSIS} - 1\right)^{2}}{\|\mathbf{g}_{k}\|^{2}} \\ &+ \frac{1}{\|\mathbf{g}_{k}\|^{2}} \\ &\leq \left(\beta_{k}^{MMSIS}\right)^{2} \frac{\|\mathbf{d}_{k-1}\|^{2}}{\|\mathbf{g}_{k}\|^{4}} + \frac{1}{\|\mathbf{g}_{k}\|^{2}}. \end{aligned}$$

By Applying Lemma 1, we obtain

$$\frac{\|\mathbf{d}_{k}\|^{2}}{(\mathbf{g}_{k}^{T}\mathbf{d}_{k})^{2}} \leq \left(\frac{\|\mathbf{g}_{k}\|^{2}}{\|\mathbf{d}_{k-1}\|^{2}}\right)^{2}\frac{\|\mathbf{d}_{k-1}\|^{2}}{\|\mathbf{g}_{k}\|^{4}} + \frac{1}{\|\mathbf{g}_{k}\|^{2}} \\ \leq \frac{1}{\|\mathbf{d}_{k-1}\|^{2}} + \frac{1}{\|\mathbf{g}_{k}\|^{2}}.$$

Since  $\frac{1}{\|\mathbf{d}_k\|^2} < \frac{4}{\|\mathbf{g}_k\|^2}$  (see equation (41) in [34]), and from (16), then we have

$$\begin{aligned} \frac{\|\mathbf{d}_k\|^2}{(\mathbf{g}_k^T \mathbf{d}_k)^2} &\leq \frac{1}{\|\mathbf{d}_{k-1}\|^2} + \frac{1}{\|\mathbf{g}_k\|^2} \\ &< \frac{4}{\|\mathbf{g}_{k-1}\|^2} + \frac{1}{\|\mathbf{g}_k\|^2} \\ &< \frac{4}{W^2} + \frac{1}{W^2} = \frac{5}{W^2}. \end{aligned}$$

That implies

$$\frac{(\mathbf{g}_k^T \mathbf{d}_k)^2}{\|\mathbf{d}_k\|^2} > \frac{W^2}{5}.$$
(17)

Furthermore from (17), we can obtain

$$\sum_{k=0}^{n} \frac{(\mathbf{g}_{k}^{T} \mathbf{d}_{k})^{2}}{\|\mathbf{d}_{k}\|^{2}} > \left(\sum_{k=0}^{n} \frac{W^{2}}{5} = \frac{W^{2}}{5}(n+1)\right).$$

Hence.

$$\sum_{k=0}^{\infty} \frac{(\mathbf{g}_k^T \mathbf{d}_k)^2}{\|\mathbf{d}_k\|^2} > \left(\lim_{n \to \infty} \frac{W^2}{5}(n+1) = \infty\right)$$

This contradicts Zoutendijk condition in Lemma 2. Therefore, (15) is true. Furthermore, based on (10), the SpMMSIS method fulfill the global convergence properties. The proof is completed.

# IV. GLOBAL CONVERGENCE ANALYSIS NEW HYBRID CONJUGATE GRADIENT METHOD

In this section, the sufficient descent condition and global convergence properties of the new hybrid conjugate gradient method will be discussed.

Therefore, we must attention to the following lemma.

**Lemma 3.** The  $\beta_k^{HMMSIS}$  satisfies one of the following condition:

1) If 
$$0 < \beta_k^{MMSIS} < \beta_k^{PRP}$$
, then  

$$\beta_k^{HMMSIS} = 6\beta_k^{MMSIS} \le 6\frac{\|\mathbf{g}_k\|^2}{\|\mathbf{d}_{k-1}\|^2}.$$
(18)

2) If  $\beta_k^{MMSIS} > \beta_k^{PRP} > 0$ , then

$$\beta_k^{HMMSIS} = 6\beta_k^{PRP+} \le 6\frac{\|\mathbf{g}_k\|^2}{\|\mathbf{g}_{k-1}\|^2}.$$
 (19)

3) If 
$$\beta_k^{PRP} < 0$$
 or  $\beta_k^{PRP} = \beta_k^{MMSIS} = 0$ , then  
 $\beta_k^{HMMSIS} = 0.$  (20)

Proof:

- 1) For  $0 < \beta_k^{MMSIS} < \beta_k^{PRP}$ , then based on (13), we have  $\beta_k^{HMMSIS} = 6\beta_k^{MMSIS}$ . Applying Lemma 1, we obtain  $\beta_k^{HMMSIS} = 6\beta_k^{MMSIS} \le 6\frac{\|\mathbf{g}_k\|^2}{\|\mathbf{d}_{k-1}\|^2}$
- 2) For  $\beta_k^{MMSIS} > \beta_k^{PRP} > 0$ , then based on (13), we have  $\beta_k^{HMMSIS} = 6\beta_k^{PRP+}$ . From (4), we obtain  $\beta_k^{HMMSIS} = 6\beta_k^{PRP+} \le 6\frac{\|\mathbf{g}_k\|^2}{\|\mathbf{g}_{k-1}\|^2}.$ 3) For  $\beta_k^{PRP} < 0$  or  $\beta_k^{PRP} = \beta_k^{MMSIS} = 0$ , then based on (13), we have  $\beta_k^{HMMSIS} = 0.$

The proof is completed.

First, we will show that for the HMMSIS method the sufficient descent condition will be fulfilled.

**Theorem 3.** Let the sequences  $\{\mathbf{g}_k\}$  and  $\{\mathbf{d}_k\}$  be generated by Algorithm 2 under the exact line search. Then the sufficient descent condition holds.

*Proof:* If k = 0, then  $\mathbf{d}_0 = -\mathbf{g}_0$ , and we get  $\mathbf{g}_0^T \mathbf{d}_0 =$  $-\mathbf{g}_0^T \mathbf{g}_0 = -\|\mathbf{g}_0\|^2$ . Therefore, condition (9) holds true. We also need to proof that for  $k \ge 1$ , condition (9) will also hold true. From (3), multiply both side by  $\mathbf{g}_k^T$ , then

$$\mathbf{g}_k^T \mathbf{d}_k = -\mathbf{g}_k^T \mathbf{g}_k + \beta_k^{HMMSIS} \mathbf{g}_k^T \mathbf{d}_{k-1}.$$

For the exact line search, we know that  $\mathbf{g}_k^T \mathbf{d}_{k-1} = 0$ . Thus,

$$\mathbf{g}_k^T \mathbf{d}_k = -\mathbf{g}_k^T \mathbf{g}_k = -\|\mathbf{g}_k\|^2, \qquad (21)$$

which implies that the sufficient descent condition holds true for k > 1. Hence, for the HMMSIS method, the sufficient descent condition under exact line search holds.

We need the following lemma to prove the global convergence properties of the HMMSIS method under the exact line search.

Lemma 4. Suppose that any conjugate gradient method in the form (2) and (3), where  $\alpha_k$  is calculated by exact line search (5). Then the following relation holds:

$$\frac{1}{\|\mathbf{d}_k\|^2} \le \frac{1}{\|\mathbf{g}_k\|^2}, \, \forall k \ge 0.$$
(22)

*Proof:* Note that we have the following relation:

$$\|\mathbf{g}_k + \mathbf{d}_k\|^2 = \|\mathbf{g}_k\|^2 + 2\mathbf{g}_k^T \mathbf{d}_k + \|\mathbf{d}_k\|^2.$$

By applying (21) to equation above, we have

$$\|\mathbf{g}_k + \mathbf{d}_k\|^2 + \|\mathbf{g}_k\|^2 = \|\mathbf{d}_k\|^2$$

Furthermore,

$$\|\mathbf{g}_k\|^2 \le \|\mathbf{d}_k\|^2$$

which means,

$$\frac{1}{\|\mathbf{d}_k\|^2} \le \frac{1}{\|\mathbf{g}_k\|^2}, \, \forall k \ge 0.$$

The proof is finished.

The next theorem establishes the global convergence properties of the HMMSIS method under the exact line search.

**Theorem 4.** Suppose that Assumption 1 holds. Assume the conjugate gradient method in the form (2) and (3), where  $\alpha_k$ is calculated by the exact line search (5) and  $\beta_k$  is calculated by  $\beta_k^{HMMSIS}$ . Also, consider the sufficient descent condition (9) holds. Then

$$\lim_{k \to \infty} \inf \|\mathbf{g}_k\| = 0. \tag{23}$$

Hence, the HMMSIS method is global convergence.

Proof: Assume that (23) does not hold. Then there exist a constant H > 0 such that  $\|\mathbf{g}_k\| \ge H, \forall k \ge 0$ , it becomes

$$\frac{1}{\|\mathbf{g}_k\|^2} \le \frac{1}{H^2}.$$
 (24)

Rewriting (3) as

$$\mathbf{d}_k + \mathbf{g}_k = \beta_k^{HMMSIS} \mathbf{d}_{k-1},$$

and squaring both side of the equation, we obtain

$$\|\mathbf{d}_{k}\|^{2} = \left(\beta_{k}^{HMMSIS}\right)^{2} \|\mathbf{d}_{k-1}\|^{2} - 2\mathbf{g}_{k}^{T}\mathbf{d}_{k} - \|\mathbf{g}_{k}\|^{2}.$$

Dividing both sides by  $(\mathbf{g}_k^T \mathbf{d}_k)^2$ , we get

$$\frac{\|\mathbf{d}_{k}\|^{2}}{(\mathbf{g}_{k}^{T}\mathbf{d}_{k})^{2}} = \frac{\left(\beta_{k}^{HMMSIS}\right)^{2}\|\mathbf{d}_{k-1}\|^{2}}{(\mathbf{g}_{k}^{T}\mathbf{d}_{k})^{2}} - \frac{2}{\mathbf{g}_{k}^{T}\mathbf{d}_{k}} - \frac{\|\mathbf{g}_{k}\|^{2}}{(\mathbf{g}_{k}^{T}\mathbf{d}_{k})^{2}} \\ = \frac{\left(\beta_{k}^{HMMSIS}\right)^{2}\|\mathbf{d}_{k-1}\|^{2}}{(\mathbf{g}_{k}^{T}\mathbf{d}_{k})^{2}} - \frac{\left(\frac{1}{\|\mathbf{g}_{k}\|} + \frac{\|\mathbf{g}_{k}\|}{\mathbf{g}_{k}^{T}\mathbf{d}_{k}}\right)^{2} + \frac{1}{\|\mathbf{g}_{k}\|^{2}} \\ \leq \frac{\left(\beta_{k}^{HMMSIS}\right)^{2}\|\mathbf{d}_{k-1}\|^{2}}{(\mathbf{g}_{k}^{T}\mathbf{d}_{k})^{2}} + \frac{1}{\|\mathbf{g}_{k}\|^{2}}. \quad (25)$$

Note that, from Lemma 3 there are three cases for value  $\beta_k^{HMMSIS}$ . So that we have three cases for the inequality (25) above.

• Case 1. For  $\beta_k^{HMMSIS} \leq 6 \frac{\|\mathbf{g}_k\|^2}{\|\mathbf{d}_{k-1}\|^2}$ , together with (21), then the equation (25) is going to be

$$\frac{\|\mathbf{d}_k\|^2}{\left(\mathbf{g}_k^T \mathbf{d}_k\right)^2} \le \frac{36}{\|\mathbf{d}_{k-1}\|^2} + \frac{1}{\|\mathbf{g}_k\|^2}.$$
 (26)

By using (22) and (24), we obtain

$$\begin{aligned} \frac{\|\mathbf{d}_k\|^2}{\left(\mathbf{g}_k^T \mathbf{d}_k\right)^2} &\leq & \frac{36}{\|\mathbf{g}_{k-1}\|^2} + \frac{1}{\|\mathbf{g}_k\|^2} \\ &\leq & \frac{36}{H^2} + \frac{1}{H^2} = \frac{37}{H^2}. \end{aligned}$$

Then we get

$$\frac{\left(\mathbf{g}_k^T \mathbf{d}_k\right)^2}{\|\mathbf{d}_k\|^2} \ge \frac{H^2}{37}.$$

This implies,

$$\sum_{k=0}^{n} \frac{\left(\mathbf{g}_{k}^{T} \mathbf{d}_{k}\right)^{2}}{\|\mathbf{d}_{k}\|^{2}} \ge \sum_{k=0}^{n} \frac{H^{2}}{37} = (n+1)\frac{H^{2}}{37}$$

Furthermore, if  $n \to \infty$ , we obtain

$$\sum_{k=0}^{\infty} \frac{\left(\mathbf{g}_{k}^{T} \mathbf{d}_{k}\right)^{2}}{\|\mathbf{d}_{k}\|^{2}} \geq \lim_{n \to \infty} (n+1) \frac{H^{2}}{37} = \infty$$

This contradicts the Zoutendijk condition in Lemma 2. Therefore, (23) holds. So, the HMMSIS method is global convergence.

• Case 2. For  $\beta_k^{HMMSIS} \leq 6 \frac{\|\mathbf{g}_k\|^2}{\|\mathbf{g}_{k-1}\|^2}$ , together with inequality (25) and (21), we obtain

$$\frac{\|\mathbf{d}_k\|^2}{\left(\mathbf{g}_k^T\mathbf{d}_k\right)^2} \le \frac{36\|\mathbf{d}_{k-1}\|^2}{\|\mathbf{g}_{k-1}\|^2} + \frac{1}{\|\mathbf{g}_k\|^2}.$$

Since  $\mathbf{d}_0 = -\mathbf{g}_0$ , then we have  $\frac{\|\mathbf{d}_0\|^2}{(\mathbf{g}_0^T \mathbf{d}_0)^2} = \frac{1}{\|\mathbf{g}_0\|^2}$ , furthermore by using (24), we get

$$\begin{aligned} \frac{\|\mathbf{d}_k\|^2}{\left(\mathbf{g}_k^T \mathbf{d}_k\right)^2} &\leq \frac{36\|\mathbf{d}_{k-1}\|^2}{\|\mathbf{g}_{k-1}\|^2} + \frac{1}{\|\mathbf{g}_k\|^2} \\ &\leq \frac{36^2\|\mathbf{d}_{k-2}\|^2}{\|\mathbf{g}_{k-2}\|^2} + \frac{1}{\|\mathbf{g}_{k-1}\|^2} + \frac{1}{\|\mathbf{g}_k\|^2} \\ &\leq \dots \leq \frac{36^k}{\|\mathbf{g}_0\|^2} + \sum_{i=1}^k \frac{1}{\|\mathbf{g}_i\|^2} \\ &\leq \frac{36^k}{\|\mathbf{g}_0\|^2} + \frac{k}{H^2} = U, \end{aligned}$$

where U > 0 is arbitrary constant. So, we get  $\frac{\left(\mathbf{g}_{k}^{T}\mathbf{d}_{k}\right)^{2}}{\|\mathbf{d}_{k}\|^{2}} \geq \frac{1}{U}$ . Furthermore, we have a relation

$$\sum_{k=0}^{n} \frac{\left(\mathbf{g}_{k}^{T} \mathbf{d}_{k}\right)^{2}}{\|\mathbf{d}_{k}\|^{2}} \ge \sum_{k=0}^{n} \frac{1}{U} = \frac{n+1}{U}.$$

Take  $n \to \infty$ , we get

$$\sum_{k=0}^{\infty} \frac{\left(\mathbf{g}_k^T \mathbf{d}_k\right)^2}{\|\mathbf{d}_k\|^2} \ge \lim_{n \to \infty} \frac{n+1}{U} = \infty.$$

This contradicts with Zoutendijk condition in Lemma 2. Hence, the condition (23) holds and the HMMSIS method is global convergence.

• Case 3. For  $\beta_k^{HMMSIS} = 0$ , then the inequality (25) is going to be

$$\frac{\|\mathbf{d}_k\|^2}{\left(\mathbf{g}_k^T\mathbf{d}_k\right)^2} \le \frac{1}{\|\mathbf{g}_k\|^2}.$$

By applying (24), we obtain

$$\frac{\|\mathbf{d}_k\|^2}{\left(\mathbf{g}_k^T \mathbf{d}_k\right)^2} \le \frac{1}{\|\mathbf{g}_k\|^2} \le \frac{1}{H^2}.$$

Take summation, we have

$$\sum_{k=0}^{n} \frac{\left(\mathbf{g}_{k}^{T} \mathbf{d}_{k}\right)^{2}}{\|\mathbf{d}_{k}\|^{2}} \ge \sum_{k=0}^{n} H^{2} = (n+1)H^{2}.$$

If  $n \to \infty$ , we get

$$\sum_{k=0}^{\infty} \frac{\left(\mathbf{g}_k^T \mathbf{d}_k\right)^2}{\|\mathbf{d}_k\|^2} \geq \lim_{n \to \infty} (n+1)H^2 = \infty.$$

This contradicts the Zoutendijk condition in Lemma 2. Hence, the condition (23) holds and the HMMSIS method is global convergence.

The proof is finished.

#### V. NUMERICAL RESULTS

In this section, the computational performance of the SpMMSIS and HMMSIS methods are analyzed. We compare the performance of the number of iterations (NOI) and the central processing unit (CPU) time. The performance profile under strong Wolfe line search, we use parameter  $\sigma = 0.001$  and  $\delta = 0.0001$ . The performance of the SpMMSIS method will be compared with MFR, SCD, JYJLL, and NPRP method. Meanwhile, the HMMSIS method will be compared with the HuS, GN, HDY, LS-CD, and HJHJ method. The stopping criterion  $\|\mathbf{g}_k\|^2 \leq 10^{-6}$ , where  $\epsilon = 10^{-6}$ .

To find the performance of the SpMMSIS, MFR, SCD, JYJLL, NPRP, HMMSIS, HuS, GN, HDY, LS-CD, and HJHJ methods, we use some test functions together initial point considered by Andrei [36]. In addition, we use various dimensions of each test function, i.e., 2, 3, 4, 10, 50, 100, 500, 1,000, 5,000, and 10,000, as in the Malik et al. [37], [38], [39], [40].

In this paper, we list the test functions together with the initial points in Table I, and implemented MATLAB software with personal laptop; Intel Core i7 processor, 16 GB RAM, 64 bit Windows 10 Pro operating system. Note that we are changing the initial point in problem 10 with (-1,...,-1) and problem 24 with (2,...,2) for comparing the hybrid method. The numerical result of each method is presented in Table II and Table III.

From Table II, we can see that the SpMMSIS method is successful in solving all problems, whereas the MFR method is only 93%, the SCD method 96%, the JYJLL method 94%, and the NPRP method 96%.

From Table III, we can see that the HMMSIS method is successful in solving all problems, whereas the HuS method is only 97%, the HDY method 96%, the GN, LS-CD, and HJHJ method 98%.

| Problem | Test Function            | Dimension | Initial point             | Problem | Test Function       | Dimension | Initial point    |
|---------|--------------------------|-----------|---------------------------|---------|---------------------|-----------|------------------|
| 1       | Ext. White & Holst       | 1000      | (-1.2,1,,-1.2,1)          | 50      | Ext. Maratos        | 10        | (-1,,-1)         |
| 2       | Ext. White & Holst       | 1000      | (10,,10)                  | 51      | Six hump camel      | 2         | (-1,2)           |
| 3       | Ext. White & Holst       | 10000     | (-1.2,1,,-1.2,1)          | 52      | Six hump camel      | 2         | (-5,10)          |
| 4       | Ext. White & Holst       | 10000     | (5,,5)                    | 53      | Three hump camel    | 2         | (-1,2)           |
| 5       | Ext. Rosenbrock          | 1000      | (-1.2,1,,-1.2,1)          | 54      | Three hump camel    | 2         | (2,-1)           |
| 6       | Ext. Rosenbrock          | 1000      | (10,,10)                  | 55      | Booth               | 2         | (5,5)            |
| 7       | Ext. Rosenbrock          | 10000     | (-1.2,1,,-1.2,1)          | 56      | Booth               | 2         | (10,10)          |
| 8       | Ext. Rosenbrock          | 10000     | (5,,5)                    | 57      | Trecanni            | 2         | (-1,0.5)         |
| 9       | Ext. Freudenstein & Roth | 4         | (0.5, -2, 0.5, -2)        | 58      | Trecanni            | 2         | (-5,10)          |
| 10      | Ext. Freudenstein & Roth | 4         | (5,5,5,5)                 | 59      | Zettl               | 2         | (-1,2)           |
| 11      | Ext. Beale               | 1000      | (1,0.8,,1,0.8)            | 60      | Zettl               | 2         | (10,10)          |
| 12      | Ext. Beale               | 1000      | (0.5,,0.5)                | 61      | Shallow             | 1000      | (0,,0)           |
| 13      | Ext. Beale               | 10000     | (-1,,-1)                  | 62      | Shallow             | 1000      | (10,,10)         |
| 14      | Ext. Beale               | 10000     | (0.5,,0.5)                | 63      | Shallow             | 10000     | (-1,,-1)         |
| 15      | Ext. Wood                | 4         | (-3,-1,-3,-1)             | 64      | Shallow             | 10000     | (-10,,-10)       |
| 16      | Ext. Wood                | 4         | (5,5,5,5)                 | 65      | Generalized Quartic | 1000      | (1,,1)           |
| 17      | Raydan 1                 | 10        | (1,,1)                    | 66      | Generalized Quartic | 1000      | (20,,20)         |
| 18      | Raydan 1                 | 10        | (10,,10)                  | 67      | Quadratic QF2       | 50        | (0.5,,0.5)       |
| 19      | Raydan 1                 | 100       | (-1,,-1)                  | 68      | Quadratic QF2       | 50        | (30,,30)         |
| 20      | Raydan 1                 | 100       | (-10,,-10)                | 69      | Leon                | 2         | (2,2)            |
| 21      | Ext. Tridiagonal 1       | 500       | (2,,2)                    | 70      | Leon                | 2         | (8,8)            |
| 22      | Ext. Tridiagonal 1       | 500       | (10,,10)                  | 71      | Gen. Tridiagonal 1  | 10        | (2,,2)           |
| 23      | Ext. Tridiagonal 1       | 1000      | (1,,1)                    | 72      | Gen. Tridiagonal 1  | 10        | (10,,10)         |
| 24      | Ext. Tridiagonal 1       | 1000      | (-10,,-10)                | 73      | Gen. Tridiagonal 2  | 4         | (1,1,1,1)        |
| 25      | Diagonal 4               | 500       | (1,,1)                    | 74      | Gen. Tridiagonal 2  | 4         | (10,10,10,10)    |
| 26      | Diagonal 4               | 500       | (-20,,-20)                | 75      | POWER               | 10        | (1,,1)           |
| 27      | Diagonal 4               | 1000      | (1,,1)                    | 76      | POWER               | 10        | (10,,10)         |
| 28      | Diagonal 4               | 1000      | (-30,,-30)                | 77      | Quadratic QF1       | 50        | (1,,1)           |
| 29      | Ext. Himmelblau          | 1000      | (1,,1)                    | 78      | Quadratic QF1       | 50        | (10,,10)         |
| 30      | Ext. Himmelblau          | 1000      | (20,,20)                  | 79      | Quadratic QF1       | 500       | (1,,1)           |
| 31      | Ext. Himmelblau          | 10000     | (-1,,-1)                  | 80      | Quadratic QF1       | 500       | (-5,,-5)         |
| 32      | Ext. Himmelblau          | 10000     | (50,,50)                  | 81      | Ext.quad.pen.QP2    | 100       | (1,,1)           |
| 33      | FLETCHCR                 | 10        | (0,,0)                    | 82      | Ext.quad.pen.QP2    | 100       | (10,,10)         |
| 34      | FLETCHCR                 | 10        | (10,,10)                  | 83      | Ext.quad.pen.QP2    | 500       | (10,,10)         |
| 35      | Ext. Powell              | 100       | $(3, -1, 0, 1, \dots, 1)$ | 84      | Ext.quad.pen.QP2    | 500       | (50,,50)         |
| 36      | Ext. Powell              | 100       | (5,,5)                    | 85      | Ext.quad.pen.QP1    | 4         | (1,1,1,1)        |
| 37      | NONSCOMP                 | 2         | (3,3)                     | 86      | Ext.quad.pen.QP1    | 4         | (10, 10, 10, 10) |
| 38      | NONSCOMP                 | 2         | (10,10)                   | 87      | Quartic             | 4         | (10, 10, 10, 10) |
| 39      | Ext. DENSCHNB            | 10        | (1,,1)                    | 88      | Quartic             | 4         | (15,15,15,15)    |
| 40      | Ext. DENSCHNB            | 10        | (10,,10)                  | 89      | Matyas              | 2         | (1,1)            |
| 41      | Ext. DENSCHNB            | 100       | (10,,10)                  | 90      | Matyas              | 2         | (20,20)          |
| 42      | Ext. DENSCHNB            | 100       | (-50,,-50)                | 91      | Colville            | 4         | (2,2,2,2)        |
| 43      | Ext. Penalty             | 10        | (1,2,3,,10)               | 92      | Colville            | 4         | (10, 10, 10, 10) |
| 44      | Ext. Penalty             | 10        | (-10,,-10)                | 93      | Dixon and Price     | 3         | (1,1,1)          |
| 45      | Ext. Penalty             | 100       | (5,,5)                    | 94      | Dixon and Price     | 3         | (10,10,10)       |
| 46      | Ext. Penalty             | 100       | (10,,10)                  | 95      | Sphere              | 5000      | (1,,1)           |
| 47      | Hager                    | 10        | (1,,1)                    | 96      | Sphere              | 5000      | (10,,10)         |
| 48      | Hager                    | 10        | (-10,,-10)                | 97      | Sum Squares         | 50        | (0,1,,0,1)       |
| 49      | Ext. Maratos             | 10        | (1.1,0.1)                 | 98      | Sum Squares         | 50        | (10,,10)         |

TABLE I: The list of the test functions, dimension, and initial point.

TABLE II: Numerical results of the SpMMSIS, JYJLL, MFR, SCD, and NPRP methods.

| Problem | SpMMSIS                  |          | IYILL  |        | M    | MFR    |      | SCD     | NPRP |        |  |  |
|---------|--------------------------|----------|--------|--------|------|--------|------|---------|------|--------|--|--|
| Tioblem | SP                       |          | 515111 |        | 1    |        |      | JCD     | 1    |        |  |  |
|         | NOI                      | CPU      | NOI    | CPU    | NOI  | CPU    | NOI  | CPU     | NOI  | CPU    |  |  |
| 1       | 12                       | 0.0498   | 40     | 0.0933 | 49   | 0.1059 | 15   | 0.0625  | 17   | 0.0574 |  |  |
| 2       | 53                       | 0.1931   | 202    | 0.8989 | 210  | 0.9704 | 105  | 0.252   | 55   | 0.2006 |  |  |
| 3       | 13                       | 0.331    | 41     | 0.7117 | 50   | 0.8048 | 15   | 0.389   | 17   | 0.4105 |  |  |
| 4       | 40                       | 1.199    | 291    | 6.5962 | 130  | 4.4795 | 382  | 5.0925  | 42   | 1.1005 |  |  |
| 5       | 23                       | 0.0442   | 57     | 0.1101 | 59   | 0.1179 | 5954 | 3.6831  | 35   | 0.0587 |  |  |
| 6       | 33                       | 0.0603   | 104    | 0.1882 | 163  | 0.2156 | 150  | 0.1317  | 25   | 0.0392 |  |  |
| 7       | 13                       | 0.3435   | 57     | 0.8398 | 59   | 0.8258 | 6014 | 41.4951 | 36   | 0.3775 |  |  |
| 8       | 25                       | 0.2982   | 171    | 2.7871 | 194  | 3.1419 | 1058 | 6.8776  | 23   | 0.303  |  |  |
| 9       | 8                        | 5.90E-04 | 21     | 0.0066 | 21   | 0.0029 | 9    | 0.0183  | 9    | 0.005  |  |  |
| 10      | 11                       | 8.22E-04 | fail   | fail   | 21   | 0.1658 | fail | fail    | fail | fail   |  |  |
| 11      | 14                       | 0.0445   | 75     | 0.1352 | 75   | 0.1322 | 17   | 0.0732  | 26   | 0.0575 |  |  |
| 12      | 12                       | 0.0433   | 81     | 0.1376 | 81   | 0.1436 | 335  | 0.4867  | 25   | 0.0639 |  |  |
| 13      | 14                       | 0.289    | 87     | 1.2204 | 87   | 1.2208 | 14   | 0.32    | 28   | 0.4719 |  |  |
| 14      | 12                       | 0.257    | 87     | 1.1868 | 87   | 1.2353 | 322  | 4.0799  | 25   | 0.4269 |  |  |
| 15      | 270                      | 0.0116   | fail   | fail   | fail | fail   | 922  | 0.0647  | 281  | 0.0111 |  |  |
|         | (Continued on next page) |          |        |        |      |        |      |         |      |        |  |  |

| Droblam  | Sn       | MMSIS    |            |                | IABLE II – Continuea       VILL     MFR |                |              | SCD      | NPRP      |          |  |
|----------|----------|----------|------------|----------------|-----------------------------------------|----------------|--------------|----------|-----------|----------|--|
| riobieni | NOI      |          |            |                | NOI                                     |                | NOI          |          |           |          |  |
|          | 154      | 0.0108   | foil       | CPU<br>foil    | foil                                    | CPU<br>foil    | 2067         | 0.126    | 1427      | 0.0488   |  |
| 10       | 434      | 0.0198   | 10         | 0.0065         | 10                                      | 1a11<br>0.0047 | 2907         | 0.150    | 1427      | 0.0488   |  |
| 18       | 34       | 0.0015   | 2350       | 0.0005         | 2620                                    | 0.1278         | 20<br>50     | 0.013    | 27        | 0.002    |  |
| 10       | 102      | 0.0020   | 93         | 0.0311         | 95                                      | 0.1270         | 253          | 0.0007   | 27<br>97  | 0.027    |  |
| 20       | 164      | 0.0273   | 801        | 0 349          | fail                                    | fail           | 390          | 0.0782   | 134       | 0.0424   |  |
| 21       | 12       | 0.0298   | 452        | 0.3883         | 452                                     | 0.4074         | 19           | 0.0373   | 22        | 0.0473   |  |
| 22       | 8        | 0.0231   | 9          | 0.0169         | 9                                       | 0.0225         | 15           | 0.0258   | 8         | 0.0243   |  |
| 23       | 12       | 0.0437   | 517        | 0.7546         | 517                                     | 0.767          | 19           | 0.0458   | 22        | 0.0695   |  |
| 24       | 8        | 0.0374   | 8          | 0.023          | 9                                       | 0.0265         | 17           | 0.0391   | 8         | 0.0372   |  |
| 25       | 2        | 0.002    | 2          | 0.0021         | 2                                       | 0.0017         | 5            | 0.0116   | 2         | 0.002    |  |
| 26       | 2        | 0.0021   | 2          | 0.002          | 2                                       | 0.0021         | 3            | 0.0022   | 2         | 0.0025   |  |
| 27       | 2        | 0.0033   | 2          | 0.0035         | 2                                       | 0.0025         | 4            | 0.0057   | 2         | 0.003    |  |
| 28       | 2        | 0.0029   | 2          | 0.0034         | 2                                       | 0.0031         | 4            | 0.0034   | 2         | 0.0032   |  |
| 29       | 9        | 0.011    | 14         | 0.0199         | 15                                      | 0.0208         | 21           | 0.042    | 13        | 0.0192   |  |
| 30       | 6        | 0.0124   | 9          | 0.0164         | 9                                       | 0.0211         | 10           | 0.0149   | 10        | 0.0177   |  |
| 31       | 11       | 0.1177   | 22         | 0.2385         | 17                                      | 0.2096         | 15           | 0.1613   | 15        | 0.1302   |  |
| 32       | 7        | 0.0865   | 13         | 0.1242         | 13                                      | 0.1156         | 18           | 0.1403   | 10        | 0.1028   |  |
| 33       | 85       | 0.0051   | 1142       | 0.0615         | 1208                                    | 0.0461         | 153          | 0.0217   | 85        | 0.0057   |  |
| 34       | 94       | 0.0061   | 403        | 0.0373         | 299                                     | 0.0214         | 148          | 0.0105   | 134       | 0.0087   |  |
| 35       | 239      | 0.0748   | 5487       | 1.1151         | 5589                                    | 1.0281         | fail         | fail     | fail      | fail     |  |
| 36       | 156      | 0.0564   | 6066       | 1.2068         | 6019                                    | 1.0706         | fail         | fail     | fail      | fail     |  |
| 37       | 12       | 6.97E-04 | 86         | 0.0081         | 156                                     | 0.0052         | 28           | 0.0071   | 15        | 0.000822 |  |
| 38       | 14       | 8.59E-04 | 88         | 0.0049         | 93                                      | 0.0043         | 22           | 0.0025   | 15        | 0.0013   |  |
| 39       | 7        | 4.90E-04 | 9          | 0.0011         | 9                                       | 0.000734       | 10           | 0.0105   | 10        | 0.000661 |  |
| 40       | 9        | 6.59E-04 | 11         | 0.0014         | 11                                      | 0.0014         | 21           | 0.0027   | 9         | 0.0011   |  |
| 41       | 10       | 0.0034   |            | 0.0026         |                                         | 0.0045         | 22           | 0.0087   | 9         | 0.0035   |  |
| 42       | 20       | 0.0047   | 03         | 0.0132         | 03                                      | 0.0099         | 11           | 0.0055   | 13        | 0.0052   |  |
| 45       | 20       | 0.0012   | 10         | 8.84E-04       | 11                                      | 0.0011         | 45<br>54     | 0.0151   | 14        | 0.000943 |  |
| 44       | 9        | 0.0024   | 19         | 0.0024         | 19                                      | 0.0014         | 54<br>10     | 0.0038   | 14        | 0.0012   |  |
| 45       | 9        | 0.0034   | 20<br>foil | 0.0087<br>fail | 20<br>28                                | 0.0109         | 10           | 0.0044   | 10        | 0.0043   |  |
| 40<br>47 | 12       | 6.98F_04 | 11         | 0.0039         | 20<br>11                                | 0.0031         | 17           | 0.0121   | 10        | 0.0007   |  |
| 47       | 12       | 0.981-04 | 96         | 0.0039         | 97                                      | 0.0051         | 12           | 0.0107   | 12        | 0.0014   |  |
| 40       | 44       | 0.0012   | 3527       | 0.5159         | fail                                    | fail           | 1229         | 0.0001   | 48        | 0.0013   |  |
| 50       | 33       | 0.0029   | 165        | 0.0245         | 128                                     | 0.0121         | 47           | 0.0084   | 37        | 0.1736   |  |
| 51       | 7        | 4.52E-04 | 27         | 0.0027         | 27                                      | 8.09E-04       | 13           | 0.0021   | 10        | 0.0006   |  |
| 52       | 10       | 6.35E-04 | 264        | 0.0181         | 536                                     | 0.0154         | 13           | 0.0019   | 10        | 0.0009   |  |
| 53       | 13       | 0.0027   | 11         | 0.0033         | 11                                      | 0.0024         | 13           | 0.0032   | 12        | 0.0028   |  |
| 54       | 12       | 0.0024   | 11         | 0.0024         | 12                                      | 0.0039         | 13           | 0.0065   | 8         | 0.0017   |  |
| 55       | 2        | 2.02E-04 | 2          | 2.63E-04       | 2                                       | 2.63E-04       | 2            | 2.93E-04 | 2         | 0.000179 |  |
| 56       | 2        | 1.57E-04 | 2          | 2.03E-04       | 2                                       | 1.29E-04       | 2            | 0.0041   | 2         | 0.00018  |  |
| 57       | 1        | 1.32E-04 | 1          | 1.82E-04       | 1                                       | 1.64E-04       | 1            | 2.40E-04 | 1         | 0.000166 |  |
| 58       | 5        | 3.45E-04 | 7          | 8.31E-04       | 7                                       | 4.69E-04       | 5            | 0.0083   | 7         | 0.000465 |  |
| 59       | 11       | 6.17E-04 | 11         | 0.0081         | 11                                      | 6.34E-04       | 105          | 0.0064   | 9         | 0.000574 |  |
| 60       | 12       | 6.17E-04 | 16         | 0.0022         | 16                                      | 9.00E-04       | 68           | 0.0081   | 13        | 0.000806 |  |
| 61       | 8        | 0.0132   | 18         | 0.0348         | 18                                      | 0.0261         | 10           | 0.0109   | 14        | 0.0215   |  |
| 62       | 10       | 0.022    | 78         | 0.0692         | 96                                      | 0.076          | 50           | 0.0393   | 35        | 0.0451   |  |
| 63       | 9        | 0.0917   | 47         | 0.3093         | 47                                      | 0.2884         | 18           | 0.1548   | 26        | 0.2308   |  |
| 64       | 9        | 0.0945   | 10         | 0.0883         | 9                                       | 0.0753         | 11<br>~      | 0.1134   | 12        | 0.1087   |  |
| 65       | 5        | 0.044    | 1          | 0.0345         | 10                                      | 0.0384         | 5            | 0.0311   | 6         | 0.0529   |  |
| 66       | 10       | 0.0541   | 10         | 0.0646         | 40                                      | 0.2119         | 10           | 0.0477   | 14        | 0.0763   |  |
| 0/<br>20 | 90<br>70 | 0.0163   | 110        | 0.017          | 116<br>foi1                             | 0.0106         | 200          | 0.0256   | 80<br>100 | 0.013    |  |
| 00<br>60 | 19<br>22 | 0.0100   | 100        | 0.0157         | 104                                     | 1811           | 18/          | 0.0313   | 109<br>26 | 0.0185   |  |
| 90<br>70 | 22<br>40 | 0.0015   | 180        | 0.0137         | 194<br>726                              | 0.0002         | 0117<br>4240 | 0.3320   | ∠0<br>57  | 0.0019   |  |
| 70<br>71 | 49<br>01 | 0.0044   | 100<br>17  | 0.0449         | 001<br>70                               | 0.0229         | 4249<br>20   | 0.1903   | 31<br>72  | 0.0040   |  |
| 72       | 24<br>30 | 0.002    | 43         | 0.002          | 43                                      | 0.0027         | 34           | 0.0040   | 29<br>29  | 0.002    |  |

(Continued on next page)

| TABLE II – Continued |     |          |      |          |      |          |      |          |      |          |  |
|----------------------|-----|----------|------|----------|------|----------|------|----------|------|----------|--|
| Problem              | Sp  | MMSIS    | J    | YJLL     | -    | MFR      |      | SCD      | 1    | NPRP     |  |
|                      | NOI | CPU      | NOI  | CPU      | NOI  | CPU      | NOI  | CPU      | NOI  | CPU      |  |
| 73                   | 4   | 2.84E-04 | 5    | 5.72E-04 | 5    | 3.36E-04 | 5    | 6.25E-04 | 5    | 0.000321 |  |
| 74                   | 11  | 9.83E-04 | 4710 | 0.205    | 6315 | 0.1435   | 11   | 0.0086   | 14   | 0.001    |  |
| 75                   | 97  | 0.0043   | 10   | 0.0013   | 10   | 6.97E-04 | 77   | 0.0089   | 10   | 0.000656 |  |
| 76                   | 104 | 0.0073   | 10   | 0.0012   | 10   | 6.85E-04 | 105  | 0.0102   | 10   | 0.00064  |  |
| 77                   | 71  | 0.0097   | 38   | 0.0072   | 38   | 0.0054   | 67   | 0.0087   | 38   | 0.0048   |  |
| 78                   | 74  | 0.0097   | 40   | 0.0041   | 40   | 0.0056   | 75   | 0.015    | 40   | 0.0059   |  |
| 79                   | 317 | 0.1454   | 131  | 0.0532   | 131  | 0.0504   | 234  | 0.0883   | 639  | 0.2417   |  |
| 80                   | 399 | 0.1821   | 137  | 0.0615   | 137  | 0.0489   | 255  | 0.1001   | 716  | 0.265    |  |
| 81                   | 33  | 0.0231   | 255  | 0.141    | 388  | 0.1794   | 46   | 0.0189   | 50   | 0.0216   |  |
| 82                   | 33  | 0.0269   | 3690 | 0.997    | 490  | 0.1991   | 40   | 0.0205   | 50   | 0.0349   |  |
| 83                   | 58  | 0.1142   | 1149 | 3.5478   | 1217 | 3.475    | 87   | 0.1231   | 75   | 0.1262   |  |
| 84                   | 61  | 0.1237   | 1763 | 4.102    | 1132 | 3.246    | 120  | 0.1653   | 76   | 0.14     |  |
| 85                   | 10  | 5.93E-04 | 20   | 0.0022   | 20   | 0.001    | 8    | 8.67E-04 | 19   | 0.0011   |  |
| 86                   | 9   | 5.52E-04 | 51   | 0.0056   | 51   | 0.0025   | 12   | 0.0092   | 10   | 0.0136   |  |
| 87                   | 131 | 0.008    | 272  | 0.0166   | 272  | 0.0111   | 4334 | 0.2208   | 1234 | 0.0551   |  |
| 88                   | 152 | 0.0106   | 273  | 0.0181   | 273  | 0.0138   | 1230 | 0.0778   | 1198 | 0.063    |  |
| 89                   | 1   | 1.55E-04 | 1    | 2.58E-04 | 1    | 0.0011   | 1    | 0.0011   | 1    | 0.000621 |  |
| 90                   | 1   | 1.75E-04 | 1    | 0.003    | 1    | 0.0015   | 1    | 0.0056   | 1    | 0.0085   |  |
| 91                   | 405 | 0.0225   | fail | fail     | fail | fail     | 4295 | 0.2079   | 1293 | 0.0402   |  |
| 92                   | 122 | 0.0085   | 33   | 0.0029   | 33   | 0.0015   | 1346 | 0.0801   | 578  | 0.039    |  |
| 93                   | 15  | 9.47E-04 | 16   | 0.0015   | 16   | 8.83E-04 | 55   | 0.006    | 14   | 0.0015   |  |
| 94                   | 27  | 0.0033   | 24   | 0.0027   | 25   | 0.002    | 105  | 0.0119   | 47   | 0.067    |  |
| 95                   | 1   | 0.0068   | 1    | 0.0083   | 1    | 0.0075   | 1    | 0.0052   | 1    | 0.0095   |  |
| 96                   | 1   | 0.0062   | 1    | 0.0072   | 1    | 0.0043   | 1    | 0.0151   | 1    | 0.1767   |  |
| 97                   | 53  | 0.0076   | 25   | 0.005    | 25   | 0.0054   | 45   | 0.0065   | 25   | 0.0059   |  |
| 98                   | 72  | 0.0142   | 41   | 0.0048   | 41   | 0.0055   | 77   | 0.0181   | 41   | 0.8284   |  |

| TABLE III. Numerical results of  | of the HMMSIS | HuS GN     | HDY IS-CD an  | d HIHI methods |
|----------------------------------|---------------|------------|---------------|----------------|
| ITADEE III. Humerical lesuits of |               | 1100, 010, | 11D1, L5 CD m | a methods.     |

| Problem | HM  | IMSIS  | ]   | HuS     | GN   |         | I    | HDY     | LS-CD |                    | HJHJ |         |
|---------|-----|--------|-----|---------|------|---------|------|---------|-------|--------------------|------|---------|
|         | NOI | CPU    | NOI | CPU     | NOI  | CPU     | NOI  | CPU     | NOI   | CPU                | NOI  | CPU     |
| 1       | 16  | 0.4548 | 99  | 2.4769  | 99   | 2.51    | 100  | 2.7059  | 100   | 2.6619             | 22   | 0.604   |
| 2       | 39  | 1.061  | 32  | 0.8199  | 318  | 7.636   | 37   | 0.9531  | 116   | 2.8378             | 50   | 1.3286  |
| 3       | 16  | 4.0989 | 107 | 26.9841 | 107  | 27.0696 | 108  | 27.4512 | 108   | 27.097             | 23   | 5.8905  |
| 4       | 22  | 6.4689 | 61  | 15.2301 | 74   | 18.3691 | 57   | 14.2066 | 62    | 15.4045            | 33   | 8.3382  |
| 5       | 16  | 0.0923 | 44  | 0.178   | 63   | 0.2525  | 44   | 0.1853  | 44    | 0.2029             | 82   | 0.3409  |
| 6       | 33  | 0.1686 | 32  | 0.1302  | 28   | 0.1191  | 31   | 0.1275  | 32    | 0.1271             | 67   | 0.2699  |
| 7       | 16  | 0.2904 | 45  | 0.7621  | 64   | 1.073   | 45   | 0.7681  | 45    | 0.75               | 88   | 1.5143  |
| 8       | 23  | 0.4214 | 27  | 0.4756  | 52   | 0.8988  | 31   | 0.5576  | 27    | 0.4566             | 39   | 0.6935  |
| 9       | 8   | 0.0457 | 9   | 0.0316  | 15   | 0.053   | 9    | 0.0384  | 9     | 0.0369             | 9    | 0.048   |
| 10      | 8   | 0.0449 | 9   | 0.0457  | fail | fail    | fail | fail    | fail  | fail               | 20   | 0.1996  |
| 11      | 13  | 0.3884 | 105 | 2.9226  | 105  | 2.9519  | 105  | 2.9001  | 105   | 3.0178             | 102  | 2.8863  |
| 12      | 12  | 0.3969 | 81  | 2.1649  | 81   | 2.177   | 81   | 2.1602  | 81    | 2.1578             | 81   | 2.3531  |
| 13      | 14  | 3.829  | 87  | 24.5308 | 87   | 24.6839 | 87   | 24.5671 | 87    | 24.0999            | 87   | 23.5478 |
| 14      | 12  | 3.3952 | 87  | 23.4729 | 87   | 23.5523 | 87   | 23.5355 | 87    | 23.5402            | 87   | 23.6365 |
| 15      | 35  | 0.1022 | 91  | 0.2026  | 91   | 0.1935  | 91   | 0.1892  | 91    | 0.1956             | 107  | 0.2716  |
| 16      | 153 | 0.3601 | 131 | 0.2781  | 210  | 0.4461  | 175  | 0.3667  | 268   | 0.5812             | 234  | 0.5488  |
| 17      | 17  | 0.0635 | 19  | 0.0475  | 19   | 0.0504  | 19   | 0.0479  | 19    | 0.0464             | 19   | 0.0839  |
| 18      | 42  | 0.1343 | 39  | 0.1017  | 36   | 0.0916  | 38   | 0.0966  | 39    | 0.097              | 35   | 0.1138  |
| 19      | 72  | 0.2311 | 74  | 0.237   | 74   | 0.2315  | 73   | 0.2475  | 74    | 0.2358             | 72   | 0.2345  |
| 20      | 121 | 0.4071 | 163 | 0.4696  | 163  | 0.4662  | 165  | 0.485   | 165   | 0.4638             | 158  | 0.446   |
| 21      | 68  | 1.0224 | 676 | 9.7927  | 676  | 9.7493  | 676  | 9.988   | 676   | 9.8306             | 544  | 8.0939  |
| 22      | 171 | 2.4796 | 44  | 0.6683  | 616  | 8.9069  | 44   | 0.6395  | 44    | 0.6697             | 58   | 0.874   |
| 23      | 88  | 2.4783 | 782 | 23.3245 | 782  | 23.8477 | 782  | 35.4964 | 782   | 25.0315            | 644  | 17.6239 |
| 24      | 92  | 2.9348 | 782 | 21.2006 | 782  | 21.136  | 782  | 21.2476 | 782   | 21.092             | 644  | 17.2066 |
| 25      | 3   | 0.0188 | 5   | 0.0302  | 5    | 0.031   | 5    | 0.0332  | 5     | 0.0297             | 5    | 0.0394  |
|         |     |        |     |         |      |         |      |         |       | $(\alpha : \cdot)$ | 1    |         |

(Continued on next page)

| TABLE III – Continued |     |        |      |         |      |         |      |         |      |         |      |         |
|-----------------------|-----|--------|------|---------|------|---------|------|---------|------|---------|------|---------|
| Problem               | HM  | IMSIS  | 1    | HuS     |      | GN      | H    | łDY     | LS   | S-CD    | HJHJ |         |
|                       | NOI | CPU    | NOI  | CPU     | NOI  | CPU     | NOI  | CPU     | NOI  | CPU     | NOI  | CPU     |
| 26                    | 3   | 0.0185 | 5    | 0.0252  | 5    | 0.033   | 5    | 0.0307  | 5    | 0.0316  | 5    | 0.0334  |
| 27                    | 3   | 0.0239 | 5    | 0.0303  | 5    | 0.0366  | 5    | 0.0369  | 5    | 0.035   | 5    | 0.0297  |
| 28                    | 3   | 0.0235 | 5    | 0.0359  | 5    | 0.0326  | 5    | 0.0348  | 5    | 0.0368  | 5    | 0.0357  |
| 29                    | 7   | 0.0481 | 16   | 0.0937  | 16   | 0.0961  | 16   | 0.094   | 16   | 0.1695  | 13   | 0.0782  |
| 30                    | 6   | 0.0412 | 6    | 0.0471  | 6    | 0.0466  | 6    | 0.0433  | 6    | 0.0447  | 8    | 0.0491  |
| 31                    | 10  | 0.2142 | 9    | 0.1859  | 10   | 0.2068  | 9    | 0.1933  | 9    | 0.1868  | 13   | 0.262   |
| 32                    | 7   | 0.1528 | 17   | 0.3097  | 17   | 0.3248  | 17   | 0.3247  | 17   | 0.3325  | 17   | 0.3301  |
| 33                    | 42  | 0.1321 | 52   | 0.1152  | 52   | 0.1214  | 52   | 0.1219  | 52   | 0.1196  | 52   | 0.1484  |
| 34                    | 29  | 0.0897 | 30   | 0.0741  | 30   | 0.0772  | 30   | 0.0764  | 30   | 0.0846  | 30   | 0.0915  |
| 35                    | 188 | 0.9336 | 5892 | 44.9293 | 5892 | 37.8607 | 5892 | 36.9626 | 5892 | 37.674  | 5594 | 23.747  |
| 36                    | 202 | 0.9828 | 5047 | 31.6929 | 6399 | 40.8155 | 4998 | 31.9683 | 5054 | 37.4891 | 5048 | 21.5379 |
| 37                    | 9   | 0.042  | 28   | 0.0648  | 28   | 0.0639  | 28   | 0.0646  | 28   | 0.064   | 12   | 0.0521  |
| 38                    | 16  | 0.066  | 36   | 0.0888  | 14   | 0.0362  | 36   | 0.0867  | 36   | 0.0882  | 74   | 0.2007  |
| 39                    | 5   | 0.0222 | 9    | 0.0246  | 9    | 0.024   | 9    | 0.026   | 9    | 0.0242  | 9    | 0.0463  |
| 40                    | 8   | 0.0366 | 11   | 0.03    | 11   | 0.032   | 11   | 0.0327  | 11   | 0.0301  | 10   | 0.0435  |
| 41                    | 9   | 0.0441 | 12   | 0.0456  | 12   | 0.0332  | 12   | 0.0442  | 12   | 0.0352  | 11   | 0.0444  |
| 42                    | 11  | 0.0503 | 9    | 0.0295  | 9    | 0.0273  | 9    | 0.0279  | 9    | 0.0291  | 11   | 0.0511  |
| 43                    | 17  | 0.0655 | 11   | 0.0279  | 17   | 0.0428  | 11   | 0.0271  | 11   | 0.0297  | 13   | 0.0607  |
| 44                    | 7   | 0.0338 | 14   | 0.0462  | 14   | 0.0476  | 14   | 0.0402  | 14   | 0.0393  | 14   | 0.0608  |
| 45                    | 9   | 0.0449 | fail | fail    | 14   | 0.2003  | 14   | 0.0467  | 13   | 0.04    | fail | fail    |
| 46                    | 10  | 0.0512 | fail | fail    | 28   | 0.0754  | fail | fail    | 27   | 0.0728  | 30   | 0.2636  |
| 47                    | 12  | 0.0516 | 11   | 0.0305  | 11   | 0.03    | 11   | 0.0289  | 11   | 0.0351  | 11   | 0.0525  |
| 48                    | 18  | 0.0746 | 18   | 0.0477  | 18   | 0.054   | 18   | 0.0478  | 18   | 0.0474  | 19   | 0.0918  |
| 49                    | 56  | 0.1644 | 39   | 0.1533  | 23   | 0.0835  | fail | fail    | 39   | 0.1206  | 21   | 0.0871  |
| 50                    | 25  | 0.0865 | 41   | 0.1501  | 28   | 0.0917  | 29   | 0.103   | 28   | 0.1594  | 30   | 0.0932  |
| 51                    | 7   | 0.0348 | 7    | 0.0341  | 9    | 0.0406  | 7    | 0.0328  | 7    | 0.0327  | 10   | 0.0529  |
| 52                    | 6   | 0.0301 | 6    | 0.0301  | 6    | 0.0329  | 6    | 0.0201  | 6    | 0.03    | 9    | 0.0436  |
| 53                    | 9   | 0.0441 | 9    | 0.0389  | 8    | 0.0395  | 9    | 0.0425  | 9    | 0.043   | 9    | 0.0491  |
| 54                    | 11  | 0.0526 | 15   | 0.0713  | 8    | 0.0395  | 11   | 0.0542  | 15   | 0.0631  | 15   | 0.0639  |
| 55                    | 3   | 0.0126 | 3    | 0.0152  | 3    | 0.014   | 3    | 0.0144  | 3    | 0.0145  | 3    | 0.0176  |
| 56                    | 3   | 0.0155 | 3    | 0.0152  | 3    | 0.0159  | 3    | 0.016   | 3    | 0.0155  | 3    | 0.0183  |
| 57                    | 1   | 0.0051 | 1    | 0.0054  | 1    | 0.0062  | 1    | 0.0059  | 1    | 0.0082  | 1    | 0.0121  |
| 58                    | 5   | 0.0258 | 5    | 0.0261  | 5    | 0.0261  | 5    | 0.0259  | 5    | 0.0258  | 9    | 0.0497  |
| 59                    | 11  | 0.0513 | 9    | 0.0417  | 20   | 0.0877  | 9    | 0.0405  | 9    | 0.0402  | 12   | 0.0567  |
| 60                    | 11  | 0.0518 | 12   | 0.056   | 12   | 0.0553  | 12   | 0.0568  | 12   | 0.0491  | 12   | 0.0557  |
| 61                    | 7   | 0.0484 | 18   | 0.1009  | 18   | 0.0868  | 18   | 0.099   | 18   | 0.1238  | 18   | 0.0943  |
| 62                    | 11  | 0.0695 | 12   | 0.082   | 21   | 0.1773  | 12   | 0.0668  | 12   | 0.0634  | 15   | 0.0777  |
| 63                    | 8   | 0.1656 | 47   | 0.8346  | 47   | 0.8379  | 47   | 0.9283  | 47   | 0.8251  | 47   | 0.8137  |
| 64                    | 9   | 0.1741 | 43   | 0.7445  | 43   | 0.7624  | 43   | 0.7771  | 43   | 0.738   | 43   | 0.7219  |
| 65                    | 5   | 0.0367 | 5    | 0.0213  | 6    | 0.0248  | 5    | 0.0204  | 5    | 0.0228  | 6    | 0.0516  |
| 66                    | 7   | 0.0461 | 7    | 0.0305  | 9    | 0.0385  | 7    | 0.0355  | 7    | 0.0318  | 9    | 0.0671  |
| 67                    | 71  | 0.1942 | 71   | 0.1631  | 71   | 0.1612  | 71   | 0.1603  | 71   | 0.1718  | 71   | 0.2199  |
| 68                    | 65  | 0.1777 | 60   | 0.1482  | 60   | 0.139   | 60   | 0.1393  | 60   | 0.1406  | 62   | 0.1872  |
| 69                    | 20  | 0.0657 | 9    | 0.0327  | 9    | 0.0218  | 12   | 0.0307  | 9    | 0.0328  | 61   | 0.1743  |
| 70                    | 19  | 0.0678 | 49   | 0.1113  | 83   | 0.1776  | 29   | 0.0713  | 59   | 0.1331  | 36   | 0.123   |
| 71                    | 22  | 0.0794 | 22   | 0.0851  | 22   | 0.0893  | 23   | 0.0932  | 23   | 0.0899  | 23   | 0.0905  |
| 72                    | 24  | 0.0874 | 27   | 0.1212  | 27   | 0.107   | 27   | 0.1005  | 27   | 0.1135  | 27   | 0.106   |
| 73                    | 4   | 0.0182 | 5    | 0.0243  | 5    | 0.0203  | 5    | 0.0241  | 5    | 0.0238  | 5    | 0.0351  |
| 74                    | 10  | 0.0429 | 11   | 0.2056  | 15   | 0.0541  | 11   | 0.0491  | 11   | 0.0444  | 14   | 0.0571  |
| 75                    | 24  | 0.0778 | 23   | 0.0692  | 23   | 0.132   | 20   | 0.0827  | 20   | 0.0751  | 23   | 0.0811  |
| 76                    | 25  | 0.0796 | 23   | 0.1203  | 23   | 0.0933  | 22   | 0.0738  | 21   | 0.0862  | 23   | 0.0902  |
| 77                    | 38  | 0.1117 | 38   | 0.0961  | 38   | 0.0957  | 38   | 0.0909  | 38   | 0.0967  | 39   | 0.1376  |
| 78                    | 41  | 0.1224 | 41   | 0.1137  | 41   | 0.1017  | 41   | 0.102   | 41   | 0.1051  | 41   | 0.1303  |
| 79                    | 313 | 1.8818 | 131  | 0.6837  | 131  | 0.6259  | 131  | 0.5597  | 131  | 0.5944  | 144  | 1.017   |
| 80                    | 342 | 2.2016 | 137  | 0.5641  | 137  | 0.5707  | 137  | 0.6007  | 150  | 0.9507  | 151  | 0.8641  |
| 81                    | 27  | 0.1164 | 55   | 0.173   | 35   | 0.126   | 16   | 0.0599  | 73   | 0.2517  | 64   | 0.2531  |
| 82                    | 39  | 0.1577 | 27   | 0.0996  | 60   | 0.1715  | 32   | 0.1077  | 63   | 0.201   | 58   | 0.2245  |

(Continued on next page)

| Problem | HM  | IMSIS  | SIS HuS |        | IADL | GN     |     | IDY    | LS-CD |        | HJHJ |        |
|---------|-----|--------|---------|--------|------|--------|-----|--------|-------|--------|------|--------|
|         | NOI | CPU    | NOI     | CPU    | NOI  | CPU    | NOI | CPU    | NOI   | CPU    | NOI  | CPU    |
| 83      | 73  | 0.6299 | 174     | 1.9825 | 93   | 0.7327 | 47  | 0.4501 | 48    | 0.4327 | 74   | 0.673  |
| 84      | 74  | 0.6557 | 66      | 0.8412 | 53   | 0.7323 | 49  | 0.5871 | 41    | 0.3818 | 109  | 0.9309 |
| 85      | 7   | 0.0328 | 20      | 0.0868 | 20   | 0.0912 | 20  | 0.0573 | 20    | 0.0984 | 20   | 0.0734 |
| 86      | 9   | 0.0432 | 19      | 0.0557 | 19   | 0.0706 | 19  | 0.079  | 19    | 0.0816 | 19   | 0.0754 |
| 87      | 48  | 0.1518 | 271     | 1.4919 | 271  | 1.7813 | 271 | 2.1317 | 271   | 1.8957 | 271  | 0.7489 |
| 88      | 60  | 0.1857 | 266     | 0.8987 | 266  | 0.9015 | 266 | 1.5651 | 266   | 2.1936 | 273  | 0.7322 |
| 89      | 1   | 0.0051 | 1       | 0.006  | 1    | 0.0047 | 1   | 0.0057 | 1     | 0.005  | 1    | 0.01   |
| 90      | 1   | 0.0058 | 1       | 0.0058 | 1    | 0.0055 | 1   | 0.007  | 1     | 0.0049 | 1    | 0.0059 |
| 91      | 173 | 0.4015 | 200     | 0.6743 | 277  | 1.3688 | 151 | 0.7055 | 330   | 1.5364 | 145  | 0.3672 |
| 92      | 27  | 0.0845 | 56      | 0.1771 | 63   | 0.2003 | 56  | 0.1891 | 56    | 0.1973 | 49   | 0.2294 |
| 93      | 10  | 0.042  | 10      | 0.0453 | 14   | 0.0639 | 10  | 0.0371 | 10    | 0.0452 | 14   | 0.0635 |
| 94      | 29  | 0.0902 | 21      | 0.0703 | 31   | 0.1    | 21  | 0.0725 | 21    | 0.0748 | 31   | 0.0913 |
| 95      | 1   | 0.0181 | 1       | 0.0316 | 1    | 0.0227 | 1   | 0.0226 | 1     | 0.0219 | 1    | 0.0367 |
| 96      | 1   | 0.0169 | 1       | 0.0183 | 1    | 0.0194 | 1   | 0.0192 | 1     | 0.0189 | 1    | 0.0204 |
| 97      | 26  | 0.0832 | 26      | 0.0829 | 26   | 0.0896 | 26  | 0.1235 | 26    | 0.3061 | 26   | 0.0835 |
| 98      | 42  | 0.1252 | 42      | 0.169  | 42   | 0.1519 | 41  | 0.1606 | 42    | 0.1695 | 45   | 0.1368 |



(a) Based on Number of Iterations.

(b) Based on CPU time.

Fig. 1: Comparison performance of SpMMSIS, JYJLL, and NPRP methods.



Fig. 2: Comparison performance of SpMMSIS, MFR, and SCD methods.



Fig. 3: Comparison performance of HMMSIS, GN, and HDY methods.



Fig. 4: Comparison performance of HMMSIS, LS-CD, and HJHJ methods.





Based on the numerical results in Table II and Table III, we can illustrate the performance profile curves of the all method, in this case we will use the performance profile proposed by Dolan and Moré [41]. We plot the performance profile curve using the formula as follows:

$$r_{p,s} = \frac{a_{p,s}}{\min\{a_{p,s} : p \in P \text{ and } s \in S\}},$$
$$\rho_s(\tau) = \frac{1}{n_p} size\{p \in P : r_{p,s} \le \tau\},$$

where  $r_{p,s}$  is the performance profile ratio used to compare the *s* solver performance method with the best performance for any *p* problem solver.  $\rho_s(\tau)$  is the probability that the best possible ratio is a consideration for solvers.

The performance profile curve shows that the percentage of test issues that are successfully solved by each system is the right side of 98 problems; the left side of the figure shows the percentage of test problems for which the procedure is the fastest. The best solver is usually represented by the solver whose output profile plot is on the top right.

From Fig. 1 and Fig. 2 we can see that the proposed SpMMSIS method performs more efficient than the JYJLL, NPRP, MFR, and SCD methods both in terms of number of iterations and CPU time.

Meanwhile, the performance profile results of HMMSIS method are presented for both NOI and CPU time in Fig. 3 to Fig. 5. For each figure, the plot shows that the proposed HMMSIS method performed more efficient than the GN, HDY, LS-CD, HJHJ, and HuS methods both in terms of number of iterations and CPU time.

# VI. CONCLUSION

In this article, we have proposed the new parameter of the spectral conjugate gradient method (SpMMSIS method) and a new coefficient for the hybrid conjugate gradient method (HMMSIS method). The new spectral conjugate gradient method satisfies the global convergence properties by using the strong Wolfe line search and has the required descent condition without relying on any line search. Similarly, the new hybrid conjugate gradient approach uses an exact line search to satisfy the sufficient descent condition and global convergence properties. The numerical results based on NOI and CPU time of 98 problems shows that the new method both SpMMSIS and HMMSIS conjugate gradient methods are very competitive and most efficient compared with other methods.

#### REFERENCES

- E. Polak, "Optimization: Algorithms and Consistent Approximations," Springer, Berlin, 1997.
- [2] J. Nocedal, and S. J. Wright, "Numerical Optimization," Springer Science & Business Media, New York, 2006.
- [3] M. R. Hestenes, and E. Stiefel, "Methods of Conjugate Gradients for Solving Linear Systems," Journal of Research of the National Bureau of Standards, vol. 49, no. 6, pp. 409-436, 1952.
- [4] R. Fletcher and C. M. Reeves, "Function minimization by conjugate gradients," The Computer Journal, vol. 7, no. 2, pp. 149-154, 1964.
- [5] R. Fletcher, "Practical methods of optimization," john wiley & sons, 2013.
- [6] Y. Liu, and C. Storey, "Efficient Generalized Conjugate Gradient Algorithms, Part 1: Theory," Journal of Optimization Theory and Applications, vol. 69, no. 1 ,pp. 129-137, 1991.

- [7] Y. H. Dai, and Y. Yuan, "A Nonlinear Conjugate Gradient Method with A Strong Global Convergence Property, SIAM Journal on Optimization, vol. 10, no. 1, 177-182, 1999.
- [8] E. Polak, and G. Ribiere, "Note sur la convergence de méthodes de directions conjuguées," ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, vol. 3, no. R1, pp. 35-43, 1969.
- [9] Z. Wei, S. Yao, and L. Liu, "The convergence properties of some new conjugate gradient methods," Applied Mathematics and Computation, vol. 183, no. 2, pp. 1341-1350, 2006.
- [10] L. Zhang, "An improved Wei-Yao-Liu nonlinear conjugate gradient method for optimization computation," Applied Mathematics and Computation, vol. 215, no. 6, pp. 2269-2274, 2009.
- [11] R. Pytlak, "Conjugate gradient algorithms in nonconvex optimization," Springer Science & Business Media, vol. 89, 2008.
- [12] J. Barzilai, and J. M. Borwein, "Two point step size gradient methods," IMA journal of numerical analysis, vol. 8, no. 1, pp. 141-148, 1988.
- [13] M. Raydan, "The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem," SIAM Journal on Optimization, vol. 7, no. 1. pp. 26-33, 1997.
- [14] E. G. Birgin, and J. M. Martinez, "A spectral conjugate gradient method for unconstrained optimization," Applied Mathematics and optimization, vol. 43, no. 2, pp. 117-128, 2001.
- [15] L. Zhang, W. Zhou, and D. Li, "Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search," Numerische Mathematik, vol. 104, no. 4, pp. 561-572, 2006.
- [16] J. Liu, and Y. Jiang, "Global convergence of a spectral conjugate gradient method for unconstrained optimization," Abstract and Applied Analysis, vol. 2012, Article ID 758287, 2012.
- [17] J. Jian, L. Yang, X. Jiang, P. Liu, and M. Liu, "A Spectral Conjugate Gradient Method with Descent Property," Mathematics, vol. 8, no. 2, p. 280, 2020.
- [18] Y. H. Dai, "Nonlinear conjugate gradient methods," Wiley Encyclopedia of Operations Research and Management Science, 2010.
- [19] D. Touati-Ahmed, and C. Storey, "Efficient Hybrid Conjugate Gradient Techniques," Journal of Optimization Theory and Applications, vol. 64, no. 2, pp. 379-397, 1990.
- [20] Y. F. Hu, and C. Storey, "Global Convergence Result for Conjugate Gradient Methods," Journal of Optimization Theory and Applications, vol. 71, no. 2, pp. 399-405, 1991.
- [21] J. C. Gilbert, and J. Nocedal, "Global Convergence Properties of Conjugate Gradient Methods for Optimization," SIAM Journal on Optimization, vol. 2, pp. 21-42, 1992.
- [22] Y. H. Dai, and Y. X. Yuan, "An Efficient Hybrid Conjugate Gradient Method for Unconstrained Optimization," Annals of Operations Research, vol. 103, no. 1-4, pp. 33-47, 2001.
- search, vol. 103, no. 1-4, pp. 33-47, 2001.
  [23] X. Li, and X. Zhao, "A Hybrid Conjugate Gradient Method for Optimization Problems," Natural Science, vol. 03, no. 01, pp. 85-90, 2011.
- [24] J. Jian, L. Han, and X. Jiang, "A Hybrid Conjugate Gradient Method with Descent Property for Unconstrained Optimization," Applied Mathematical Modelling, vol. 39, no. 3-4,pp. 1281-1290, 2015.
- [25] Issam A. R. Moghrabi, "A New Preconditioned Conjugate Gradient Method for Optimization," IAENG International Journal of Applied Mathematics, vol. 49, no.1, pp29-36, 2019.
- [26] Omid Kardani, Andrei V. Lyamin, and Kristian Krabbenhoft, "A Comparative Study of Preconditioning Techniques for Large Sparse Systems Arising in Finite Element Limit Analysis," IAENG International Journal of Applied Mathematics, vol. 43, no. 4, pp195-203, 2013.
- [27] Dharminder Kumar, Sangeeta Gupta, and Parveen Sehgal, "Improved Training of Predictive ANN with Gradient Techniques," Lecture Notes in Engineering and Computer Science: Proceedings of The International MultiConference of Engineers and Computer Scientists 2014, IMECS 2014, 12-14 March, 2014, Hong Kong, pp394-399.
- [28] Z. Wan, S. Zhang, and Y. Wang, "Penalty algorithm based on conjugate gradient method for solving portfolio management problem," Journal of Inequalities and Applications, vol. 2009, pp. 1-16, 2009.
- [29] J. Cao, and J. Wu, "A conjugate gradient algorithm and its applications in image restoration," Applied Numerical Mathematics, vol. 152, pp. 243-252, 2020.
- [30] K. Yang, Gh. Jiang, Q. Qu, Hf. Peng, and Xw. Gao, "A new modified conjugate gradient method to identify thermal conductivity of transient non-homogeneous problems based on radial integration boundary element method," International Journal of Heat and Mass Transfer, vol. 133, pp. 669-676, 2019.
- [31] J. K. Liu, Y. M. Feng, and L. M. Zou, "A spectral conjugate gradient method for solving large-scale unconstrained optimization," Computers & Mathematics with Applications, vol. 77, no. 3, pp. 731-739, 2019.
- [32] M. Malik, M. Mamat, S. S. Abas, I. M. Sulaiman, Sukono, and A. T. Bon, "Solving Unconstrained Minimization Problems with a New Hybrid Conjugate Gradient Method," Proceedings of the 5th

NA International Conference on Industrial Engineering and Operations Management Detroit, Michigan, USA, ID 497, 2020.

- [33] M. Malik, M. Mamat, S. S. Abas, I. M. Sulaiman, Sukono, and A. T. Bon, "Comparison of Conjugate Gradient Method on Solving Unconstrained Optimization Problems," Proceedings of the 5th NA International Conference on Industrial Engineering and Operations Management Detroit, Michigan, USA, ID 500, 2020.
- [34] Maulana Malik, Mustafa Mamat, Siti Sabariah Abas, Ibrahim Mohammed Sulaiman, and Sukono, "A New Coefficient of the Conjugate Gradient Method with the Sufficient Descent Condition and Global Convergence Properties," Engineering Letters, vol. 28, no.3, pp704-714, 2020.
- [35] G. Zoutendijk, "Nonlinear programming, computational methods," Integer and nonlinear programming, pp. 37-86, 1970.
- [36] N. Andrei, "An unconstrained optimization test functions collection," Adv. Model. Optim, vol. 10, no. 1, pp. 147-161, 2008.
- [37] M. Malik, M. Mamat, S. S. Abas, and Sukono, "Convergence analysis of a new coefficient conjugate gradient method under exact line search," International Journal of Advanced Science and Technology, vol. 29, no. 5, pp. 187-198, 2020.
- [38] M. Malik, S. S. Abas, M. Mamat, Sukono, and I. S. Mohammed, "A new hybrid conjugate gradient method with global convergence properties," International Journal of Advanced Science and Technology, vol. 29, no. 5, pp. 199-210, 2020.
- [39] M. Malik, M. Mamat, S. S. Abas, I. M. Sulaiman, and Sukono, "A new spectral conjugate gradient method with descent condition and global convergence property for unconstrained optimization," J. Math. Comput. Sci., vol. 10, No. 5, pp. 2053-2069, 2020.
- [40] M. Malik, M. Mamat, S. S. Abas, I. M. Sulaiman, and Sukono, "A new modification of NPRP conjugate gradient method for unconstrained optimization," Advances in Mathematics: Scientific Journal, vol. 9, No. 7, pp. 4955-4970, 2020.
- [41] E. D. Dolan, and J. J. Moré, "Benchmarking optimization software with performance profiles," Mathematical Programming, vol. 91, no. 2, pp. 201-213, 2002.





Maulana Malik (Member), is currently a Lecturer at the Department of Mathematics, Universitas Indonesia, Indonesia since 2016. He received his B.Sc. (2009) and M.Sc. (2012) in Mathematics from Universitas Indonesia (UI), Indonesia and he is currently (2019-present) a Ph.D. student at Universiti Sultan Zainal Abidin (UniSZA), Terengganu, Malaysia. His current research focuses on optimization include the conjugate gradient (CG), hybrid CG, spectral CG, and three-term CG methods.

**Mustafa Mamat** is currently a Professor in Faculty of Informatics and Computing at the Universiti Sultan Zainal Abidin since 2013. He obtained his Ph.D. from the UMT in 2007 with specialization in optimization. He was appointed as a Senior Lecturer in 2008 and the as an Associate Professor in 2010 also the UMT. To date, he has published more than 407 research paper in various international journals and conferences. His research interest in applied mathematics, with a field of concentration of optimization include

conjugate gradient, steepest descent methods, Broyden's family and quasi-Newton methods.



**Siti Sabariah Abas** is a Lecturer at Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin (UniSZA) Malaysia. She obtained her Ph.D. from the Universiti Sains Malaysia (USM) in 2016 with field in numerical analysis include the fluid dynamics.



**Ibrahim Mohammed Sulaiman** is currently a post-doctoral researcher at Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin (UniSZA) Malaysia, from 2019 till date. He obtained his Ph.D. from UniSZA in 2018 specializing in the field of fuzzy systems. He has published research papers in various international journals and attended international conferences. His research interest includes numerical research, Fuzzy nonlinear systems and unconstrained optimization.



**Sukono** (Member) is a Lecturer in the Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran. Masters in Actuarial Sciences at Institut Teknologi Bandung, Indonesia in 2000, and Ph.D. in Financial Mathematics at the Universitas Gadjah Mada, Yogyakarta Indonesia in 2011. Currently serves as Head of Master Program in Mathematics, the field of applied mathematics, with a field of concentration of financial mathematics and actuarial sciences.